Cancer and Non-Cancer Effects Following Ionizing Irradiation
Abstract
:1. Introduction
2. Overview of Published Articles
2.1. Circulatory System
2.2. Sensory System
2.3. Nervous System
2.4. Respiratory System, Reproductive System, and Other Systems
3. Conclusions
Funding
Conflicts of Interest
References
- Chen, H.; Han, Z.; Luo, Q.; Wang, Y.; Li, Q.; Zhou, L.; Zuo, H. Radiotherapy modulates tumor cell fate decisions: A review. Radiat. Oncol. 2022, 17, 196. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Hu, S.; Jia, B.; Tuo, B.; Sun, H.; Wang, Q.; Liu, Y.; Sun, Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis. 2023, 14, 679. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, G.; Hu, W. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 2022, 32, 100828. [Google Scholar] [CrossRef]
- Paunesku, T.; Stevanović, A.; Popović, J.; Woloschak, G.E. Effects of low dose and low dose rate low linear energy transfer radiation on animals—Review of recent studies relevant for carcinogenesis. Int. J. Radiat. Biol. 2021, 97, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Benali, K.; Lloyd, M.S.; Petrosyan, A.; Rigal, L.; Quivrin, M.; Bessieres, I.; Vlachos, K.; Hammache, N.; Bellec, J.; Simon, A.; et al. Cardiac stereotactic radiation therapy for refractory ventricular arrhythmias in patients with left ventricular assist devices. J. Cardiovasc. Electrophysiol. 2024, 35, 206–213. [Google Scholar] [CrossRef]
- Paithankar, J.G.; Gupta, S.C.; Sharma, A. Therapeutic potential of low dose ionizing radiation against cancer, dementia, and diabetes: Evidences from epidemiological, clinical, and preclinical studies. Mol. Biol. Rep. 2023, 50, 2823–2834. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.D.; Rogers, C.L.; Mehta, M.P.; Marples, B.; Michael, D.B.; Welsh, J.S.; Martinez, A.A.; Fontanesi, J. The rationale for radiation therapy in Alzheimer’s disease. Radiat. Res. 2023, 199, 506–516. [Google Scholar] [CrossRef]
- Kaul, D.; Ehret, F.; Roohani, S.; Jendrach, M.; Buthut, M.; Acker, G.; Anwar, M.; Zips, D.; Heppner, F.; Prüss, H. Radiation therapy in Alzheimer’s disease: A systematic review. Int. J. Radiat. Oncol. Biol. Phys. 2024, in press. [Google Scholar] [CrossRef]
- Hamada, N. Noncancer effects of ionizing radiation exposure on the eye, the circulatory system and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat. Res. 2023, 200, 188–216. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Ozasa, K.; Akiba, S.; Niwa, O.; Kodama, K.; Takamura, N.; Zaharieva, E.K.; Kimura, Y.; Wakeford, R. Long-term effects of radiation exposure on health. Lancet 2015, 386, 469–478. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Radiological Protection (ICRP). ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—Threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 2012, 41, 1–322. [Google Scholar] [CrossRef] [PubMed]
- Nabialek-Trojanowska, I.; Sinacki, M.; Jankowska, H.; Lewicka-Potocka, Z.; Dziadziuszko, R.; Lewicka, E. The influence of radiotherapy on the function of the left and right ventricles in relation to the radiation dose administered to the left anterior descending coronary artery-from a cardiologist’s point of view. Cancers 2022, 14, 2420. [Google Scholar] [CrossRef]
- Honaryar, M.K.; Allodji, R.; Ferrières, J.; Panh, L.; Locquet, M.; Jimenez, G.; Lapeyre, M.; Camilleri, J.; Broggio, D.; de Vathaire, F.; et al. Early coronary artery calcification progression over two years in breast cancer patients treated with radiation therapy: Association with cardiac exposure (BACCARAT Study). Cancers 2022, 14, 5724. [Google Scholar] [CrossRef]
- Tanno, B.; Novelli, F.; Leonardi, S.; Merla, C.; Babini, G.; Giardullo, P.; Kadhim, M.; Traynor, D.; Medipally, D.K.R.; Meade, A.D.; et al. MiRNA-mediated fibrosis in the out-of-target heart following partial-body irradiation. Cancers 2022, 14, 3463. [Google Scholar] [CrossRef]
- Mpweme Bangando, H.; Simard, C.; Aize, M.; Lebrun, A.; Manrique, A.; Guinamard, R.; On behalf of the stop-as investigators. TRPM4 participates in irradiation-induced aortic valve remodeling in mice. Cancers 2022, 14, 4477. [Google Scholar] [CrossRef]
- Sridharan, V.; Krager, K.J.; Pawar, S.A.; Bansal, S.; Li, Y.; Cheema, A.K.; Boerma, M. Effects of whole and partial heart irradiation on collagen, mast cells, and toll-like receptor 4 in the mouse heart. Cancers 2023, 15, 406. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, O.; Merl-Pham, J.; Subramanian, V.; Oleksenko, K.; Krumm, F.; Mancuso, M.; Pasquali, E.; Tanaka, I.B., 3rd; Tanaka, S.; Atkinson, M.J.; et al. Late Effects of chronic low dose rate total body irradiation on the heart proteome of ApoE−/− mice resemble premature cardiac ageing. Cancers 2023, 15, 3417. [Google Scholar] [CrossRef]
- Hamada, N.; Kawano, K.I.; Nomura, T.; Furukawa, K.; Yusoff, F.M.; Maruhashi, T.; Maeda, M.; Nakashima, A.; Higashi, Y. Temporal changes in sparing and enhancing dose protraction effects of ionizing irradiation for aortic damage in wild-type mice. Cancers 2022, 14, 3319. [Google Scholar] [CrossRef]
- Azizova, T.V.; Bragin, E.V.; Bannikova, M.V.; Hamada, N.; Grigoryeva, E.S. The incidence risk for primary glaucoma and its subtypes following chronic exposure to ionizing radiation in the Russian cohort of Mayak nuclear workers. Cancers 2022, 14, 602. [Google Scholar] [CrossRef]
- Thariat, J.; Martel, A.; Matet, A.; Loria, O.; Kodjikian, L.; Nguyen, A.M.; Rosier, L.; Herault, J.; Nahon-Estève, S.; Mathis, T. Non-cancer effects following ionizing irradiation involving the eye and orbit. Cancers 2022, 14, 1194. [Google Scholar] [CrossRef]
- Peuker, L.; Rolf, D.; Oertel, M.; Peuker, A.; Scobioala, S.; Hering, D.; Rudack, C.; Haverkamp, U.; Eich, H.T. Definition of an normal tissue complication probability model for the inner ear in definitive radiochemotherapy of nasopharynx carcinoma. Cancers 2022, 14, 3422. [Google Scholar] [CrossRef]
- Laurent, O.; Samson, E.; Caër-Lorho, S.; Fournier, L.; Laurier, D.; Leuraud, K. Updated mortality analysis of SELTINE, the French cohort of nuclear workers, 1968–2014. Cancers 2022, 15, 79. [Google Scholar] [CrossRef]
- Rübe, C.E.; Raid, S.; Palm, J.; Rübe, C. Radiation-induced brain injury: Age dependency of neurocognitive dysfunction following radiotherapy. Cancers 2023, 15, 2999. [Google Scholar] [CrossRef]
- Cantabella, E.; Camilleri, V.; Cavalie, I.; Dubourg, N.; Gagnaire, B.; Charlier, T.D.; Adam-Guillermin, C.; Cousin, X.; Armant, O. Revealing the increased stress response behavior through transcriptomic analysis of adult zebrafish brain after chronic low to moderate dose rates of ionizing radiation. Cancers 2022, 14, 3793. [Google Scholar] [CrossRef]
- Matsuya, Y.; Hamada, N.; Yachi, Y.; Satou, Y.; Ishikawa, M.; Date, H.; Sato, T. Inflammatory signaling and DNA damage responses after local exposure to an insoluble radioactive microparticle. Cancers 2022, 14, 1045. [Google Scholar] [CrossRef]
- Fukunaga, H.; Yokoya, A.; Prise, K.M. A brief overview of radiation-induced effects on spermatogenesis and oncofertility. Cancers 2022, 14, 805. [Google Scholar] [CrossRef]
- Cruz-Garcia, L.; Nasser, F.; O’Brien, G.; Grepl, J.; Vinnikov, V.; Starenkiy, V.; Artiukh, S.; Gramatiuk, S.; Badie, C. Transcriptional dynamics of DNA damage responsive genes in circulating leukocytes during radiotherapy. Cancers 2022, 14, 2649. [Google Scholar] [CrossRef] [PubMed]
- Sörgel, C.A.; Schmid, R.; Stadelmann, N.; Weisbach, V.; Distel, L.; Horch, R.E.; Kengelbach-Weigand, A. IGF-I and hyaluronic acid mitigate the negative effect of irradiation on human skin keratinocytes. Cancers 2022, 14, 588. [Google Scholar] [CrossRef] [PubMed]
- Kuncman, Ł.; Orzechowska, M.; Stawiski, K.; Masłowski, M.; Ciążyńska, M.; Gottwald, L.; Milecki, T.; Fijuth, J. The kinetics of FMS-related tyrosine kinase 3 ligand (Flt-3L) during chemoradiotherapy suggests a potential gain from the earlier initiation of immunotherapy. Cancers 2022, 14, 3844. [Google Scholar] [CrossRef]
- Little, M.P.; Azizova, T.V.; Bazyka, D.; Bouffler, S.D.; Cardis, E.; Chekin, S.; Chumak, V.V.; Cucinotta, F.A.; de Vathaire, F.; Hall, P.; et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ. Health Perspect. 2012, 120, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Little, M.P. Radiation and circulatory disease. Mutat. Res. 2016, 770, 299–318. [Google Scholar] [CrossRef] [PubMed]
- Little, M.P.; Azizova, T.V.; Richardson, D.B.; Tapio, S.; Bernier, M.O.; Kreuzer, M.; Cucinotta, F.A.; Bazyka, D.; Chumak, V.; Ivanov, V.K.; et al. Ionising radiation and cardiovascular disease: Systematic review and meta-analysis. BMJ 2023, 380, e072924. [Google Scholar] [CrossRef]
- Peters, C.E.; Quinn, E.K.; Rodriguez-Villamizar, L.A.; MacDonald, H.; Villeneuve, P.J. Exposure to low-dose radiation in occupational settings and ischaemic heart disease: A systematic review and meta-analysis. Occup. Environ. Med. 2023, 80, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.C.; Zhou, P.K. Tissue reactions and mechanism in cardiovascular diseases induced by radiation. Int. J. Mol. Sci. 2022, 23, 14786. [Google Scholar] [CrossRef] [PubMed]
- Peix, A.; Perez, A.; Barreda, A.M. Cancer and postradiotherapy cardiotoxicity: How to face damage in women’s hearts? Eur. Cardiol. 2023, 18, e08. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Kawano, K.I.; Hirota, S.; Saito, Y.; Yusoff, F.M.; Maruhashi, T.; Maeda, M.; Nomura, T.; Nakashima, A.; Yoshinaga, S.; et al. Sparing and enhancing dose protraction effects for radiation damage to the aorta of wild-type mice. Int. J. Radiat. Biol. 2024, 100, 37–45. [Google Scholar] [CrossRef]
- Thome, C.; Chambers, D.B.; Hooker, A.M.; Thompson, J.W.; Boreham, D.R. Deterministic effects to the lens of the eye following ionizing radiation exposure: Is there evidence to support a reduction in threshold dose? Health Phys. 2018, 114, 328–343. [Google Scholar] [CrossRef]
- Ainsbury, E.A.; Barnard, S.G.R. Sensitivity and latency of ionising radiation-induced cataract. Exp. Eye Res. 2021, 212, 108772. [Google Scholar] [CrossRef]
- Shen, C.J.; Kry, S.F.; Buchsbaum, J.C.; Milano, M.T.; Inskip, P.D.; Ulin, K.; Francis, J.H.; Wilson, M.W.; Whelan, K.F.; Mayo, C.S.; et al. Retinopathy, optic neuropathy, and cataract in childhood cancer survivors treated with radiation therapy: A PENTEC comprehensive review. Int. J. Radiat. Oncol. Biol. Phys. 2024, in press. [Google Scholar] [CrossRef]
- Little, M.P.; Kitahara, C.M.; Cahoon, E.K.; Bernier, M.O.; Velazquez-Kronen, R.; Doody, M.M.; Borrego, D.; Miller, J.S.; Alexander, B.H.; Simon, S.L.; et al. Occupational radiation exposure and risk of cataract incidence in a cohort of US radiologic technologists. Eur. J. Epidemiol. 2018, 33, 1179–1191. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Yoshinaga, S.; Zhu, W.; Tokonami, S.; Zou, J.; Tan, G.; Tsuji, M.; Akiba, S.; Sun, Q. Lens opacity prevalence among the residents in high natural background radiation area in Yangjiang, China. J. Radiat. Res. 2021, 62, 67–72. [Google Scholar] [CrossRef]
- Yamada, M.; Wong, F.L.; Fujiwara, S.; Akahoshi, M.; Suzuki, G. Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat. Res. 2004, 161, 622–632. [Google Scholar] [CrossRef]
- Kiuchi, Y.; Yokoyama, T.; Takamatsu, M.; Tsuiki, E.; Uematsu, M.; Kinoshita, H.; Kumagami, T.; Kitaoka, T.; Minamoto, A.; Neriishi, K.; et al. Glaucoma in atomic bomb survivors. Radiat. Res. 2013, 180, 422–430. [Google Scholar] [CrossRef]
- Kiuchi, Y.; Yanagi, M.; Itakura, K.; Takahashi, I.; Hida, A.; Ohishi, W.; Furukawa, K. Association between radiation, glaucoma subtype, and retinal vessel diameter in atomic bomb survivors. Sci. Rep. 2019, 9, 8642. [Google Scholar] [CrossRef]
- Lopes, J.; Leuraud, K.; Klokov, D.; Durand, C.; Bernier, M.O.; Baudin, C. Risk of developing non-cancerous central nervous system diseases due to ionizing radiation exposure during adulthood: Systematic review and meta-analyses. Brain Sci. 2022, 12, 984. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, T.; Chirikova, E.; Birk, S.; Xiong, F.; Benzouak, T.; Liu, J.Y.; Villeneuve, P.J.; Zablotska, L.B. Exposure to ionizing radiation and risk of dementia: A systematic review and meta-analysis. Radiat. Res. 2023, 199, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Pasqual, E.; Boussin, F.; Bazyka, D.; Nordenskjold, A.; Yamada, M.; Ozasa, K.; Pazzaglia, S.; Roy, L.; Thierry-Chef, I.; de Vathaire, F.; et al. Cognitive effects of low dose of ionizing radiation—Lessons learned and research gaps from epidemiological and biological studies. Environ. Int. 2021, 147, 106295. [Google Scholar] [CrossRef] [PubMed]
- Tohidinezhad, F.; Di Perri, D.; Zegers, C.M.L.; Dijkstra, J.; Anten, M.; Dekker, A.; Van Elmpt, W.; Eekers, D.B.P.; Traverso, A. Prediction models for radiation-induced neurocognitive decline in adult patients with primary or secondary brain tumors: A systematic review. Front. Psychol. 2022, 13, 853472. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.J.; Jones, B.M.; Dickstein, D.R.; Green, S.; Germano, I.M.; Palmer, J.D.; Laack, N.; Brown, P.D.; Gondi, V.; Wefel, J.S.; et al. The cognitive effects of radiotherapy for brain metastases. Front. Oncol. 2022, 12, 893264. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Kogure, T.; Kurihara, Y.; Miura, H.; Okumura, T.; Satou, Y.; Takahashi, Y.; Yamaguchi, N. A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2019, 205–206, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Higaki, S.; Yoshida-Ohuchi, H.; Shinohara, N. Radiocesium-bearing microparticles discovered on masks worn during indoor cleaning. Sci. Rep. 2023, 13, 10008. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamada, N. Cancer and Non-Cancer Effects Following Ionizing Irradiation. Cancers 2024, 16, 1141. https://doi.org/10.3390/cancers16061141
Hamada N. Cancer and Non-Cancer Effects Following Ionizing Irradiation. Cancers. 2024; 16(6):1141. https://doi.org/10.3390/cancers16061141
Chicago/Turabian StyleHamada, Nobuyuki. 2024. "Cancer and Non-Cancer Effects Following Ionizing Irradiation" Cancers 16, no. 6: 1141. https://doi.org/10.3390/cancers16061141
APA StyleHamada, N. (2024). Cancer and Non-Cancer Effects Following Ionizing Irradiation. Cancers, 16(6), 1141. https://doi.org/10.3390/cancers16061141