Impact of Center Volume on Cardiopulmonary and Mortality Outcomes after Immune-Checkpoint Inhibitors for Cancer: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Data Extraction and Quality Assessment
2.3. Outcomes
- (A)
- The incidence of grade 5 irAEs, defined as treatment-related mortality, grade 3–4 irAEs, any irAEs, cardiac-related irAEs, and pulmonary-related irAEs among the entire cohort.
- (B)
- The incidence of grade 5 irAEs and grade 3–4 irAEs by immune-checkpoint inhibitor (a) name and (b) class, categorized as anti-PD-1, anti-PD-L1, and anti-CTLA-4.
- (C)
- Assessment of volume/outcomes relationship. Volume was defined as annual cases treated with ICIs per center.
2.4. Data Synthesis and Statistical Analysis
3. Results
3.1. Characteristics of Eligible Studies
3.2. Meta-Analysis
3.3. Subgroup Analyses and Meta-Regression
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dolcetti, R.; Viel, A.; Doglioni, C.; Russo, A.; Guidoboni, M.; Capozzi, E.; Vecchiato, N.; Macrì, E.; Fornasarig, M.; Boiocchi, M. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol. 1999, 154, 1805–1813. [Google Scholar] [CrossRef]
- Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol. 2019, 234, 8509–8521. [Google Scholar] [CrossRef]
- Maher, J.; Davies, E. Targeting cytotoxic T lymphocytes for cancer immunotherapy. Br. J. Cancer 2004, 91, 817–821. [Google Scholar] [CrossRef]
- Nair, S.; Dhodapkar, M.V. Natural killer T cells in cancer immunotherapy. Front. Immunol. 2017, 8, 1178. [Google Scholar] [CrossRef]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef]
- Matlung, H.L.; Szilagyi, K.; Barclay, N.A.; van den Berg, T.K. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol. Rev. 2017, 276, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Poggi, A.; Musso, A.; Dapino, I.; Zocchi, M.R. Mechanisms of tumor escape from immune system: Role of mesenchymal stromal cells. Immunol. Lett. 2014, 159, 55–72. [Google Scholar] [CrossRef]
- Sehgal, A.; Whiteside, T.L.; Boyiadzis, M. Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin. Biol. Ther. 2015, 15, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Artene, S.-A.; Turcu-Stiolica, A.; Ciurea, M.E.; Folcuti, C.; Tataranu, L.G.; Alexandru, O.; Purcaru, O.S.; Tache, D.E.; Boldeanu, M.V.; Silosi, C.; et al. Comparative effect of immunotherapy and standard therapy in patients with high grade glioma: A meta-analysis of published clinical trials. Sci. Rep. 2018, 8, 11800. [Google Scholar] [CrossRef] [PubMed]
- Galvis, M.M.; Borges, G.A.; de Oliveira, T.B.; de Toledo, I.P.; Castilho, R.M.; Guerra, E.N.S.; Kowalski, L.P.; Squarize, C.H. Immunotherapy improves efficacy and safety of patients with HPV positive and negative head and neck cancer: A systematic review and meta-analysis. Crit. Rev. Oncol./Hematol. 2020, 150, 102966. [Google Scholar] [CrossRef]
- Karlsson, A.K.; Saleh, S.N. Checkpoint inhibitors for malignant melanoma: A systematic review and meta-analysis. Clin. Cosmet. Investig. Dermatol. 2017, 10, 325–339. [Google Scholar] [CrossRef]
- Sui, H.; Ma, N.; Wang, Y.; Li, H.; Liu, X.; Su, Y.; Yang, J. Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer: Toward personalized medicine and combination strategies. J. Immunol. Res. 2018, 2018, 6984948. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Cao, J.-X.; Liu, Z.-P.; Cui, Y.-X.; Li, C.-Y.; Li, D.; Zhang, X.-Y.; Liu, J.-L.; Li, J.-L. Combination of chemotherapy and immunotherapy for colon cancer in China: A meta-analysis. World J. Gastroenterol. 2014, 20, 1095. [Google Scholar] [CrossRef]
- Yu, D.P.; Cheng, X.; Liu, Z.D.; Xu, S.F. Comparative beneficiary effects of immunotherapy against chemotherapy in patients with advanced NSCLC: Meta-analysis and systematic review. Oncol. Lett. 2017, 14, 1568–1580. [Google Scholar] [CrossRef]
- Carretero-González, A.; Lora, D.; Ghanem, I.; Otero, I.; López, F.; Castellano, D.; de Velasco, G. Comparative safety analysis of immunotherapy combined with chemotherapy versus monotherapy in solid tumors: A meta-analysis of randomized clinical trials. Oncotarget 2019, 10, 3294. [Google Scholar] [CrossRef]
- Cousin, S.; Italiano, A. Molecular pathways: Immune checkpoint antibodies and their toxicities. Clin. Cancer Res. 2016, 22, 4550–4555. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qiao, W.; Jiang, Y.; Zhu, M.; Shao, J.; Wang, T.; Liu, D.; Li, W. The landscape of immune checkpoint inhibitor plus chemotherapy versus immunotherapy for advanced non-small-cell lung cancer: A systematic review and meta-analysis. J. Cell. Physiol. 2020, 235, 4913–4927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, S.; Cheng, Y. Efficacy and safety of PD-1/PD-L1 inhibitor plus chemotherapy versus chemotherapy alone as first-line treatment for extensive-stage small cell lung cancer: A systematic review and meta-analysis. Thorac. Cancer 2020, 11, 3536–3546. [Google Scholar] [CrossRef]
- Bach, P.B.; Cramer, L.D.; Schrag, D.; Downey, R.J.; Gelfand, S.E.; Begg, C.B. The influence of hospital volume on survival after resection for lung cancer. N. Engl. J. Med. 2001, 345, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Birkmeyer, J.D.; Siewers, A.E.; Finlayson, E.V.; Stukel, T.A.; Lucas, F.L.; Batista, I.; Welch, H.G.; Wennberg, D.E. Hospital volume and surgical mortality in the United States. N. Engl. J. Med. 2002, 346, 1128–1137. [Google Scholar] [CrossRef]
- Gordon, T.A.; Burleyson, G.P.; Tielsch, J.M.; Cameron, J.L. The effects of regionalization on cost and outcome for one general high-risk surgical procedure. Ann. Surg. 1995, 221, 43. [Google Scholar] [CrossRef]
- Hannan, E.L.; Radzyner, M.; Rubin, D.; Dougherty, J.; Brennan, M.F. The influence of hospital and surgeon volume on in-hospital mortality for colectomy, gastrectomy, and lung lobectomy in patients with cancer. Surgery 2002, 131, 6–15. [Google Scholar] [CrossRef]
- Gaudino, M.; Bakaeen, F.; Benedetto, U.; Rahouma, M.; Di Franco, A.; Tam, D.Y.; Iannaccone, M.; Schwann, T.A.; Habib, R.; Ruel, M.; et al. Use rate and outcome in bilateral internal thoracic artery grafting: Insights from a systematic review and meta-analysis. J. Am. Heart Assoc. 2018, 7, e009361. [Google Scholar] [CrossRef]
- Nazarian, S.M.; Yenokyan, G.; Thompson, R.E.; Griswold, M.E.; Chang, D.C.; Perler, B.A. Statistical modeling of the volume-outcome effect for carotid endarterectomy for 10 years of a statewide database. J. Vasc. Surg. 2008, 48, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Urbach, D.R.; Baxter, N.N. Does it matter what a hospital is “high volume” for? Specificity of hospital volume-outcome associations for surgical procedures: Analysis of administrative data. BMJ 2004, 328, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Pathak, R.; Aryal, M.R.; Karmacharya, P.; Bhatt, V.R.; Martin, M.G. Impact of hospital volume on outcomes of patients undergoing chemotherapy for acute myeloid leukemia: A matched cohort study. Blood J. Am. Soc. Hematol. 2015, 125, 3359–3360. [Google Scholar]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Higgins, J.; Altman, D.; Gøtzsche, P.; Jüni, P.; Moher, D.; Oxman, A.; Savovic, J.; Schulz, K.; Weeks, L.; Sterne, J.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2000. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 10 March 2024).
- Bersanelli, M.; Brighenti, M.; Buti, S.; Barni, S.; Petrelli, F. Patient performance status and cancer immunotherapy efficacy: A meta-analysis. Med. Oncol. 2018, 35, 132. [Google Scholar] [CrossRef]
- Rahouma, M.; Baudo, M.; Yahia, M.; Kamel, M.; Gray, K.D.; Elmously, A.; Ghaly, G.; Eldessouki, I.; Abouarab, A.; Cheriat, A.N.; et al. Pneumonitis as a complication of immune system targeting drugs?—A meta-analysis of anti-PD/PD-L1 immunotherapy randomized clinical trials. J. Thorac. Dis. 2019, 11, 521. [Google Scholar] [CrossRef]
- Rahouma, M.; Karim, N.A.; Baudo, M.; Yahia, M.; Kamel, M.; Eldessouki, I.; Abouarab, A.; Saad, I.; Elmously, A.; Gray, K.D.; et al. Cardiotoxicity with immune system targeting drugs: A meta-analysis of anti-PD/PD-L1 immunotherapy randomized clinical trials. Immunotherapy 2019, 11, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, T.F.; Shachar, S.S.; Nyrop, K.A.; Muss, H.B. Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: A meta-analysis. Oncology 2017, 22, 470–479. [Google Scholar] [CrossRef] [PubMed]
- O’Kane, G.M.; Labbé, C.; Doherty, M.K.; Young, K.; Albaba, H.; Leighl, N.B. Monitoring and management of immune-related adverse events associated with programmed cell death protein-1 axis inhibitors in lung cancer. Oncology 2017, 22, 70–80. [Google Scholar] [CrossRef]
- Almutairi, A.R.; McBride, A.; Slack, M.; Erstad, B.L.; Abraham, I. Potential immune-related adverse events associated with monotherapy and combination therapy of ipilimumab, nivolumab, and pembrolizumab for advanced melanoma: A systematic review and meta-analysis. Front. Oncol. 2020, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- De Velasco, G.; Je, Y.; Bossé, D.; Awad, M.M.; Ott, P.A.; Moreira, R.B.; Schutz, F.; Bellmunt, J.; Sonpavde, G.P.; Hodi, F.S.; et al. Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients. Cancer Immunol. Res. 2017, 5, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, Y.-P.; Du, X.-J.; Liu, J.-Q.; Huang, C.-L.; Chen, L.; Zhou, G.-Q.; Li, W.-F.; Mao, Y.-P.; Hsu, C.; et al. Comparative safety of immune checkpoint inhibitors in cancer: Systematic review and network meta-analysis. BMJ 2018, 363, k4226. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Riedel, E.R.; Bach, P.B.; Kattan, M.W.; Schrag, D.; Warren, J.L.; Scardino, P.T. Variations in morbidity after radical prostatectomy. N. Engl. J. Med. 2002, 346, 1138–1144. [Google Scholar] [CrossRef]
- Birkmeyer, J.D.; Warshaw, A.L.; Finlayson, S.R.; Grove, M.R.; Tosteson, A.N. Relationship between hospital volume and late survival after pancreaticoduodenectomy. Surgery 1999, 126, 178–183. [Google Scholar] [CrossRef]
- Eskander, A.; Merdad, M.; Irish, J.C.; Hall, S.F.; Groome, P.A.; Freeman, J.L.; Urbach, D.R.; Goldstein, D.P. Volume–outcome associations in head and neck cancer treatment: A systematic review and meta-analysis. Head Neck 2014, 36, 1820–1834. [Google Scholar] [CrossRef]
- Gooiker, G.; Van Gijn, W.; Post, P.; Van De Velde, C.; Tollenaar, R.; Wouters, M. A systematic review and meta-analysis of the volume-outcome relationship in the surgical treatment of breast cancer. Are breast cancer patients better of with a high volume provider? Eur. J. Surg. Oncol. (EJSO) 2010, 36, S27–S35. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.R.; Phan, K.; Morris, D.L.; Liauw, W. Systematic review and a meta-analysis of hospital and surgeon volume/outcome relationships in colorectal cancer surgery. J. Gastrointest. Oncol. 2017, 8, 534. [Google Scholar] [CrossRef] [PubMed]
- Markar, S.R.; Karthikesalingam, A.; Thrumurthy, S.; Low, D.E. Volume-outcome relationship in surgery for esophageal malignancy: Systematic review and meta-analysis 2000–2011. J. Gastrointest. Surg. 2012, 16, 1055–1063. [Google Scholar] [CrossRef]
- Hue, J.J.; Sugumar, K.; Markt, S.C.; Hardacre, J.M.; Ammori, J.B.; Rothermel, L.D.; Winter, J.M.; Ocuin, L.M. Facility volume-survival relationship in patients with early-stage pancreatic adenocarcinoma treated with neoadjuvant chemotherapy followed by pancreatoduodenectomy. Surgery 2021, 170, 207–214. [Google Scholar] [CrossRef]
- Valiullina, A.K.; Zmievskaya, E.A.; Ganeeva, I.A.; Zhuravleva, M.N.; Garanina, E.E.; Rizvanov, A.A.; Petukhov, A.V.; Bulatov, E.R. Evaluation of CAR-T Cells’ Cytotoxicity against Modified Solid Tumor Cell Lines. Biomedicines 2023, 11, 626. [Google Scholar] [CrossRef] [PubMed]
Number of Studies (%) (n = 147 Studies) | |
---|---|
Study type | |
| 15 (10.2%) |
| 132 (89.8%) |
Age (Mean ± SD, Median (range)) | 59.22 ± 8.44, 60.75 (19.00–72.00) |
Sex | |
| 70 (47.6%) |
| 77 (52.4%) |
Site | |
| 29 (19.7%) |
| 24 (16.3%) |
| 13 (8.8%) |
| 11 (7.5%) |
| 70 (47.6%) |
Histology | |
| 28 (19.0%) |
| 19 (12.9%) |
| 2 (1.4%) |
| 98 (66.7%) |
Country and region | |
| 87 (59.2%) |
| 14 (9.5%) |
| 9 (6.1%) |
| 6 (4.1%) |
| 6 (4.1%) |
| 6 (4.1%) |
| 3 (2.0%) |
| 2 (1.4%) |
| 2 (1.4%) |
| 2 (1.4%) |
| 2 (1.4%) |
| 1 (0.7%) |
| 1 (0.7%) |
| 1 (0.7%) |
| 1 (0.7%) |
| 1 (0.7%) |
| 1 (0.7%) |
| 1 (0.7%) |
| 1 (0.7%) |
Grade 5 irAEs | Grade 3–4 irAEs | Any-Grade irAEs | Cardiac-Related irAEs | Pulmonary-Related irAEs | |
---|---|---|---|---|---|
Variables | Beta a ± SE, p-Value | (Beta ± SE, p-Value) | (Beta ± SE, p-Value) | (Beta ± SE, p-Value) | (Beta ± SE, p-Value) |
Annual cases | −0.0138 ± 0.0059, 0.0186 | −0.0252 ± 0.0089, 0.0046 | −0.0084 ± 0.0116, 0.4718 | −0.0088 ± 0.0042, 0.0354 | −0.0032 ± 0.0032, 0.3151 |
Study period (years) | −0.2443 ± 0.1122, 0.0294 | 0.0695 ± 0.1317, 0.5976 | 0.0724 ± 0.1720, 0.6740 | −0.0378 ± 0.0936, 0.6859 | 0.0540 ± 0.0720, 0.4531 |
Mean Age | −0.0006 ± 0.0157, 0.9699 | −0.0039 ± 0.0159, 0.8046 | 0.0103 ± 0.0205, 0.6167 | −0.0238 ± 0.0155, 0.1233 | −0.0112 ± 0.0112, 0.3168 |
Male (%) | −0.0035 ± 0.0043, 0.4099 | −0.0012 ± 0.0055, 0.8295 | 0.0068 ± 0.0070, 0.3282 | −0.0056 ± 0.0043, 0.1950 | 0.0051 ± 0.0039, 0.1925 |
Performance status 1 (%) | 0.0006 ± 0.0059, 0.9196 | −0.0065 ± 0.0073, 0.3761 | −0.0100 ± 0.0091, 0.2723 | 0.0105 ± 0.0053, 0.0485 | −0.0007 ± 0.0041, 0.8589 |
Underwent surgery (%) | 0.0056 ± 0.0038, 0.1412 | 0.0024 ± 0.0041, 0.5607 | −0.0052 ± 0.0060, 0.3843 | 0.0166 ± 0.0031, <0.0001 | −0.0107 ± 0.0034, 0.0019 |
Underwent radiotherapy (%) | 0.0000 ± 0.0040, 0.9968 | 0.0004 ± 0.0043, 0.9290 | 0.0003 ± 0.0059, 0.9602 | −0.0009 ± 0.0038, 0.8082 | 0.0027 ± 0.0034, 0.4367 |
Underwent chemotherapy (%) | 0.0044 ± 0.0034, 0.1961 | 0.0050 ± 0.0040, 0.2123 | 0.0071 ± 0.0053, 0.1797 | 0.0139 ± 0.0030, <0.0001 | 0.0041 ± 0.0031, 0.1938 |
All-Grade irAEs | Grade 3–4 irAEs | Grade 5 irAEs | Cardiac irAEs | Pulmonary irAEs | |
---|---|---|---|---|---|
Treatment | Beta a ± SE, p-Value | (Beta ± SE, p-Value) | (Beta ± SE, p-Value) | (Beta ± SE, p-Value) | (Beta ± SE, p-Value) |
IO + RTH | −0.4356 ± 0.3760, 0.2466 | −0.0176 ± 0.2878, 0.9513 | −0.1835 ± 0.2464, 0.4566 | 0.1976 ± 0.2303, 0.3907 | −0.0530 ± 0.2088, 0.7996 |
IO + CTH | −0.1481 ± 0.3835, 0.6995 | 0.0097 ± 0.2984, 0.9740 | 0.3808 ± 0.2557, 0.1365 | 0.0615 ± 0.2371, 0.7952 | 0.0143 ± 0.2092, 0.9455 |
IO + RTH + CTH | −0.6608 ± 0.3941, 0.0936 | 0.1972 ± 0.3067, 0.5203 | 0.0818 ± 0.2568, 0.7500 | 0.5371 ± 0.2323, 0.0208 | 0.0025 ± 0.2279, 0.9911 |
IO + other | 0.7727 ± 0.7813, 0.3226 | −0.0501 ± 0.5760, 0.9307 | 0.3849 ± 0.3366, 0.2528 | −0.1529 ± 0.3733, 0.6822 | −0.2627 ± 0.3422, 0.4427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahouma, M.; Mynard, N.; Baudo, M.; Khairallah, S.; Al-Thani, S.; Dabsha, A.; Shmushkevich, S.; Shoeib, O.; Hossny, M.; Eldeeb, E.; et al. Impact of Center Volume on Cardiopulmonary and Mortality Outcomes after Immune-Checkpoint Inhibitors for Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 1136. https://doi.org/10.3390/cancers16061136
Rahouma M, Mynard N, Baudo M, Khairallah S, Al-Thani S, Dabsha A, Shmushkevich S, Shoeib O, Hossny M, Eldeeb E, et al. Impact of Center Volume on Cardiopulmonary and Mortality Outcomes after Immune-Checkpoint Inhibitors for Cancer: A Systematic Review and Meta-Analysis. Cancers. 2024; 16(6):1136. https://doi.org/10.3390/cancers16061136
Chicago/Turabian StyleRahouma, Mohamed, Nathan Mynard, Massimo Baudo, Sherif Khairallah, Shaikha Al-Thani, Anas Dabsha, Shon Shmushkevich, Osama Shoeib, Mohamed Hossny, Elsayed Eldeeb, and et al. 2024. "Impact of Center Volume on Cardiopulmonary and Mortality Outcomes after Immune-Checkpoint Inhibitors for Cancer: A Systematic Review and Meta-Analysis" Cancers 16, no. 6: 1136. https://doi.org/10.3390/cancers16061136
APA StyleRahouma, M., Mynard, N., Baudo, M., Khairallah, S., Al-Thani, S., Dabsha, A., Shmushkevich, S., Shoeib, O., Hossny, M., Eldeeb, E., Aziz, H., Abdelkarim, N., Gaudino, M., Mohamed, A., Girardi, L., Zhang, J., & Mutti, L. (2024). Impact of Center Volume on Cardiopulmonary and Mortality Outcomes after Immune-Checkpoint Inhibitors for Cancer: A Systematic Review and Meta-Analysis. Cancers, 16(6), 1136. https://doi.org/10.3390/cancers16061136