Venetoclax Plus Azacitidine as a Bridge Treatment to Allogeneic Stem Cell Transplantation in Unfit Patients with Acute Myeloid Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Transplantation Protocol
2.3. Measurable Residual Disease Assessment and Definition
2.4. Outcome Definitions
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Engraftment and Infection
3.3. Analysis of OS, Relapse, and NRM
3.4. Incidence of GVHD between the Two Treatment Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Venditti, A.; Piciocchi, A.; Candoni, A.; Melillo, L.; Calafiore, V.; Cairoli, R.; De Fabritiis, P.; Storti, G.; Salutari, P.; Lanza, F.; et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 2019, 134, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Halpern, A.B.; Othus, M.; Huebner, E.M.; Scott, B.L.; Becker, P.S.; Percival, M.E.; Hendrie, P.C.; Gardner, K.M.; Chen, T.L.; Buckley, S.A.; et al. Phase 1/2 trial of GCLAM with dose-escalated mitoxantrone for newly diagnosed AML or other high-grade myeloid neoplasms. Leukemia 2018, 32, 2352–2362. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]
- Sasaki, K.; Ravandi, F.; Kadia, T.M.; DiNardo, C.D.; Short, N.J.; Borthakur, G.; Jabbour, E.; Kantarjian, H.M. De novo acute myeloid leukemia: A population-based study of outcome in the United States based on the surveillance, epidemiology, and end results (SEER) database, 1980 to 2017. Cancer 2021, 127, 2049–2061. [Google Scholar] [CrossRef]
- Mohty, R.; El Hamed, R.; Brissot, E.; Bazarbachi, A.; Mohty, M. New drugs before, during, and after hematopoietic stem cell transplantation for patients with acute myeloid leukemia. Haematologica 2023, 108, 321–341. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; DiNardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020, 135, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Winters, A.C.; Bosma, G.; Abbott, D.; Minhajuddin, M.; Jordan, C.; Pollyea, D.A.; Gutman, J.A. Outcomes are similar after allogeneic hematopoietic stem cell transplant for newly diagnosed acute myeloid leukemia patients who received venetoclax + azacitidine versus intensive chemotherapy. Transplant. Cell, Ther. 2022, 28, 694.e1–694.e9. [Google Scholar] [CrossRef] [PubMed]
- Pasvolsky, O.; Shimony, S.; Ram, R.; Shimoni, A.; Shargian-Alon, L.; Avni, B.; Wolach, O.; Shochat, T.; Yerushalmi, R.; Amit, O.; et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first complete remission after 5-azacitidine and venetoclax: A multicenter retrospective study. Ann. Hematol. 2022, 101, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.T.; Song, X.L.; Zhao, Y.M.; Ye, B.D.; Luo, Y.; Xiao, H.W.; Chen, Y.; Fu, H.R.; Yu, J.; Liu, L.Z.; et al. Outcome after allogeneic hematopoietic stem cell transplantation following venetoclax-based therapy among AML and MDS patients. Ann. Hematol. 2022, 101, 2731–2741. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Dadwal, S.; Yang, D.; Mei, M.; Palmer, J.; Salhotra, A.; Al Malki, M.; Aribi, A.; Ali, H.; Khaled, S.; et al. Outcome of allogeneic hematopoietic cell transplantation after venetoclax and hypomethylating agent therapy for acute myelogenous leukemia. Biol. Blood Marrow Transplant. 2020, 26, e322–e327. [Google Scholar] [CrossRef]
- Pratz, K.W.; DiNardo, C.D.; Arellano, M.L.; Letai, A.G.; Thirman, M.; Pullarkat, V.A.; Roboz, G.J.; Becker, P.S.; Hong, W.J.; Jiang, Q.; et al. Outcomes after stem cell transplant in older patients with acute myeloid leukemia treated with venetoclax-based therapies. Blood 2019, 134, 264. [Google Scholar] [CrossRef]
- Sorror, M.L.; Logan, B.R.; Zhu, X.; Rizzo, J.D.; Cooke, K.R.; McCarthy, P.L.; Ho, V.T.; Horowitz, M.M.; Pasquini, M.C. Prospective validation of the predictive power of the hematopoietic cell transplantation comorbidity index: A Center for International Blood and Marrow Transplant Research study. Biol. Blood Marrow Transplant. 2015, 21, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Przepiorka, D.; Weisdorf, D.; Martin, P.; Klingemann, H.G.; Beatty, P.; Hows, J.; Thomas, E.D. 1994 Consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995, 15, 825–828. [Google Scholar] [PubMed]
- Glucksberg, H.; Storb, R.; Fefer, A.; Buckner, C.D.; Neiman, P.E.; Clift, R.A.; Lerner, K.G.; Thomas, E.D. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 1974, 18, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.L.; Alyea, E.P.; Antin, J.H.; DeLima, M.; Estey, E.; Falkenburg, J.H.F.; Hardy, N.; Kroeger, N.; Leis, J.; Levine, J.; et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: Report from the committee on treatment of relapse after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2010, 16, 1467–1503. [Google Scholar] [CrossRef] [PubMed]
- Pavletic, S.; Vogelsang, G. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: Preface to the series. Biol. Blood Marrow Transplant. 2005, 11, 943–944. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Sasaki, K.; Kadia, T.; Begna, K.; DiNardo, C.D.; Borthakur, G.; Short, N.J.; Jain, N.; Daver, N.; Jabbour, E.; Garcia-Manero, G.; et al. Prediction of early (4-week) mortality in acute myeloid leukemia with intensive chemotherapy. Am. J. Hematol. 2022, 97, 68–78. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Maiti, A.; Rausch, C.R.; Pemmaraju, N.; Naqvi, K.; Daver, N.G.; Kadia, T.M.; Borthakur, G.; Ohanian, M.; Alvarado, Y.; et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: A single-centre, phase 2 trial. Lancet Haematol. 2020, 7, e724–e736. [Google Scholar] [CrossRef]
- Kennedy, V.E.; Hui, G.; Gaut, D.; Mittal, V.; Oliai, C.; Muffly, L.S.; Logan, A.C.; Mannis, G.N. Hypomethylating agents in combination with venetoclax as a bridge to allogeneic transplant in acute myeloid leukemia. Blood 2020, 136, 32–33. [Google Scholar] [CrossRef]
- Murdock, H.M.; Kim, H.T.; Denlinger, N.; Vachhani, P.; Hambley, B.; Manning, B.S.; Gier, S.; Cho, C.; Tsai, H.K.; McCurdy, S.; et al. Impact of diagnostic genetics on remission MRD and transplantation outcomes in older AML patients. Blood 2022, 139, 3546–3557. [Google Scholar] [CrossRef] [PubMed]
- Hilberink, J.R.; Morsink, L.M.; van der Velden, W.J.; Mulder, A.B.; Hazenberg, C.L.; de Groot, M.; Choi, G.; Schuringa, J.J.; Meijer, K.; Blijlevens, N.M.; et al. Pretransplantation MRD in older patients with AML after treatment with decitabine or conventional chemotherapy. Transplant. Cell. Ther. 2021, 27, 246–252. [Google Scholar] [CrossRef] [PubMed]
Variable | Chemotherapy Group (n = 34) | VEN + AZA Group (n = 27) | p-Value |
---|---|---|---|
Age, years Median (IQR) | 40 (33–59) | 65 (61–70) | <0.005 |
Sex | - | - | |
Male | 20 (58.8%) | 15 (55.6%) | 1.00 |
Female | 14 (41.2%) | 12 (44.4%) | |
AML subtype | <0.005 | ||
De novo AML | 30 (88.2%) | 12 (44.4%) | |
MDS-related AML | 4 (11.8%) | 15 (55.6%) | |
Cytogenetic risk group | 0.08 | ||
Good | 8 (23.5%) | 1 (3.7%) | |
Intermediate | 20 (58.8%) | 18 (66.7%) | |
Poor | 6 (17.7%) | 8 (29.6%) | |
FLT3 ITD | 0.37 | ||
Negative | 21 (61.8%) | 22 (81.0%) | |
Positive | 13 (38.2%) | 5 (19.0%) | |
Early mortality score for intensive chemotherapy | 0.048 | ||
Low risk (0–4) | 31 (91.2%) | 19 (70.4%) | |
High risk (>4) | 3 (8.8%) | 8 (29.6%) | |
Clinical response to induction therapy before HSCT | 0.11 | ||
CR | 24 (70.6%) | 13 (48.2%) | |
CRi or MLFS | 10 (29.4%) | 14 (51.9%) | |
Flowcytometry MRD before HSCT | 1 | ||
Undetectable | 22 (81.5%) | 21 (77.8%) | |
Positive | 5 (18.5%) | 6 (22.2%) | |
Missing | 7 (20.6%) | 0 (0%) | |
HCT-CI | 0.02 | ||
0–1 | 27 (79.4%) | 13 (48.1%) | |
≥2 | 7 (20.6%) | 14 (51.9%) | |
HSCT type | 0.72 | ||
MSD | 2 (5.9%) | 2 (7.4%) | |
MUD | 15 (44.1%) | 9 (33.3%) | |
Haplo | 17 (50.0%) | 16 (59.3%) | |
CMV status | 0.26 | ||
R+/D+ | 21 (61.8%) | 22 (81.5%) | |
R−/D− | 1 (2.9%) | 0 (0.0%) | |
R−/D+ | 0 (0.0%) | 0 (0.0%) | |
R+/D− | 6 (17.6%) | 2 (7.4%) | |
Missing | 6 (17.6%) | 3 (11.1%) | |
Conditioning regimen | 0.11 | ||
MAC | 16 (47.1%) | 7 (25.9%) | |
RIC | 18 (52.9%) | 20 (74.1%) |
Variable | Chemotherapy Group (n = 34) | VEN + AZA Group (n = 27) |
---|---|---|
Infections within 30 days, % | 21% | 30% |
Bacterial infection, n | 6 | 8 |
Viral infection, n | 1 | 0 |
EBV reactivation, n (%) | 16 (47.1%) | 17 (63.0%) |
MSD, n | 1 | 0 |
MUD, n | 6 | 7 |
Haplo, n | 9 | 10 |
PTLD, n | 1 | 1 |
CMV reactivation, n (%) | 18 (52.9%) | 14 (51.9%) |
CMV disease, n (%) | 3 (8.8%) | 0 (0%) |
Variable | 1-Year Overall Survival Rate (95% CI) | p-Value | 1-Year Cumulative Incidence of Relapse (95% CI) | p-Value | 1-Year Cumulative Incidence of NRM (95% CI) | p-Value |
---|---|---|---|---|---|---|
Age (years) | - | 0.10 | 0.55 | 0.07 | ||
<60 | 83.6% (64.7–92.9%) | 15.5% (5.50–30.2%) | 6.10% (1.0–17.9%) | |||
≥60 | 61.7% (40.3–77.3%) | 23.4% (9.1–41.3%) | 26.7% (11.4–44.8%) | |||
AML subtype | 0.22 | 0.13 | 0.67 | |||
De novo AML | 77.1% (60.6–87.4%) | 9.8% (3.0–21.2%) | 11.4% (2.8–27.0%) | |||
MDS-related AML | 67.0% (40.4–83.8%) | 28.0% (9.4–50.3%) | 18.2% (7.2–33.1%) | |||
Cytogenetic risks | 0.03 | 0.68 | 0.16 | |||
Good-intermediate risk | 80.4% (65.7–89.3%) | 15.1% (6.6–27.0%) | 12.9% (5.2–24.3%) | |||
Poor risk | 51.1% (21.6–74.5%) | 30.5% (8.5–56.5%) | 22.7% (4.9–48.3%) | |||
Flt3 mutation status | 0.90 | 0.02 | 0.14 | |||
Without mutation | 72.2% (55.2–83.6%) | 14.7% (5.8–27.5%) | 19.4% (9.0–32.9%) | |||
With mutation | 77.8% (51.1–91.0%) | 27.8% (9.6–49.6%) | 5.6% (0.3–23.1%) | |||
Clinical response to induction therapy before HSCT | 0.34 | 0.54 | 0.19 | |||
CR | 75.9% (57.2–87.2%) | 19.9% (8.6–34.6%) | 11.3% (3.5–24.2%) | |||
CRi or MLFS | 70.4%% (47.7–84.7%) | 17.2% (5.1–35.1%) | 21.1% (7.4–39.4%) | |||
Flowcytometry MRD before HSCT | 0.57 | 0.72 | 0.89 | |||
Undetectable | 74.8% (58.1–85.6%) | 17.0% (7.4–30.0%) | 17.1% (7.4–30.2%) | |||
Positive | 63.6% (29.7–84.5%) | 27.3% (5.7–55.4%) | 18.2% (2.4–45.9%) | |||
HCT-CI | 0.02 | 0.58 | 0.22 | |||
0–1 | 82.0% (65.9–91.0%) | 15.0% (6.0–27.8%) | 12.6% (4.5–25%) | |||
≥2 | 58.3% (33.4–76.7%) | 27.3% (9.3–49.2%) | 20.1% (6.0–40.0%) | |||
HSCT type | 0.22 | 0.37 | 0.67 | |||
Matched donor | 83.7% (62.2–93.6%) | 15% (4.6–31.1%) | 11.4% (2.8–27.0%) | |||
Haplo | 66.0% (40.4–83.8%) | 21.7% (9.3–37.3%) | 18.2% (7.2–33.1%) | |||
Conditioning regimen | 0.8 | 0.04 | 0.77 | |||
MAC | 78.3% (55.4–90.3%) | 4.3% (0.3–18.7%) | 17.4% (5.2–35.4%) | |||
RIC | 71.6% (53.6–83.7%) | 27.4% (14.0–42.5%) | 13.7% (4.9–27.0%) |
Variable | 100-Day Cumulative Incidence of aGVHD (95% CI) | p-Value | 1-Year Cumulative Incidence of cGVHD (95% CI) | p-Value |
---|---|---|---|---|
Age (years) | - | 0.93 | - | 0.18 |
<60 | 18.2% (7.2–33.1%) | 49.6% (23.4–57.1%) | ||
≥60 | 22.0% (8.7–39.1%) | 27.0% (11.4–45.4%) | ||
AML subtype | 0.25 | 0.75 | ||
De novo AML | 14.4% (5.8–26.9%) | 35.5% (20.8–50.4%) | ||
MDS-related AML | 31.6% (12.4–52.9%) | 31.6% (12.3–53.1%) | ||
Cytogenetic risks | 0.95 | 0.37 | ||
Good-intermediate risk | 19.1% (9.4–31.5%) | 37.1% (23.1–51.1%) | ||
Poor risk | 23.2% (5.1–48.8%) | 25.5% (5.3–52.9%) | ||
Flt3 mutation status | 0.23 | 0.75 | ||
Without mutation | 23.7% (12.2–37.5%) | 34.5% (20.2–49.2%) | ||
With mutation | 11.1% (1.7–34.4%) | 34.0% (13.1–56.4%) | ||
Clinical response to induction therapy before HSCT | 0.27 | 0.74 | ||
CR | 16.5% (6.6–30.4%) | 31.5% (16.9–47.2%) | ||
CRi or MLFS | 25.0% (9.9–43.6%) | 38.5% (18.8–57.9%) | ||
Flowcytometry MRD before HSCT | 0.23 | 0.75 | ||
Undetectable | 23.7% (12.2–37.5%) | 34.5% (20.2–49.2%) | ||
Positive | 11.1% (1.7–30.4%) | 34.0% (13.1–56.4%) | ||
HCT-CI | 0.12 | 0.69 | ||
0–1 | 15.0% (6.0–27.8%) | 30.7% (17.0–45.5%) | ||
≥2 | 29.8% (11.7–50.5%) | 43.3% (19.2–65.4%) | ||
HSCT type | 0.95 | 0.15 | ||
Matched donor | 18.4% (6.5–35.0%) | 42.6% (23.1–61.0%) | ||
Haplo | 21.2% (9.2–36.5%) | 27.9% (13.6–44.3%) | ||
Conditioning regimen | 0.23 | 0.27 | ||
MAC | 13.0% (3.1–30.2%) | 26.1% (10.3–45.2%) | ||
RIC | 24.2% (11.9–38.9%) | 39.7% (23.4–55.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-T.; Lin, C.-C.; Lo, W.-J.; Hsieh, C.-Y.; Lein, M.-Y.; Lin, C.-H.; Lin, C.-Y.; Bai, L.-Y.; Chiu, C.-F.; Yeh, S.-P. Venetoclax Plus Azacitidine as a Bridge Treatment to Allogeneic Stem Cell Transplantation in Unfit Patients with Acute Myeloid Leukemia. Cancers 2024, 16, 1082. https://doi.org/10.3390/cancers16061082
Chen T-T, Lin C-C, Lo W-J, Hsieh C-Y, Lein M-Y, Lin C-H, Lin C-Y, Bai L-Y, Chiu C-F, Yeh S-P. Venetoclax Plus Azacitidine as a Bridge Treatment to Allogeneic Stem Cell Transplantation in Unfit Patients with Acute Myeloid Leukemia. Cancers. 2024; 16(6):1082. https://doi.org/10.3390/cancers16061082
Chicago/Turabian StyleChen, Tzu-Ting, Ching-Chan Lin, Wen-Jyi Lo, Ching-Yun Hsieh, Ming-Yu Lein, Che-Hung Lin, Chen-Yuan Lin, Li-Yuan Bai, Chang-Fang Chiu, and Su-Peng Yeh. 2024. "Venetoclax Plus Azacitidine as a Bridge Treatment to Allogeneic Stem Cell Transplantation in Unfit Patients with Acute Myeloid Leukemia" Cancers 16, no. 6: 1082. https://doi.org/10.3390/cancers16061082
APA StyleChen, T. -T., Lin, C. -C., Lo, W. -J., Hsieh, C. -Y., Lein, M. -Y., Lin, C. -H., Lin, C. -Y., Bai, L. -Y., Chiu, C. -F., & Yeh, S. -P. (2024). Venetoclax Plus Azacitidine as a Bridge Treatment to Allogeneic Stem Cell Transplantation in Unfit Patients with Acute Myeloid Leukemia. Cancers, 16(6), 1082. https://doi.org/10.3390/cancers16061082