The Disproportionate Rise in Pancreatic Cancer in Younger Women Is Due to a Rise in Adenocarcinoma and Not Neuroendocrine Tumors: A Nationwide Time-Trend Analysis Using 2001–2018 United States Cancer Statistics Databases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic Cancer: A Review. JAMA 2021, 326, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Gaddam, S.; Abboud, Y.; Oh, J.; Samaan, J.S.; Nissen, N.N.; Lu, S.C.; Lo, S.K. Incidence of Pancreatic Cancer by Age and Sex in the US, 2000–2018. JAMA 2021, 326, 2075–2077. [Google Scholar] [CrossRef] [PubMed]
- National Program of Cancer Registries and Surveillance, Epidemiology, and End Results Program SEER*Stat Database: NPCR and SEER Incidence—U.S. Cancer Statistics Public Use Research Database. 2020 Submission (2001–2018). Available online: www.cdc.gov/cancer/uscs/public-use (accessed on 23 October 2021).
- National Program of Cancer Registries. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/cancer/npcr/about/ (accessed on 23 December 2023).
- Surveillance, Epidemiology, and End Results (SEER) Program SEER*Stat Database: Incidence—SEER Research Data, 9 Registries. National Cancer Institute, DCCPS, Surveillance Research Program. Available online: www.seer.cancer.gov (accessed on 7 October 2021).
- Fritz, A.; Percy, C.; Jack, A.; Shanmugaratnam, K.; Sobin, L.H.; Parkin, D.M.; Whelan, S.L. International Classification of Diseases for Oncology, 3rd ed.; (ICD-O-3); World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Konukiewitz, B.; Jesinghaus, M.; Steiger, K.; Schlitter, A.M.; Kasajima, A.; Sipos, B.; Zamboni, G.; Weichert, W.; Pfarr, N.; Klöppel, G. Pancreatic neuroendocrine carcinomas reveal a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors G3. Hum. Pathol. 2018, 77, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Dahia, S.S.; Konduru, L.; Pandol, S.J.; Barreto, S.G. The burden of young-onset pancreatic cancer and its risk factors from 1990 to 2019: A systematic analysis of the global burden of disease study 2019. Pancreatology 2024, 24, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Piciucchi, M.; Capurso, G.; Valente, R.; Larghi, A.; Archibugi, L.; Signoretti, M.; Stigliano, S.; Zerboni, G.; Barucca, V.; La Torre, M.; et al. Early onset pancreatic cancer: Risk factors, presentation and outcome. Pancreatology 2015, 15, 151–155. [Google Scholar] [CrossRef]
- Collaborators, G.P.C. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019, 4, 934–947. [Google Scholar] [CrossRef]
- Andersson, G.; Wennersten, C.; Borgquist, S.; Jirström, K. Pancreatic cancer risk in relation to sex, lifestyle factors, and pre-diagnostic anthropometry in the Malmö Diet and Cancer Study. Biol. Sex. Differ. 2016, 7, 66. [Google Scholar] [CrossRef]
- Yadav, D.; Lowenfels, A.B. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013, 144, 1252–1261. [Google Scholar] [CrossRef]
- Slade, T.; Chapman, C.; Swift, W.; Keyes, K.; Tonks, Z.; Teesson, M. Birth cohort trends in the global epidemiology of alcohol use and alcohol-related harms in men and women: Systematic review and metaregression. BMJ Open 2016, 6, e011827. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Oh, T.G.; Jung, H.W.; Park, K.Y.; Shin, H.; Jo, T.; Kang, D.S.; Chanda, D.; Hong, S.; Kim, J.; et al. Estrogen-Related Receptor γ Maintains Pancreatic Acinar Cell Function and Identity by Regulating Cellular Metabolism. Gastroenterology 2022, 163, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zou, L.; Han, J.; Chen, W.; Shen, N.; Zhong, R.; Li, J.; Chen, X.; Liu, C.; Shi, Y.; et al. Parity and pancreatic cancer risk: Evidence from a meta-analysis of twenty epidemiologic studies. Sci. Rep. 2014, 4, 5313. [Google Scholar] [CrossRef]
- Guan, H.B.; Wu, L.; Wu, Q.J.; Zhu, J.; Gong, T. Parity and pancreatic cancer risk: A dose-response meta-analysis of epidemiologic studies. PLoS ONE 2014, 9, e92738. [Google Scholar] [CrossRef] [PubMed]
- Archibugi, L.; Graglia, B.; Valente, R.; Stigliano, S.; Roberto, M.; Capalbo, C.; Marchetti, P.; Nigri, G.; Capurso, G. Gynecological and reproductive factors and the risk of pancreatic cancer: A case-control study. Pancreatology 2020, 20, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; Benjaminsen Borch, K.; Rylander, C. Reproductive Factors, Use of Exogenous Hormones, and Pancreatic Cancer Incidence: The Norwegian Women and Cancer Study. Clin. Epidemiol. 2021, 13, 67–80. [Google Scholar] [CrossRef]
- Navarro Silvera, S.A.; Miller, A.B.; Rohan, T.E. Hormonal and reproductive factors and pancreatic cancer risk: A prospective cohort study. Pancreas 2005, 30, 369–374. [Google Scholar] [CrossRef]
- Stevens, R.J.; Roddam, A.W.; Green, J.; Pirie, K.; Bull, D.; Reeves, G.K.; Beral, V.; Collaborators, M.W.S. Reproductive history and pancreatic cancer incidence and mortality in a cohort of postmenopausal women. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1457–1460. [Google Scholar] [CrossRef]
- Teng, Y.; Saito, E.; Abe, S.K.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Shimazu, T.; Sasazuki, S.; Inoue, M.; Tsugane, S.; et al. Female reproductive factors, exogenous hormone use, and pancreatic cancer risk: The Japan Public Health Center-based prospective study. Eur. J. Cancer Prev. 2017, 26, 378–384. [Google Scholar] [CrossRef]
- Andersson, G.; Borgquist, S.; Jirström, K. Hormonal factors and pancreatic cancer risk in women: The Malmö Diet and Cancer Study. Int. J. Cancer 2018, 143, 52–62. [Google Scholar] [CrossRef]
- Butt, S.A.; Lidegaardi, Ø.; Skovlund, C.; Hannaford, P.C.; Iversen, L.; Fielding, S.; Mørch, L.S. Hormonal contraceptive use and risk of pancreatic cancer-A cohort study among premenopausal women. PLoS ONE 2018, 13, e0206358. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yuan, H.; Shi, G.D.; Wu, Y.; Liu, D.F.; Lin, Y.T.; Chen, L.; Ge, W.L.; Jiang, K.; Miao, Y. Association between NR5A2 and the risk of pancreatic cancer, especially among Caucasians: A meta-analysis of case-control studies. Onco Targets Ther. 2018, 11, 2709–2723. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, G.; Archibugi, L.; Katzke, V.; Gentiluomo, M.; Capurso, G.; Milanetto, A.C.; Gazouli, M.; Goetz, M.; Brenner, H.; Vermeulen, R.C.H.; et al. Common variability in oestrogen-related genes and pancreatic ductal adenocarcinoma risk in women. Sci. Rep. 2022, 12, 18100. [Google Scholar] [CrossRef] [PubMed]
- Ogobuiro, I.; Baca, Y.; Ribeiro, J.R.; Walker, P.; Wilson, G.C.; Gulhati, P.; Marshall, J.L.; Shroff, R.T.; Spetzler, D.; Oberley, M.J.; et al. Multiomic Characterization Reveals a Distinct Molecular Landscape in Young-Onset Pancreatic Cancer. JCO Precis. Oncol. 2023, 7, e2300152. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Halfdanarson, T.R.; Bamlet, W.R.; McWilliams, R.R.; Hobday, T.J.; Burch, P.A.; Rabe, K.G.; Petersen, G.M. Risk factors for pancreatic neuroendocrine tumors: A clinic-based case-control study. Pancreas 2014, 43, 1219–1222. [Google Scholar] [CrossRef] [PubMed]
- Smith-Bindman, R.; Kwan, M.L.; Marlow, E.C.; Theis, M.K.; Bolch, W.; Cheng, S.Y.; Bowles, E.J.A.; Duncan, J.R.; Greenlee, R.T.; Kushi, L.H.; et al. Trends in Use of Medical Imaging in US Health Care Systems and in Ontario, Canada, 2000–2016. JAMA 2019, 322, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Leeds, J.; Awadelkarim, B.; Lam, K.; Maheshwari, P.; Nayar, M.; Johnson, S.; Oppong, K.O.; Unit, H. O39 Trends in Pancreatic Cystic Lesions Undergoing Endoscopic Ultrasound: 16 Years Experience in a Tertiary Center; The BSG (British Society of Gastroenterology): London, UK, 2021. [Google Scholar]
- Ben, Q.; Zhong, J.; Fei, J.; Chen, H.; Yv, L.; Tan, J.; Yuan, Y. Risk Factors for Sporadic Pancreatic Neuroendocrine Tumors: A Case-Control Study. Sci. Rep. 2016, 6, 36073. [Google Scholar] [CrossRef]
- Gordon-Dseagu, V.L.; Devesa, S.S.; Goggins, M.; Stolzenberg-Solomon, R. Pancreatic cancer incidence trends: Evidence from the Surveillance, Epidemiology and End Results (SEER) population-based data. Int. J. Epidemiol. 2018, 47, 427–439. [Google Scholar] [CrossRef]
Trends | Comparison between Sex-Specific Trends (p-Value) e | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age Group (Years) | Number of Cases (%) | Time Period | APC a (95% CI) | APC p-Value | AAPC a (95% CI) | AAPC p-Value | AAPC Difference b (95% CI) | AAPC Difference | Test of Coincidence c | Test of Parallelism d |
All Ages. N = 694,661 | ||||||||||
Men | 350,616 (50.5%) | 2001–2007 | 1.10 * (0.66–1.53) | <0.001 | 0.65 * (0.48–0.81) | <0.001 | 0.05 (−0.18–0.28) | 0.65 | <0.001 | 0.09 |
2007–2018 | 0.40 * (0.25–0.56) | <0.001 | ||||||||
Women | 344,045 (49.5%) | 2001–2008 | 1.19 * (0.84–1.54) | <0.001 | 0.59 * (0.43–0.76) | <0.001 | ||||
2008–2018 | 0.18 * (0.00–0.36) | 0.05 | ||||||||
Age > and =55. N = 623,552 | ||||||||||
Men | 308,831 (49.5%) | 2001–2007 | 1.14 * (0.69–1.60) | <0.001 | 0.73 * (0.56–0.91) | <0.001 | 0.15 (−0.10–0.40) | 0.24 | <0.001 | 0.001 |
2007–2018 | 0.51 * (0.36–0.67) | <0.001 | ||||||||
Women | 314,721 (50.5%) | 2001–2008 | 1.15 * (0.76–1.55) | <0.001 | 0.58 * (0.40–0.76) | <0.001 | ||||
2008–2018 | 0.19 (−0.02–0.39) | 0.07 | ||||||||
Age 15–54. N = 71,083 | ||||||||||
Men | 41,775 (58.8%) | 2001–2018 | −0.09 (−0.32–0.14) | 0.44 | −0.09 (−0.32–0.14) | 0.44 | −0.71 * (−1.07–−0.34) | <0.001 | <0.001 | 0.02 |
Women | 29,308 (41.2%) | 2001–2018 | 0.62 * (0.30–0.94) | 0.001 | 0.62 * (0.30–0.94) | <0.001 | ||||
Age 35–54. N = 69,501 | ||||||||||
Men | 40,918 (58.9%) | 2001–2006 | 1.10 (−0.07–2.30) | 0.06 | 0.01 (−0.35–0.38) | 0.95 | −0.61 * (−1.07–−0.14) | 0.01 | <0.001 | 0.003 |
2006–2018 | −0.44 * (−0.74–−0.14) | 0.008 | ||||||||
Women | 28,583 (41.1%) | 2001–2018 | 0.62 * (0.31–0.93) | 0.001 | 0.62 * (0.31–0.93) | <0.001 | ||||
Age 15–34. N = 1582 | ||||||||||
Men | 857 (54.2%) | 2001–2018 | 0.78 (−0.81–2.39) | 0.32 | 0.78 (−0.81–2.39) | 0.32 | −2.59 (−9.28–4.11) | 0.45 | 0.003 | 0.04 |
Women | 725 (45.8%) | 2001–2003 | 38.20 (−22.21–145.54) | 0.25 | 3.36 (−2.97–10.11) | 0.30 | ||||
2003–2018 | −0.56 (−2.42–1.33) | 0.53 |
Trends | Comparison between Sex-Specific Trends (p-Value) e | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age Group (Years) | Number of Cases (%) | Time Period | APC a (95% CI) | APC p-Value | AAPC a (95% CI) | AAPC p-Value | AAPC Difference b (95% CI) | AAPC Difference | Test of Coincidence c | Test of Parallelism d |
All ages. N = 42,806 | ||||||||||
Men | 23,409 (54.7%) | 2001–2010 | 7.35 * (6.38–8.33) | <0.001 | 7.60 * (6.31–8.91) | <0.001 | 0.24 (−1.63–2.12) | 0.80 | <0.001 | 0.58 |
2010–2013 | 16.41 * (8.65–24.84) | <0.05 | ||||||||
2013–2018 | 3.08 * (1.76–4.41) | <0.001 | ||||||||
Women | 19,397 (45.3%) | 2001–2010 | 6.83 * (5.85–7.82) | <0.001 | 7.36 * (6.02–8.72) | <0.001 | ||||
2010–2013 | 15.77 * (7.67–24.49) | 0.001 | ||||||||
2013–2018 | 3.53 * (2.15–4.93) | <0.001 | ||||||||
Age > and =55. N= 29,788 | ||||||||||
Men | 16,867 (56.6%) | 2001–2009 | 6.95 * (6.01–7.91) | <0.001 | 8.00 * (7.21–8.80) | <0.001 | 0.17 (−1.87–2.22) | 0.87 | <0.001 | 0.01 |
2009–2013 | 15.73 * (12.50–19.05) | <0.001 | ||||||||
2013–2018 | 3.81 * (2.83–4.80) | <0.001 | ||||||||
Women | 12,921 (43.4%) | 2001–2010 | 7.61 * (6.18–9.06) | <0.001 | 7.83 * (5.97–9.74) | <0.001 | ||||
2010–2013 | 14.56 * (3.54–26.77) | <0.05 | ||||||||
2013–2018 | 4.38 * (2.50–6.29) | <0.001 | ||||||||
Age 15–54. N= 12,962 | ||||||||||
Men | 6515 (50.3%) | 2001–2016 | 8.00 * (7.08–8.93) | <0.001 | 6.36 * (4.46–8.28) | <0.001 | −0.10 (−2.66–2.48) | 0.95 | 0.63 | 0.72 |
2016–2018 | −5.23 (−18.86–10.68) | 0.47 | ||||||||
Women | 6447 (49.7%) | 2001–2009 | 5.27 * (3.15–7.44) | <0.001 | 6.44 * (4.74–8.18) | <0.001 | ||||
2009–2014 | 13.40 * (8.53–18.49) | <0.001 | ||||||||
2014–2018 | 0.55 (−3.19–4.43) | 0.75 | ||||||||
Age 35–54. N = 11,219 | ||||||||||
Men | 5763 (51.4%) | 2001–2016 | 7.97 * (6.94–9.02) | <0.001 | 6.30 * (4.16–8.48) | <0.001 | −0.80 (−4.23–2.63) | 0.65 | 0.010 | 0.28 |
2016–2018 | −5.47 (−20.70–12.69) | 0.50 | ||||||||
Women | 5456 (48.6%) | 2001–2003 | 15.48 (−5.00–40.36) | 0.13 | 7.10 * (4.47–9.80) | <0.001 | ||||
2003–2009 | 3.43 (−0.22–7.21) | 0.06 | ||||||||
2009–2014 | 14.17 * (9.60–18.94) | <0.001 | ||||||||
2014–2018 | 0.34 (−3.15–3.95) | 0.83 | ||||||||
Age 15–34. N = 1743 | ||||||||||
Men | 752 (43.1%) | 2001–2018 | 7.32 * (5.82–8.83) | <0.001 | 7.32 * (5.82–8.83) | <0.001 | −0.60 (−2.85–1.64) | 0.60 | <0.001 | 0.61 |
Women | 991 (56.9%) | 2001–2018 | 7.92 * (6.03–9.84) | <0.001 | 7.92 * (6.03–9.84) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Abboud, Y.; Liang, J.; Larson, B.; Osipov, A.; Gong, J.; Hendifar, A.E.; Atkins, K.; Liu, Q.; Nissen, N.N.; et al. The Disproportionate Rise in Pancreatic Cancer in Younger Women Is Due to a Rise in Adenocarcinoma and Not Neuroendocrine Tumors: A Nationwide Time-Trend Analysis Using 2001–2018 United States Cancer Statistics Databases. Cancers 2024, 16, 971. https://doi.org/10.3390/cancers16050971
Jiang Y, Abboud Y, Liang J, Larson B, Osipov A, Gong J, Hendifar AE, Atkins K, Liu Q, Nissen NN, et al. The Disproportionate Rise in Pancreatic Cancer in Younger Women Is Due to a Rise in Adenocarcinoma and Not Neuroendocrine Tumors: A Nationwide Time-Trend Analysis Using 2001–2018 United States Cancer Statistics Databases. Cancers. 2024; 16(5):971. https://doi.org/10.3390/cancers16050971
Chicago/Turabian StyleJiang, Yi, Yazan Abboud, Jeff Liang, Brent Larson, Arsen Osipov, Jun Gong, Andrew E. Hendifar, Katelyn Atkins, Quin Liu, Nicholas N. Nissen, and et al. 2024. "The Disproportionate Rise in Pancreatic Cancer in Younger Women Is Due to a Rise in Adenocarcinoma and Not Neuroendocrine Tumors: A Nationwide Time-Trend Analysis Using 2001–2018 United States Cancer Statistics Databases" Cancers 16, no. 5: 971. https://doi.org/10.3390/cancers16050971
APA StyleJiang, Y., Abboud, Y., Liang, J., Larson, B., Osipov, A., Gong, J., Hendifar, A. E., Atkins, K., Liu, Q., Nissen, N. N., Li, D., Pandol, S. J., Lo, S. K., & Gaddam, S. (2024). The Disproportionate Rise in Pancreatic Cancer in Younger Women Is Due to a Rise in Adenocarcinoma and Not Neuroendocrine Tumors: A Nationwide Time-Trend Analysis Using 2001–2018 United States Cancer Statistics Databases. Cancers, 16(5), 971. https://doi.org/10.3390/cancers16050971