Impact of Hypoxia on Radiation-Based Therapies for Liver Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Hypoxia in Tumor Microenvironment
2.1. What Is Hypoxia?
2.2. Hypoxia Pathogenesis and Associated Metabolic Reprogramming
3. Impact of Hypoxia on Radiation-Based Therapies
3.1. Basics of Radiation Damage and Oxygen’s Direct Role
3.2. Hypoxia’s Impact on Radiation-Based Therapies
4. Methods to Measure Hypoxia
4.1. Direct Methods
4.1.1. Oxygen Electrode
4.1.2. Phosphorescence Quenching
4.1.3. Electron Paramagnetic Resonance
4.1.4. Oxygen-Sensitive Contrast Magnetic Resonance
4.2. Endogenous Markers of Hypoxia
4.2.1. Immunohistochemical Staining
4.2.2. Comet Assay
4.3. Physiologic Methods
4.3.1. Near-Infrared Spectroscopy/Tomography
4.3.2. Photoacoustic Imaging
4.3.3. Contrast-Enhanced Ultrasonography
4.3.4. Position Emission Tomography
4.3.5. Dynamic Contrast-Enhanced Magnetic Resonance Imaging
4.3.6. Special Magnetic Resonance Sequences
5. Potential Strategies to Overcome Hypoxia
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eichbaum, M.H.; Kaltwasser, M.; Bruckner, T.; de Rossi, T.M.; Schneeweiss, A.; Sohn, C. Prognostic factors for patients with liver metastases from breast cancer. Breast Cancer Res. Treat. 2005, 96, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, S.; Lepage, C.; Hatem, C.; Coatmeur, O.; Faivre, J.; Bouvier, A.-M. Epidemiology and management of liver metastases from colorectal cancer. Ann. Surg. 2006, 244, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Ward, E.M.; Johnson, C.J.; Cronin, K.A.; Ma, J.; Ryerson, A.B.; Mariotto, A.; Lake, A.J.; Wilson, R.; Sherman, R.L.; et al. Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival. JNCI J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef] [PubMed]
- Feretis, M.; Solodkyy, A. Yttrium-90 radioembolization for unresectable hepatic metastases of breast cancer: A systematic review. World J. Gastrointest. Oncol. 2020, 12, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Apisarnthanarax, S.; Barry, A.; Cao, M.; Czito, B.; DeMatteo, R.; Drinane, M.; Hallemeier, C.L.; Koay, E.J.; Lasley, F.; Meyer, J.; et al. External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2021, 12, 28–51. [Google Scholar] [CrossRef]
- Dabrowiecki, A.; Sankhla, T.; Shinn, K.; Bercu, Z.L.; Ermentrout, M.; Shaib, W.; Cardona, K.; Newsome, J.; Kokabi, N. Impact of Genomic Mutation and Timing of Y90 Radioembolization in Colorectal Liver Metastases. Cardiovasc. Interv. Radiol. 2020, 43, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Rockwell, S.; Dobrucki, I.T.; Kim, E.Y.; Marrison, S.T.; Vu, V.T. Hypoxia and Radiation Therapy: Past History, Ongoing Research, and Future Promise. Curr. Mol. Med. 2009, 9, 442–458. [Google Scholar] [CrossRef]
- Vaupel, P.; Flood, A.B.; Swartz, H.M. Oxygenation Status of Malignant Tumors vs. Normal Tissues: Critical Evaluation and Updated Data Source Based on Direct Measurements with pO2 Microsensors. Appl. Magn. Reson. 2021, 52, 1451–1479. [Google Scholar] [CrossRef]
- Onori, P.; Morini, S.; Franchitto, A.; Sferra, R.; Alvaro, D.; Gaudio, E. Hepatic microvascular features in experimental cirrhosis: A structural and morphometrical study in CCl4-treated rats. J. Hepatol. 2000, 33, 555–563. [Google Scholar] [CrossRef]
- Cai, J.; Hu, M.; Chen, Z.; Ling, Z. The roles and mechanisms of hypoxia in liver fibrosis. J. Transl. Med. 2021, 19, 186. [Google Scholar] [CrossRef]
- Keith, B.; Johnson, R.S.; Simon, M.C. HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2011, 12, 9–22. [Google Scholar] [CrossRef]
- McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours—Implications for treatment response. Br. J. Radiol. 2014, 87, 20130676. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wicks, E.E.; Semenza, G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Investig. 2022, 132, jci159839. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Yang, S.; Wu, C.; Wang, Y.; Jiang, J.; Lu, Z. Protein expression of hypoxia-inducible factor-1 alpha and hepatocellular carcinoma: A systematic review with meta-analysis. Clin. Res. Hepatol. Gastroenterol. 2014, 38, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist. Int. J. Radiat. Oncol. Biol. Phys. 2018, 66, P627. [Google Scholar]
- Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.C.; Lebedev, A.; Aten, E.; Madsen, K.; Marciano, L.; Kolb, H.C. The Clinical Importance of Assessing Tumor Hypoxia: Relationship of Tumor Hypoxia to Prognosis and Therapeutic Opportunities. Antioxidants Redox Signal. 2014, 21, 1516–1554. [Google Scholar] [CrossRef]
- Harada, H. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance. J. Radiat. Res. 2016, 57, i99–i105. [Google Scholar] [CrossRef]
- Moeller, B.J.; Cao, Y.; Li, C.Y.; Dewhirst, M.W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004, 5, 429–441. [Google Scholar] [CrossRef]
- Nejad, A.E.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Javanmard, S.H.; Taherian, M.; Ahmadlou, M.; et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int. 2021, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Gammon, L.; Biddle, A.; Heywood, H.K.; Johannessen, A.C.; Mackenzie, I.C. Sub-Sets of Cancer Stem Cells Differ Intrinsically in Their Patterns of Oxygen Metabolism. PLoS ONE 2013, 8, e62493. [Google Scholar] [CrossRef] [PubMed]
- Cramer, T.; Vaupel, P. Severe hypoxia is a typical characteristic of human hepatocellular carcinoma: Scientific fact or fallacy? J. Hepatol. 2022, 76, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Godet, I.; Doctorman, S.; Wu, F.; Gilkes, D.M. Detection of Hypoxia in Cancer Models: Significance, Challenges, and Advances. Cells 2022, 11, 686. [Google Scholar] [CrossRef] [PubMed]
- Swartz, H.M.; Williams, B.B.; Zaki, B.I.; Hartford, A.C.; Jarvis, L.A.; Chen, E.Y.; Comi, R.J.; Ernstoff, M.S.; Hou, H.; Khan, N.; et al. Clinical EPR: Unique Opportunities and Some Challenges. Acad. Radiol. 2014, 21, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.C.; English, S.; Yamada, K.; Yoo, J.; Murugesan, R.; Devasahayam, N.; Cook, J.A.; Golman, K.; Ardenkjaer-Larsen, J.H.; Subramanian, S.; et al. Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy and tissue oxygen concentration. Proc. Natl. Acad. Sci. USA 2002, 99, 2216–2221. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.P.; Griffiths, J.R. Current issues in the utility of 19F nuclear magnetic resonance methodologies for the assessment of tumour hypoxia. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 987–996. [Google Scholar] [CrossRef]
- Ju, C.; Colgan, S.P.; Eltzschig, H.K. Hypoxia-inducible factors as molecular targets for liver diseases. J. Mol. Med. 2016, 94, 613–627. [Google Scholar] [CrossRef]
- Bao, M.H.-R.; Wong, C.C.-L. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021, 10, 1715. [Google Scholar] [CrossRef]
- Iommarini, L.; Porcelli, A.M.; Gasparre, G.; Kurelac, I. Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Front. Oncol. 2017, 7, 286. [Google Scholar] [CrossRef]
- Li, J.-Q.; Wu, X.; Gan, L.; Yang, X.-L.; Miao, Z.-H. Hypoxia induces universal but differential drug resistance and impairs anticancer mechanisms of 5-fluorouracil in hepatoma cells. Acta Pharmacol. Sin. 2017, 38, 1642–1654. [Google Scholar] [CrossRef]
- Wen, L.; Liang, C.; Chen, E.; Chen, W.; Liang, F.; Zhi, X.; Wei, T.; Xue, F.; Li, G.; Yang, Q.; et al. Regulation of Multi-drug Resistance in hepatocellular carcinoma cells is TRPC6/Calcium Dependent. Sci. Rep. 2016, 6, 23269. [Google Scholar] [CrossRef]
- El-Desoky, A.; Jiao, L.; Havlik, R.; Habib, N.; Davidson, B.; Seifalian, A. Measurement of hepatic tissue hypoxia usinG near infrared spectroscopy: Comparison with hepatic vein oxygen partial pressure. Eur. Surg. Res. 2000, 32, 207–214. [Google Scholar] [CrossRef]
- Guyon, P.W.; Karamlou, T.; Ratnayaka, K.; El-Said, H.G.; Moore, J.W.; Rao, R.P. An Elusive Prize: Transcutaneous Near InfraRed Spectroscopy (NIRS) Monitoring of the Liver. Front. Pediatr. 2020, 8, 563483. [Google Scholar] [CrossRef] [PubMed]
- Nasri, D.; Manwar, R.; Kaushik, A.; Er, E.E.; Avanaki, K. Photoacoustic imaging for investigating tumor hypoxia: A strategic assessment. Theranostics 2023, 13, 3346–3367. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Lv, J.; He, Y.; Yang, J.; Zeng, L.; Nie, L. In vivo quantitative photoacoustic evaluation of the liver and kidney pathology in tyrosinemia. Photoacoustics 2022, 28, 100410. [Google Scholar] [CrossRef] [PubMed]
- Lyshchik, A. Specialty Imaging: Fundamentals of CEUS; Elsevier: Amsterdam, The Netherlands, 2019; Available online: https://www.google.com/books/edition/Specialty_Imaging_Fundamentals_of_CEUS/cj6WDwAAQBAJ?hl=en (accessed on 14 February 2024).
- Faccia, M.; Garcovich, M.; Ainora, M.E.; Riccardi, L.; Pompili, M.; Gasbarrini, A.; Zocco, M.A. Contrast-Enhanced Ultrasound for Monitoring Treatment Response in Different Stages of Hepatocellular Carcinoma. Cancers 2022, 14, 481. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, Q.; Tantawi, M.; Leeper, D.B.; Wheatley, M.A.; Eisenbrey, J.R. Emerging Applications of Ultrasound-Contrast Agents in Radiation Therapy. Ultrasound Med. Biol. 2021, 47, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.C.; Kim, D.; Maxwell, A.W.P.; Camacho, J.C. Functional Imaging of Hypoxia: PET and MRI. Cancers 2023, 15, 3336. [Google Scholar] [CrossRef] [PubMed]
- Reeves, K.M.; Song, P.N.; Angermeier, A.; Della Manna, D.; Li, Y.; Wang, J.; Yang, E.S.; Sorace, A.G.; Larimer, B.M. 18F-FMISO PET Imaging Identifies Hypoxia and Immunosuppressive Tumor Microenvironments and Guides Targeted Evofosfamide Therapy in Tumors Refractory to PD-1 and CTLA-4 Inhibition. Clin. Cancer Res. 2021, 28, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.T.; Tebbutt, N.; Gan, H.K.; Liu, Z.; Sachinidis, J.; Pathmaraj, K.; Scott, A.M. Evaluation of 18F-FMISO PET and 18F-FDG PET Scans in Assessing the Therapeutic Response of Patients with Metastatic Colorectal Cancer Treated with Anti-Angiogenic Therapy. Front. Oncol. 2021, 11, 606210. [Google Scholar] [CrossRef]
- Shah, R.P.; Laeseke, P.F.; Shin, L.K.; Chin, F.T.; Kothary, N.; Segall, G.M. Limitations of Fluorine 18 Fluoromisonidazole in Assessing Treatment-induced Tissue Hypoxia after Transcatheter Arterial Embolization of Hepatocellular Carcinoma: A Prospective Pilot Study. Radiol. Imaging Cancer 2022, 4, e210094. [Google Scholar] [CrossRef]
- Assessment of Hypoxia Before Radioembolization Treatment with 18F-FMISO PET- from ClinicalTrials.gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT06027021?term=fmiso+pet+hcc&draw=2&rank=5 (accessed on 16 September 2023).
- BOLD MRI and FMISO PET for the Assessment of Hypoxic Tumor Microenvironment in Patients with Oligometastatic Liver Cancer Undergoing Yttirum-90 Selective Internal Radiation Therapy- from ClinicalTrials.gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05250895 (accessed on 16 September 2023).
- Choyke, P.L.; Dwyer, A.J.; Knopp, M.V. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging 2003, 17, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Lyng, H.; Vorren, A.O.; Sundfør, K.; Taksdal, I.; Lien, H.H.; Kaalhus, O.; Rofstad, E.K. Assessment of tumor oxygenation in human cervical carcinoma by use of dynamic Gd-DTPA-enhanced MR imaging. J. Magn. Reson. Imaging 2001, 14, 750–756. [Google Scholar] [CrossRef]
- Yopp, A.C.; Schwartz, L.H.; Kemeny, N.; Gultekin, D.H.; Gönen, M.; Bamboat, Z.; Shia, J.; Haviland, D.; D’angelica, M.I.; Fong, Y.; et al. Antiangiogenic Therapy for Primary Liver Cancer: Correlation of Changes in Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Tissue Hypoxia Markers and Clinical Response. Ann. Surg. Oncol. 2011, 18, 2192–2199. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-B.; Shih, T.T.F. DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker. World J. Gastroenterol. 2014, 20, 3125–3134. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Foltz, W.D.; Milosevic, M.F.; Toi, A.; Bristow, R.G.; Ménard, C.; Haider, M.A. Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: A pilot study in men with prostate cancer. Int. J. Radiat. Biol. 2009, 85, 805–813. [Google Scholar] [CrossRef]
- Lee, J.; Kim, C.K.; Gu, K.-W.; Park, W. Value of blood oxygenation level-dependent MRI for predicting clinical outcomes in uterine cervical cancer treated with concurrent chemoradiotherapy. Eur. Radiol. 2019, 29, 6256–6265. [Google Scholar] [CrossRef]
- Jiang, L.; Weatherall, P.T.; McColl, R.W.; Tripathy, D.; Mason, R.P. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: A pilot study. J. Magn. Reson. Imaging 2012, 37, 1083–1092. [Google Scholar] [CrossRef]
- Hectors, S.J.; Wagner, M.; Besa, C.; Huang, W.; Taouli, B. Multiparametric FDG-PET/MRI of Hepatocellular Carcinoma: Initial Experience. Contrast Media Mol. Imaging 2018, 2018, 5638283. [Google Scholar] [CrossRef]
- Yu, D.-X.; Ma, X.-X.; Zhang, X.-M.; Hou, J.-W.; Li, C.-F. Evaluation of blood oxygen level in hepatocellular carcinoma with noninvasive magnetic resonance multi-echo R2* technique and its clinical significance. Zhonghua Yi Xue Za Zhi 2010, 90, 1463–1466. [Google Scholar]
- Bane, O.; Besa, C.; Wagner, M.; Oesingmann, N.; Zhu, H.; Fiel, M.I.; Taouli, B. Feasibility and Reproducibility of BOLD and TOLD Measurements in the Liver with Oxygen and Carbogen Gas Challenge in Healthy Volunteers and Patients with Hepatocellular Carcinoma. J. Magn. Reson. Imaging 2015, 43, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Vilaplana-Lopera, N.; Besh, M.; Moon, E.J. Targeting Hypoxia: Revival of Old Remedies. Biomolecules 2021, 11, 1604. [Google Scholar] [CrossRef]
- Gertsenshteyn, I.; Giurcanu, M.; Vaupel, P.; Halpern, H. Biological validation of electron paramagnetic resonance (EPR) image oxygen thresholds in tissue. J. Physiol. 2021, 599, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, F.; Liu, S.; Xu, X.; Liu, Z.; Sun, X. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int. J. Nanomed. 2020, 15, 7377–7395. [Google Scholar] [CrossRef] [PubMed]
Modality | Brief Description | References | |
---|---|---|---|
Direct Measurement | Oxygen Electrode | Utilizes an invasively introduced electrode to directly measure partial pressure of oxygen within a tissue. | [19,24] |
Phosphorescence Quenching | Utilizes invasively introduced oxygen-sensitive phosphorescent molecules that, when illuminated, emit their own light at a rate proportional to the local tissue oxygen concentration. | [19,25] | |
Electron Paramagnetic Resonance | Utilizes an invasively introduced (injected vs. implanted) exogenous probe that produces a signal, as measured by magnetic resonance imaging, that correlates to the local tissue oxygen concentration. Hypoxia imaging can be performed with a wide temporal range (up to multiple years). | [19,26] | |
Oxygen-Sensitive Contrast Magnetic Resonance | Utilizes an invasively introduced (injected) perfluorocarbon-based compound that acts as an injected contrast, able to be visualized by magnetic resonance imaging, that is sensitive to the local tissue oxygen concentration. Hypoxia imaging can be performed with a more limited temporal range (up to a month or two). | [19,27,28] | |
Endogenous Hypoxia Markers Measurement | Immunohistochemical Staining | Utilizes an antibody attached to a reporter/labeled molecule to ‘stain’ and image hypoxia-associated antigens (markers) in cells of a tissue section. | [19,29,30,31] |
Comet Assay | Utilizes a single-cell gel electrophoresis assay to indirectly estimate hypoxia in radiated solid tumors by measuring DNA strand breaks. | [19,32,33] | |
Physiologic Hypoxia Measurement | Near-Infrared Spectroscopy/Tomography | Utilizes near-infrared spectroscopy to quantify a ratio of hemoglobin/oxy-hemoglobin within a tissue. This ratio is then utilized to extrapolate the partial pressure of oxygen within the illuminated tissue. | [19,34,35] |
Photoacoustic Imaging | Utilizes a light-emitting sources (e.g., Laser) to radiate a tissue and cause thermoelastic expansion capable of creating ultrasonic waves that can then be analyzed to indirectly extrapolate the estimated oxygen concentration within a tissue. | [19,36,37] | |
Contrast-Enhanced Ultrasonography | Utilizes systemically injected microbubbles to assess perfusion within a tissue, which can then be correlated with tissue hypoxia. | [19,38,39,40] | |
Positron Emission Tomography | Utilizes systemically injected radiotracers capable of radiolabeling hypoxic cells within a tissue. Once radiolabeled, hypoxic cells can then be imaged and analyzed with positron emission tomography (PET). | [19,41,42,43,44,45,46] | |
Dynamic Contrast-Enhanced Magnetic Resonance Imaging | Utilizes systemically injected magnetic resonance imaging contrast agents to attain perfusion data within a tissue, which can then be correlated with tissue hypoxia. | [19,47,48,49,50] | |
Special Magnetic Resonance Sequences | Multiple special magnetic resonance sequences exist. In general, these special sequences exploit the paramagnetic properties of oxygen molecules and/or tissue proteins impacted by the presence of oxygen. By directly observing these, the degree of local tissue oxygen concentration can be estimated. | [19,51,52,53,54,55,56,57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalobos, A.; Lee, J.; Westergaard, S.A.; Kokabi, N. Impact of Hypoxia on Radiation-Based Therapies for Liver Cancer. Cancers 2024, 16, 876. https://doi.org/10.3390/cancers16050876
Villalobos A, Lee J, Westergaard SA, Kokabi N. Impact of Hypoxia on Radiation-Based Therapies for Liver Cancer. Cancers. 2024; 16(5):876. https://doi.org/10.3390/cancers16050876
Chicago/Turabian StyleVillalobos, Alexander, Jean Lee, Sarah A. Westergaard, and Nima Kokabi. 2024. "Impact of Hypoxia on Radiation-Based Therapies for Liver Cancer" Cancers 16, no. 5: 876. https://doi.org/10.3390/cancers16050876
APA StyleVillalobos, A., Lee, J., Westergaard, S. A., & Kokabi, N. (2024). Impact of Hypoxia on Radiation-Based Therapies for Liver Cancer. Cancers, 16(5), 876. https://doi.org/10.3390/cancers16050876