Skull-Base Chondrosarcoma: A Systematic Review of the Role of Postoperative Radiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Study Eligibility
2.2. Data Extraction and Quality Assessment
2.3. Reporting Bias Assessment
2.4. Statistical Analysis
3. Results
3.1. Literature Search
3.2. Risk of Bias Assessment
3.3. Overview of Results
3.4. Surgery Only
3.5. Radiotherapy
3.6. Recurrence and Prognosis
3.7. Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gazendam, A.; Popovic, S.; Parasu, N.; Ghert, M. Chondrosarcoma: A Clinical Review. J. Clin. Med. 2023, 12, 2506. [Google Scholar] [CrossRef]
- Palmisciano, P.; Haider, A.S.; Sabahi, M.; Nwagwu, C.D.; Bin Alamer, O.; Scalia, G.; Umana, G.E.; Cohen-Gadol, A.A.; El Ahmadieh, T.Y.; Yu, K.; et al. Primary Skull Base Chondrosarcomas: A Systematic Review. Cancers 2021, 13, 5960. [Google Scholar] [CrossRef] [PubMed]
- Snyderman, C. Chordoma and Chondrosarcoma of the Skull Base. 2022. Available online: https://www.uptodate.com/contents/chordoma-and-chondrosarcoma-of-the-skull-base?search=Chordoma+and+chondrosarcoma+of+the+skull+base&source=search_result&selectedTitle=1~95&usage_type=default&display_rank=1 (accessed on 23 May 2023).
- Kremenevski, N.; Schlaffer, S.M.; Coras, R.; Kinfe, T.M.; Graillon, T.; Buchfelder, M. Skull Base Chordomas and Chondrosarcomas. Neuroendocrinology 2020, 110, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Limaiem, F.; Davis, D.D.; Sticco, K.L. Chondrosarcoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538132/ (accessed on 25 May 2023).
- Murphy, A. Chondrosarcoma Grading: Radiology Reference Article. 2022. Available online: https://radiopaedia.org/articles/chondrosarcoma-grading (accessed on 23 May 2023).
- Coşkun, H.S.; Erdoğan, F.; Büyükceran, İ.; Dabak, N. Evaluation of prognostic factors affecting survival in chondrosarcoma treatment and comparison with literature. Jt. Dis. Relat. Surg. 2022, 33, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Colia, V.; Provenzano, S.; Hindi, N.; Casali, P.G.; Stacchiotti, S. Systemic therapy for selected skull base sarcomas: Chondrosarcoma, chordoma, giant cell tumour and solitary fibrous tumour/hemangiopericytoma. Rep. Pract. Oncol. Radiother. 2016, 21, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef]
- Tzortzidis, F.; Elahi, F.; Wright, D.C.; Temkin, N.; Natarajan, S.K.; Sekhar, L.N. Patient outcome at long-term follow-up after aggressive microsurgical resection of cranial base chondrosarcomas. Neurosurgery 2006, 58, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Simon, F.; Feuvret, L.; Bresson, D.; Guichard, J.P.; El Zein, S.; Bernat, A.L.; Labidi, M.; Calugaru, V.; Froelich, S.; Herman, P.; et al. Surgery and protontherapy in Grade I and II skull base chondrosarcoma: A comparative retrospective study. PLoS ONE 2018, 13, e0208786. [Google Scholar] [CrossRef]
- Hasegawa, H.; Vakharia, K.; Graffeo, C.S.; Carlson, M.L.; Pollock, B.E.; Brown, P.D.; Perry, A.; Van Gompel, J.J.; Driscoll, C.L.W.; Link, M.J. Long-term outcomes of grade I/II skull base chondrosarcoma: An insight into the role of surgery and upfront radiotherapy. J. Neurooncol. 2021, 153, 273–281. [Google Scholar] [CrossRef]
- Samii, A.; Gerganov, V.; Herold, C.; Gharabaghi, A.; Hayashi, N.; Samii, M. Surgical treatment of skull base chondrosarcomas. Neurosurg. Rev. 2009, 32, 67–75. [Google Scholar] [CrossRef]
- Vaz-Guimaraes, F.; Fernandez-Miranda, J.C.; Koutourousiou, M.; Hamilton, R.L.; Wang, E.W.; Snyderman, C.H.; Gardner, P.A. Endoscopic Endonasal Surgery for Cranial Base Chondrosarcomas. Oper. Neurosurg. 2017, 13, 421–434. [Google Scholar] [CrossRef]
- Hasegawa, H.; Shin, M.; Kondo, K.; Hanakita, S.; Mukasa, A.; Kin, T.; Saito, N. Role of endoscopic transnasal surgery for skull base chondrosarcoma: A retrospective analysis of 19 cases at a single institution. J. Neurosurg. 2018, 128, 1438–1447. [Google Scholar] [CrossRef]
- Al-Shabibi, T.; Troude, L.; Hamdi, H.; Baucher, G.; Boucekine, M.; Régis, J.; Roche, P.H. Functional and oncological outcome of petroclival chondrosarcoma operated on through an extradural anterior petrosectomy approach. A single center experience. Neurochirurgie 2023, 69, 101430. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Xue, Y.; Zhao, T.; Wu, Y. A multicenter retrospective analysis of clinical outcomes of intracranial chondrosarcoma in 26 patients. Sci. Rep. 2023, 13, 14647. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Ertner, D.; Nikoghosyan, A.; Hof, H.; Didinger, B.; Combs, S.E.; Jäkel, O.; Karger, C.P.; Edler, L.; Debus, J. Carbon ion radiotherapy of skull base chondrosarcomas. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Uhl, M.; Mattke, M.; Welzel, T.; Oelmann, J.; Habl, G.; Jensen, A.D.; Ellerbrock, M.; Haberer, T.; Herfarth, K.K.; Debus, J. High control rate in patients with chondrosarcoma of the skull base after carbon ion therapy: First report of long-term results. Cancer 2014, 120, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Mattke, M.; Vogt, K.; Bougatf, N.; Welzel, T.; Oelmann-Avendano, J.; Hauswald, H.; Jensen, A.; Ellerbrock, M.; Jäkel, O.; Haberer, T.; et al. High control rates of proton- and carbon-ion-beam treatment with intensity-modulated active raster scanning in 101 patients with skull base chondrosarcoma at the Heidelberg Ion Beam Therapy Center. Cancer 2018, 124, 2036–2044. [Google Scholar] [CrossRef]
- Hug, E.B.; Loredo, L.N.; Slater, J.D.; DeVries, A.; Grove, R.I.; Schaefer, R.A.; Rosenberg, A.E.; Slater, J.M. Proton radiation therapy for chordomas and chondrosarcomas of the skull base. J. Neurosurg. 1999, 91, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.E.; Nielsen, G.P.; Keel, S.B.; Renard, L.G.; Fitzek, M.M.; Munzenrider, J.E.; Liebsch, N.J. Chondrosarcoma of the base of the skull: A clinicopathologic study of 200 cases with emphasis on its distinction from chordoma. Am. J. Surg. Pathol. 1999, 23, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Noël, G.; Habrand, J.L.; Mammar, H.; Pontvert, D.; Haie-Méder, C.; Hasboun, D.; Moisson, P.; Ferrand, R.; Beaudré, A.; Boisserie, G.; et al. Combination of photon and proton radiation therapy for chordomas and chondrosarcomas of the skull base: The Centre de Protonthérapie D’Orsay experience. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 392–398. [Google Scholar] [CrossRef]
- Sahgal, A.; Chan, M.W.; Atenafu, E.G.; Masson-Cote, L.; Bahl, G.; Yu, E.; Millar, B.A.; Chung, C.; Catton, C.; O’Sullivan, B.; et al. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: Preliminary outcomes. Neuro-Oncology 2015, 17, 889–894. [Google Scholar] [CrossRef]
- Feuvret, L.; Bracci, S.; Calugaru, V.; Bolle, S.; Mammar, H.; De Marzi, L.; Bresson, D.; Habrand, J.L.; Mazeron, J.J.; Dendale, R.; et al. Efficacy and Safety of Adjuvant Proton Therapy Combined with Surgery for Chondrosarcoma of the Skull Base: A Retrospective, Population-Based Study. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 312–321. [Google Scholar] [CrossRef]
- Weber, D.C.; Malyapa, R.; Albertini, F.; Bolsi, A.; Kliebsch, U.; Walser, M.; Pica, A.; Combescure, C.; Lomax, A.J.; Schneider, R. Long term outcomes of patients with skull-base low-grade chondrosarcoma and chordoma patients treated with pencil beam scanning proton therapy. Radiother. Oncol. 2016, 120, 169–174. [Google Scholar] [CrossRef]
- Weber, D.C.; Badiyan, S.; Malyapa, R.; Albertini, F.; Bolsi, A.; Lomax, A.J.; Schneider, R. Long-term outcomes and prognostic factors of skull-base chondrosarcoma patients treated with pencil-beam scanning proton therapy at the Paul Scherrer Institute. Neuro-Oncology 2016, 18, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.C.; Murray, F.; Combescure, C.; Calugaru, V.; Alapetite, C.; Albertini, F.; Bolle, S.; Goudjil, F.; Pica, A.; Walser, M.; et al. Long term outcome of skull-base chondrosarcoma patients treated with high-dose proton therapy with or without conventional radiation therapy. Radiother. Oncol. 2018, 129, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, A.L.; Rotondo, R.L.; Rutenberg, M.S.; Indelicato, D.J.; Mercado, C.E.; Rao, D.; Tavanaiepour, D.; Morris, C.G.; Louis, D.; Flampouri, S.; et al. Proton therapy for skull-base chondrosarcoma, a single-institution outcomes study. J. Neurooncol. 2019, 142, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, M.; Shin, M.; Jokura, H.; Hasegawa, T.; Yamanaka, K.; Yamamoto, M.; Matsunaga, S.; Akabane, A.; Yomo, S.; Onoue, S.; et al. Outcomes of Gamma Knife radiosurgery for skull base chondrosarcomas: A multi-institutional retrospective study. J. Neurosurg. 2022, 137, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Pattankar, S.; Warade, A.; Misra, B.K.; Deshpande, R.B. Long-term outcome of adjunctive Gamma Knife radiosurgery in skull-base chordomas and chondrosarcomas: An Indian experience. J. Clin. Neurosci. 2022, 96, 90–100. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute (U.S.). Common Terminology Criteria for Adverse Events (CTCAE); U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute: Bethesda, MD, USA, 2009.
- Bloch, O.G.; Jian, B.J.; Yang, I.; Han, S.J.; Aranda, D.; Ahn, B.J.; Parsa, A.T. A systematic review of intracranial chondrosarcoma and survival. J. Clin. Neurosci. 2009, 16, 1547–1551. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.H.; Morgenstern, P.F.; Anand, V.K. Lessons learned in the evolution of endoscopic skull base surgery. J. Neurosurg. 2019, 130, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shokri, T.; Manolidis, S.; Ducic, Y. Complications in Skull Base Surgery and Subsequent Repair. Semin. Plast. Surg. 2020, 34, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.B.; Cohen, E.R.; Sargi, Z.; Leibowitz, J. Free tissue reconstruction of the anterior skull base: A review. World J. Otorhinolaryngol. Head Neck Surg. 2020, 6, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Noel, G.; Gondi, V. Proton therapy for tumors of the base of the skull. Chin. Clin. Oncol. 2016, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, A.L.; Seidensaal, K.; Iannalfi, A.; Kim, K.H.; Koto, M.; Yang, W.C.; Shiau, C.Y.; Mahajan, A.; Ahmed, S.K.; Trifiletti, D.M.; et al. Carbon Ion Radiotherapy: An Evidence-Based Review and Summary Recommendations of Clinical Outcomes for Skull-Base Chordomas and Chondrosarcomas. Cancers 2023, 15, 5021. [Google Scholar] [CrossRef] [PubMed]
- Kano, H.; Iyer, A.; Lunsford, L.D. Skull base chondrosarcoma radiosurgery: A literature review. Neurosurgery 2014, 61 (Suppl. S1), 155–158. [Google Scholar] [CrossRef] [PubMed]
- Rutenberg, M.S.; Beltran, C. Future Perspective: Carbon Ion Radiotherapy for Head and Neck and Skull Base Malignancies. Oral Maxillofac. Surg. Clin. N. Am. 2023, 35, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Folbe, A.J.; Svider, P.F.; Liu, J.K.; Eloy, J.A. Endoscopic Resection of Clival Malignancies. Otolaryngol. Clin. N. Am. 2017, 50, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Cavallo, I.; Gandini, S.; Ingargiola, R.; Pecorilla, M.; Imparato, S.; Rossi, E.; Mirandola, A.; Ciocca, M.; Orlandi, E.; et al. Particle Radiotherapy for Skull Base Chondrosarcoma: A Clinical Series from Italian National Center for Oncological Hadrontherapy. Cancers 2021, 13, 4423. [Google Scholar] [CrossRef] [PubMed]
- Sallabanda, M.; Vera, J.A.; Pérez, J.M.; Matute, R.; Montero, M.; de Pablo, A.; Cerrón, F.; Valero, M.; Castro, J.; Mazal, A.; et al. Five-Fraction Proton Therapy for the Treatment of Skull Base Chordomas and Chondrosarcomas: Early Results of a Prospective Series and Description of a Clinical Trial. Cancers 2023, 15, 5579. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total Number of Patients |
---|---|
Sex | |
Male | 567 (45.3%) |
Female | 686 (54.7%) |
Mean Age ± SD (range) | 41.9 ± 4.1 (32–52) |
Intervention | |
Surgery only | 186 (13.4%) |
Postoperative radiotherapy | 1202 (86.5%) |
Proton therapy | 765 (63.6%) |
Carbon-ion therapy | 212 (17.6%) |
Proton and photon therapy | 149 (12.4%) |
Gamma Knife | 58 (4.8%) |
Photon | 18 (1.4%) |
Surgery at | |
Initial diagnosis | 67 (66.3%) |
Recurrence | 34 (33.7%) |
Postoperative radiotherapy at | |
Initial diagnosis | 486 (78.0%) |
Recurrence | 137 (21.9%) |
Presenting Symptoms | |
Diplopia | 157 (38.0%) |
Headaches | 77 (18.6%) |
Hearing deficit | 56 (13.6%) |
Visual field deficit | 23 (5.6%) |
Nasal issues | 20 (5.6%) |
Dizziness | 16 (3.9%) |
Coordination problems | 11 (2.7%) |
Swallowing difficulties | 7 (1.7%) |
Facial weakness | 7 (1.7%) |
Facial pain | 6 (1.4%) |
Tinnitus | 6 (1.4%) |
Hemiparesis/amaurosis | 5 (1.2%) |
Miscellaneous | 22 (5.3%) |
Tumor Location | |
Petrous bone | 158 (15.1%) |
Petroclival | 144 (14.8%) |
Clivus | 142 (14.5%) |
Tempero-occipital junction | 137 (14.1%) |
Cavernous sinus | 123 (12.6%) |
Sphenoid bone | 45 (4.6%) |
Middle cranial fossa | 26 (2.7%) |
Anterior skull base | 25 (2.6%) |
Suprasellar | 22 (2.3%) |
Sphenopetrosal | 20 (2.1%) |
Parasellar | 19 (1.9%) |
Ethmoid bone/paranasal sinus | 14 (1.4%) |
Posterior cranial fossa | 12 (1.2%) |
Posterior fossa | 12 (1.2%) |
Jugular fossa | 11 (1.1%) |
Miscellaneous | 44 (4.5%) |
Surgical Approach | |
Endonasal | 85 (31.2%) |
Subtemporal–infratemporal | 44 (16.5%) |
Transcranial | 24 (8.9%) |
Pteronial | 19 (7.1%) |
Retrosigmoid | 18 (6.7%) |
Extended sub-frontal | 18 (6.7%) |
Frontotemporal-transzygomatic | 11 (4.1%) |
Epidural anterior petrosectomy | 10 (3.7%) |
Lateral rhinotomy | 7 (2.6%) |
Transethmoid | 6 (2.2%) |
Infratemporal fossa | 3 (1.1%) |
Extreme lateral transcondylar | 3 (1.1%) |
Subtemporal | 3 (1.1%) |
Transcranial-transnasal | 3 (1.1%) |
Miscellaneous | 13 (4.8%) |
Preoperative Cranial Nerve Palsies | |
Abducens | 202 (30.6%) |
Trigeminal | 70 (10.6%) |
Facial | 50 (7.6%) |
Vestibulocochlear | 46 (6.9%) |
Oculomotor | 44 (6.7%) |
Hypoglossus | 26 (3.9%) |
Vagus | 22 (3.3%) |
Glossopharyngeal | 20 (3.0%) |
Optic | 14 (2.1%) |
Accessory | 11 (1.7%) |
Trochlear | 11 (1.7%) |
Olfactory | 3 (0.5%) |
Unmentioned | 140 (21.2%) |
Total Preoperative CN palsies | 659 |
Study Number | Author, Year | Number of Patients (No. Males) | Intervention | Extent of Resection (%) | Tumor Pathology | Tumor Size | Mean Dose | Follow Up | Progression-Free Survival | Overall Survival | Disease-Specific Survival |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Tzortzidis et al., 2006 [11] | 47 (24) | Surgery only (n = 29) Adjuvant RT (proton, radiosurgery, fractionated radiation) (n = 18) | GTR in 29 (62) STR in 18 (38) | Low grade, n = 45 High grade, n = 2 | N.M | N.M | Mean: 86 months | GTR: 3y: 92% 5y: 78.3% 10y: 42.3% STR + RT: 3y: 78% 5y: 41% 10y: 13.8% | N.M | N.M |
2 | Simon et al., 2018 [12] Moderate Risk | Surgery only: 24 (10) Surgery + RT: 23 (13) | Surgery only (n = 24) P.O proton RT (n = 23) | Surgery only: GTR in 13 (54) PR in 11 (46) Surgery + RT: GTR in 3 (13) PR in 20 (87) | Low grade, n = 47 | Mean (surgery only) = 39 cm3 Mean (P.O. proton therapy = 33 cm3 | Mean: 70 GyE | Mean: 91 months | Surgery only: 5y: 67.8% 10y: 58.2% P.O proton radiotherapy: 5y: 100% 10y: 87.5% | N.M | Surgery only: 5y: 89.8% 10y: 89.8% P.O proton radiotherapy: 5y: 100% 10y: 100% |
3 | Hasegawa et al., 2021 [13] Moderate Risk | Surgery only: 18 (6) Surgery + RT: 14 (9) | Surgery + proton RT (n = 11) Surgery only (n = 18) P.O photon RT (n = 1) P.O photon + proton therapy (n =2) | Surgery only: GTR in 10 (56) Non-GTR in 8 (44) P.O RT: GTR in 1 (7) Non-GTR in 13 (93) | Low grade, n = 32 | Mean diameter in Surgery + RT group = 35 mm Mean diameter in Surgery group = 34 mm | 70 GyE | Surgery + RT, median: 44 months Surgery only, median: 154 months | Surgery + RT 5y, 10y: 100% 15y: 67% Surgery only: 5y, 10y, 15y: 64% | N.M | Overall DSS: 5y: 100% 10y, 15y: 95% |
4 | Samii et al., 2008 [14] Critical Risk | 25 (18) | Surgery only (n = 25) | N.M | Low grade, n = 25 | Mean = 16.9 cm3 | N/A | Mean: 80 months | N.M | 5y, 10y: 95% | N.M |
5 | Vaz-Guimaraes et al., 2017 [15] Moderate Risk | 35 (14) | Surgery only (n = 35) | GTR in 22 (63) NTR in 11 (31) STR in 2 (6) | Low grade, n = 35 | Mean = 31.9 cm3 | N.M | Mean: 44.6 months Median: 44 months | 3y: 83.7% 5y: 80.8% | N.M | 3y: 91.1% 5y: 90.5% |
6 | Hasegawa et al., 2018 [16] Critical Risk | 19 (10) | Surgery only (n = 19) | GTR in 15 (79) STR in 2 (10.5) PR in 2 (10.5) | Low grade, n = 18 High grade, n = 1 | Mean = 14.5 cm3 | N/A | Median: 47 months | 3y, 5y: 92.9% | N.M | N.M |
7 | Al-Shaibibi et al., 2023 [17] | 10 (4) | Surgery only (n = 10) | STR in 10 (100) | Low grade, n = 10 | N.M | N/A | Median: 70 months | 1y: 90% 2y: 80% 5y: 60% | N.M | N.M |
8 | Liu et al., 2023 [18] Moderate Risk | 26 (10) | Surgery only (n = 26) | GTR in 14 (54) STR in 10 (38) PR in 2 (8) | Low grade, n = 26 | Mean: 65.13 cm3 | N/A | Mean: 39.12 months | N.M | 1y: 100% 3y: 81.8% 5y: 68% | N.M |
9 | Schulz et al., 2007 [19] Critical risk | 54 (27) | P.O. carbon-ion RT (n = 54) | N.M | Low grade, n = 54 | Median: 20 cm3 | Median: 60 CGE | Median: 33 months | 3y: 96.2% 4y: 89.8% | 3y, 4y: 98.2% | N.M |
10 | Uhl et al., 2014 [20] Moderate risk | 79 (39) | P.O carbon RT (n = 79) | PR in 62 Biopsy in 17 | Low grade, n = 78 High grade, n = 1 | Mean boost volume = 60.5 cm3 | Median: 60 GyE | Median: 91 months | 3y: 95.9% 5y, 10y: 88% | 3y, 5y: 96.1% 10y: 78.9% | N.M |
11 | Mattke et al., 2018 [21] Moderate risk | 101 (54) | P.O carbon RT (n = 79) P.O proton RT (n = 22) | P.O carbon RT PR in 75 (95) Biopsy in 4 (5) P.O proton RT: PR in 18 (82) Biopsy in 4 (18) | Low grade, n = 101 | Mean carbon RT boost volume = 34.9 cm3 Mean proton RT boost volume = 38.2 cm3 | Carbon: 60 GyE Proton: 70 GyE | Carbon (median): 43.7 months Proton (median): 30.7 months | Carbon 1y: 98.6% 2y: 97.2% 4y: 90.5% Proton 1y, 2y,4y: 100% | Carbon 1y: 100% 3y: 98.5% 4y: 92.9% Proton: 1y, 3y, 4y: 100% | N.M |
12 | Hug et al., 1999 [22] Moderate risk | 25 (9) | P.O proton RT (n = 25) | N.M | Low grade, n = 25 | N.M | Mean: 70.7 GyE | Mean: 33.2 months | 3y: 94% 5y: 75% | 3y, 5y: 100% | N.M |
13 | Rosenberg et al., 1999 [23] Critical risk | 200 (67) | P.O photon and proton RT (n = 200) | GTR in 10 (5) STR in 148 (74) PR in 42 (21) | Low grade, n = 200 | N.M | Median: 72.1 GyE | Mean: 65.3 months | 5y: 99% 10y: 98% | N.M | 5y, 10y: 99% |
14 | Noel et al., 2001 [24] Moderate risk | 11 (5) | P.O proton RT (n = 11) | N.M | Low grade, n = 11 | Mean = 28 cm3 | Photon median: 45Gy Proton median: 22 GyE Overall Mean: 66.7 GyCGE | Mean: 30.5 months | 2y, 3y: 90% | 3y: 90% 4y: 60% | N.M |
15 | Sahgal et al., 2014 [25] Serious risk | 18 (10) | IG-IMRT photon RT (n = 18) | GTR in 7 (39) STR in 9 (50) Biopsy in 2 (11) | Low grade, n = 18 | Mean = 24.6 cm3 | Median: 70 GyE | Median: 66.5 months | 5y: 88.1% | 3y: 87.8% 5y: 84.1% | N.M |
16 | Feuvret et al., 2016 [26] Moderate risk | 159 (72) | P.O proton RT or proton and photon RT (n = 159) | Complete in 13 (8) Incomplete in 133 (84) Biopsy 13 (8) | Low grade, n = 159 | Mean = 23.1 cm3 | Meidan total dose: 70.2 GyE Median proton: 36.6 GyE Median photon: 34.2 Gy | Clinical: 77 months Radiologic: 65 months | 5y: 93.2% 10y: 84.2% | 5y: 94.9% 10y: 87% | N.M |
17 | Weber et al., 2016 [27] Moderate risk | 71 (31) | P.O proton RT (n = 71) | GTR in 3 (4) STR in 68 (96) | Low grade, n = 71 | Mean = 36.1 cm3 | Mean: 72.5 GyE | Mean: 50 months | 5, 7y: 93.6% | N.M | N.M |
18 | Weber et al., 2016 [28] Moderate risk | 77 (35) | P.O proton RT (n = 77) | N.M | Low grade, n = 73 High grade, n = 4 | Median = 25.9 cm3 | Median: 70 GyE | Mean: 69.2 months | 5y: 94.2% 8y: 89.7% | 5y, 8y: 93.5% | N.M |
19 | Weber et al., 2018 [29] Moderate to serious risk | 251 (109) | P.O. proton (n=116) P.O proton ± photons (n = 135) | N.M. | N.M. | P.O. proton = 35.53 cm3 P.O proton ± photons = 22.22cm3 | P.O. proton = 69.67 GyE P.O proton ± photons = 69.86 GyE | All patients (median): 87.3 months Surviving patients (median): 88.0 months | 7y: 93.1% | 7y: 93.6% | N.M |
20 | Holtzman et al., 2019 [30] Critical risk | 43 (18) | P.O proton RT (n = 43) | N.M | Low grade, n =41 High grade, n = 2 | Mean = 18 cm3 | Median: 73.8 GyE | Median: 44.4 months | 2y: 100% 3y: 93% 4y: 89% | 2y: 98% 3y, 4y: 95% | 2y, 3y, 4y: 100% |
21 | Kawashima et al., 2022 [31] Serious bias | 51 (25) | Surgery with postoperative GKRS (n = 30) Surgery + GKRS as salvage therapy (n = 21) | GTR in 1 (2) STR in 18 (35) PR in 24 (47) | Low grade, n = 31 High grade, n = 2 Dedifferentiated subtype of nonconventional SBC, n = 1 Unknown, n = 17 | Median: 8 cm3 | Median: 16 Gy | Median: 62 months | 3y: 87% 5y: 78% 10y: 67% | N.M | After GKRS: 3y, 5y: 96% 10y: 83% After disease diagnosis: 3y: 98% 5y, 15y: 90% |
22 | Pattankar et al., 2022 [32] Critical risk | 7 (1) | P.O adjuvant GKRS (n = 7) | STR in 6 (86) PR in 1 (14) | N.M | Mean: 4.16 cm3 | Mean: 18.29 Gy | Mean: 72 months Median: 60 months | 5y: 57.1% | 5y: 100% | N.M |
Author, Year | Intervention | Number of Recurrences | Time to Recurrence (Months). Given as Mean/Median (Range) | Salvage Treatment | Risk Factors |
---|---|---|---|---|---|
Tzortzidis et al., 2006 [11] | Surgery ± radiotherapy | 12 (52%) | Mean: 86 (2–255) | N.M | N.M |
Simon et al., 2018 [12] | Surgery only P.O. Proton RT | Surgery only: 8 (33.3%) P.O proton RT: 1 (4.0%) | Mean: 51 (9–142) | Surgery in eight patients. Secondary proton therapy in five patients. | N.M |
Hasegawa et al., 2021 [13] | Surgery only P.O. radiotherapy therapy (proton, GKRS) | Surgery only: 7 (39%) P.O. RT: 1 (7.0%) | Median: 38 (16–225) in surgery-only group Median: 33 in surgery + RT group | Surgery only: Radiotherapy alone in three patients. Surgery alone in three patients. Surgery + radiotherapy in one patient. P.O. radiotherapy: One patient treated with proton RT. | N.M |
Vaz-Guimareaes et al., 2017 [15] | Surgery only | 7 (20.0%) | 23.5 (14–58) | Three underwent surgery and P.O. proton therapy. Two underwent developed lung metastasis and underwent chemotherapy. Two were not reported. | N.M |
Hasegawa et al., 2018 [16] | Surgery only | 1 (5.3%) | 12 | Surgery | N.M |
Al-Shaibibi et al., 2023 [17] | Surgery only | 3 (30.0%) | Mean: 101 | One patient treated with salvage GK twice. One patient treated with proton therapy. No adjuvant therapy for third patient. | N.M |
Liu et al., 2023 [18] | Surgery only | 7 (26.9%) | N.M | One patient underwent surgery and radiotherapy. Two patients underwent—surgery alone. Three patients underwent radiotherapy alone. | OS: limited tumor excision, large tumor volume, and high pathological grading. |
Schulz-Ertner et al., 2007 [19] | P.O. carbon-ion therapy | 2 (3.7%) | Patient 1: 36 Patient 2: 48 | Patient 1: photon radiation therapy (45 Gy). Patient 2: partial resection and postoperative reirradiation with carbon-ion radiation therapy (60 CGE). | N.M |
Uhl et al., 2014 [20] | P.O. carbon-ion therapy | 10 (12.6%) | Median: 91 (3–175) | N.M | LC: older age, high GTV |
Mattke et al., 2018 [21] | Proton therapy Carbon-ion therapy | 5 (5.0%) | Median: 29.8 (8.1–47.3) | N.M | LC: older age |
Hug et al., 1999 [22] | P.O. proton therapy | 2 (8.0%) | Mean: 33 | N.M | LC: large tumor volume, brainstem involvement |
Rosenberg et al., 1999 [23] | P.O. proton therapy | 3 (1.5%) | Mean: 65.3 (2.1–222.2) | N.M | N.M |
Noel et al., 2001 [24] | P.O. proton and photon therapy | 2 (18.2%) | N.M | N.M | LC + OS: older age, high number of surgical resections prior, prolonged time to SRS |
Sahgal et al., 2014 [25] | P.O. IGMRT Photon therapy | 2 (11.0%) | Median: 15.6 (14.4–16.8) | N.M | LC: older age |
Feuvret et al., 2016 [26] | P.O. proton therapy | 6 (3.8%) | Median: 39.1 | N.M | LC/OS/PFS: high age, large GTV, primary disease status, uncontrolled tumor status |
Weber et al., 2016 [27] | P.O. proton therapy | 5 (7.0%) | Mean: 50 (4–176) | N.M | N.M |
Weber et al., 2016 [28] | P.O. proton therapy | 6 (7.8%) | Median: 28.4 (11.7–140.8) | N.M | LC: large tumor volume, brainstem and/or optic apparatus compression, older age |
Weber et al., 2018 [29] | Proton +/− photon radiotherapy | 15 (5.9%) | Median: 43.6 (5.2–140.8) | N.M | FFS: large tumor volume, optic pathway compression OS: large tumor volume, older age, increased number of surgeries, brainstem/optic apparatus compression |
Holtzman et al., 2019 [30] | P.O. proton therapy | 3 (6.9%) | Median: 44.4 | Surgery only in all patients. | N.M |
Kawashima et al., 2022 [31] | P.O. GKRS Surgery only with GKRS as salvage | Progression in 12 (23.5%), of which 7 (13.7%) recurrences | Median time between initial GKRS and additional treatment: 47 | Two patients —repeated GKRS. Three patients—surgery only (transcranial/endoscopic). Six patients—surgery + RT (incl GKRS). One patient—conservative management due to age. | LC: repeated recurrences, prescription doses ≥ 15 Gy and 14 Gy. Multivariate analysis showed higher prescription doses and no history of repeated recurrences were significant factors for better local control. |
Pattankar et al., 2022 [32] | P.O. adjuvant GKRS | 3 (42.9%) | Mean: 32.76 | Two patients—surgery alone. One patient—surgery+ conventional EBRT. | N.M |
Complication | No. of Patients (%) |
---|---|
Cranial nerve palsy | 68 (45.0%) |
Subcutaneous hydrops | 4 (2.6%) |
Dysphagia | 3 (1.9%) |
Facial numbness | 2 (1.3%) |
Cerebrospinal fluid leak | 23 (15.2%) |
Hearing loss | 15 (9.9%) |
Meningitis | 8 (5.3%) |
PE/DVT | 5 (3.3%) |
Cerebral ischemia | 4 (2.6%) |
Diabetes insipidus | 3 (1.9%) |
Cerebrovascular events | 2 (1.3%) |
ICA damage | 2 (1.3%) |
Hydrocephalus | 2 (1.3%) |
Miscellaneous | 10 (6.6%) |
Complication | Grade | No. of Patients (%) |
---|---|---|
Alopecia | 1–2 | 202 (16.8%) |
Middle ear effusion | 1–2 | 159 (13.2%) |
Asthenia | 1–2 | 159 (13.2%) |
Erythema | 1–2 | 159 (13.2%) |
Nausea/vomiting | 1–2 | 159 (13.2%) |
Fatigue | 1–2 | 43 (3.5%) |
Radiation dermatitis | 1–2 | 43 (3.5%) |
Mucositis | 1–3 | 46 (3.8%) |
Erythema | N.M | 36 (2.9%) |
Headaches | N.M | 36 (2.9%) |
Alopecia | N.M | 32 (2.7%) |
Loss of appetite | N.M | 25 (2.1%) |
Fatigue | N.M | 25 (2.1%) |
Nausea/vomiting | N.M | 25 (2.1%) |
Dysgeusia | N.M | 15 (1.2%) |
Xerostomia | N.M | 15 (1.2%) |
Mucositis | N.M | 15 (1.2%) |
External/middle ear otitis | N.M | 11 (0.9%) |
Acute parotitis | N.M | 1 (0.08%) |
Characteristic | Grade | No. of Patients (%) |
---|---|---|
Pituitary dysfunction | 1–2 | 97 (38.8%) |
Hearing loss | 3–4 | 29 (11.6%) |
Hearing loss | N.M | 21 (8.4%) |
Unspecified Grade 3+ | 3+ | 14 (5.6%) |
Brain necrosis | 3+ | 9 (3.6%) |
Temporal lobe necrosis/lesions | 1–2 | 9 (3.6%) |
Hearing loss | 1–2 | 5 (2.0%) |
Bone necrosis | 3 | 5 (2.0%) |
Hypopituarism | N.M | 5 (2.0%) |
Temporal lobe necrosis/lesions | N.M | 5 (2.0%) |
Dizziness | N.M | 4 (1.6%) |
Memory loss | 2 | 4 (1.6%) |
Visual field deficits | N.M | 4 (1.6%) |
Spinal cord necrosis | 3 | 3 (1.2%) |
CN palsy | 1–2 | 3 (1.2%) |
CN palsy | N.M | 3 (1.2%) |
Miscellaneous | 30 (12.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravindran, P.K.; Keizer, M.E.; Kunst, H.P.M.; Compter, I.; Van Aalst, J.; Eekers, D.B.P.; Temel, Y. Skull-Base Chondrosarcoma: A Systematic Review of the Role of Postoperative Radiotherapy. Cancers 2024, 16, 856. https://doi.org/10.3390/cancers16050856
Ravindran PK, Keizer ME, Kunst HPM, Compter I, Van Aalst J, Eekers DBP, Temel Y. Skull-Base Chondrosarcoma: A Systematic Review of the Role of Postoperative Radiotherapy. Cancers. 2024; 16(5):856. https://doi.org/10.3390/cancers16050856
Chicago/Turabian StyleRavindran, Pawan Kishore, Max E. Keizer, Henricus (Dirk) P. M. Kunst, Inge Compter, Jasper Van Aalst, Daniëlle B. P. Eekers, and Yasin Temel. 2024. "Skull-Base Chondrosarcoma: A Systematic Review of the Role of Postoperative Radiotherapy" Cancers 16, no. 5: 856. https://doi.org/10.3390/cancers16050856
APA StyleRavindran, P. K., Keizer, M. E., Kunst, H. P. M., Compter, I., Van Aalst, J., Eekers, D. B. P., & Temel, Y. (2024). Skull-Base Chondrosarcoma: A Systematic Review of the Role of Postoperative Radiotherapy. Cancers, 16(5), 856. https://doi.org/10.3390/cancers16050856