Monoclonal Antibodies for Targeted Fluorescence-Guided Surgery: A Review of Applicability across Multiple Solid Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Fluorescence-Guided Surgery (FGS): Non-Specific and Monoclonal Antibody (mAb)-Targeted
3. Monoclonal Antibodies (mAbs) Clinically Approved for the Treatment of Extra-Hematological Solid Malignancies under Evaluation in Clinical Trials for T-FGS Purposes
- mAbs targeting the epidermal growth factor receptor (EGFR)
- mAbs targeting the vascular endothelial growth factor (VEGF)
- mAbs targeting carbonic anhydrase IX (CAIX)
- mAbs targeting carcinoembryonic antigen (CEA)
4. Monoclonal Antibodies (mAbs) Clinically Approved for the Treatment of Extra-Hematological Solid Malignancies Not Yet under Evaluation in Clinical Trials for T-FGS Purposes
- mAbs targeting the epidermal growth factor receptor (EGFR)
- mAbs targeting the epidermal growth factor receptor 2 (HER2)
- mAbs targeting the vascular endothelial growth factor receptor 2 (VEGFR2)
- mAbs targeting platelet-derived growth factor receptor α (PDGFRα)
- mAbs targeting programmed death ligand-1 (PD-L1)
- mAbs targeting the disialoganglioside GD2
5. Promising Monoclonal Antibodies (mAbs) for T-FGS Purposes Not Yet Clinically Approved for the Treatment of Extra-Hematological Solid Tumors
- mAbs targeting the epidermal growth factor receptor (EGFR)
- mAbs targeting B7-H3 (CD276)
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef]
- Larson, S.M.; Carrasquillo, J.A.; Cheung, N.-K.V.; Press, O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer 2015, 15, 347–360. [Google Scholar] [CrossRef]
- Nagaya, T.; Nakamura, Y.A.; Choyke, P.L.; Kobayashi, H. Fluorescence-Guided Surgery. Front. Oncol. 2017, 7, 314. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Tsien, R.Y. Fluorescence-guided surgery with live molecular navigation—A new cutting edge. Nat. Rev. Cancer 2013, 13, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Paraboschi, I.; De Coppi, P.; Stoyanov, D.; Anderson, J.; Giuliani, S. Fluorescence imaging in pediatric surgery: State-of-the-art and future perspectives. J. Pediatr. Surg. 2021, 56, 655–662. [Google Scholar] [CrossRef]
- Privitera, L.; Paraboschi, I.; Dixit, D.; Arthurs, O.J.; Giuliani, S. Image-guided surgery and novel intraoperative devices for enhanced visualisation in general and paediatric surgery: A review. Innov. Surg. Sci. 2022, 6, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Tipirneni, K.E.; Warram, J.M.; Moore, L.S.; Prince, A.C.; de Boer, E.; Jani, A.H.; Wapnir, I.L.; Liao, J.C.; Bouvet, M.; Behnke, N.K.; et al. Oncologic Procedures Amenable to Fluorescence-guided Surgery. Ann. Surg. 2017, 266, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Vahrmeijer, A.L.; Hutteman, M.; van der Vorst, J.R.; van de Velde, C.J.H.; Frangioni, J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.; Jeong, H.-S. Precision surgery for cancer: A new surgical concept in individual tumor biology-based image-guided surgery. Precis. Future Med. 2019, 3, 116–123. [Google Scholar] [CrossRef]
- Wang, K.; Du, Y.; Zhang, Z.; He, K.; Cheng, Z.; Yin, L.; Dong, D.; Li, C.; Li, W.; Hu, Z.; et al. Fluorescence image-guided tumour surgery. Nat. Rev. Bioeng. 2023, 1, 161–179. [Google Scholar] [CrossRef]
- Preziosi, A.; Paraboschi, I.; Giuliani, S. Evaluating the Development Status of Fluorescence-Guided Surgery (FGS) in Pediatric Surgery Using the Idea, Development, Exploration, Assessment, and Long-Term Study (IDEAL) Framework. Children 2023, 10, 689. [Google Scholar] [CrossRef]
- Ishizawa, T.; McCulloch, P.; Stassen, L.; Van Den Bos, J.; Regimbeau, J.-M.; Dembinski, J.; Schneider-Koriath, S.; Boni, L.; Aoki, T.; Nishino, H.; et al. Assessing the development status of intraoperative fluorescence imaging for anatomy visualisation, using the IDEAL framework. BMJ Surg. Interv. Health Technol. 2022, 4, e000156. [Google Scholar] [CrossRef]
- Herbst, R.S.; Shin, D.M. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: A new paradigm for cancer therapy. Cancer 2002, 94, 1593–1611. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, E.; De Palma, R.; Orditura, M.; De Vita, F.; Ciardiello, F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin. Exp. Immunol. 2009, 158, 1–9. [Google Scholar] [CrossRef]
- Rosenthal, E.L.; Warram, J.M.; de Boer, E.; Chung, T.K.; Korb, M.L.; Brandwein-Gensler, M.; Strong, T.V.; Schmalbach, C.E.; Morlandt, A.B.; Agarwal, G.; et al. Safety and Tumor Specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer. Clin. Cancer Res. 2015, 21, 3658–3666. [Google Scholar] [CrossRef]
- Miller, S.E.; Tummers, W.S.; Teraphongphom, N.; van den Berg, N.S.; Hasan, A.; Ertsey, R.D.; Nagpal, S.; Recht, L.D.; Plowey, E.D.; Vogel, H.; et al. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800. J. Neurooncol. 2018, 139, 135–143. [Google Scholar] [CrossRef]
- Gao, R.W.; Teraphongphom, N.; de Boer, E.; van den Berg, N.S.; Divi, V.; Kaplan, M.J.; Oberhelman, N.J.; Hong, S.S.; Capes, E.; Colevas, A.D.; et al. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Theranostics 2018, 8, 2488–2495. [Google Scholar] [CrossRef]
- Zhou, Q.; van den Berg, N.S.; Rosenthal, E.L.; Iv, M.; Zhang, M.; Vega Leonel, J.C.M.; Walters, S.; Nishio, N.; Granucci, M.; Raymundo, R.; et al. EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial. Theranostics 2021, 11, 7130–7143. [Google Scholar] [CrossRef] [PubMed]
- Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 2007, 19, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.Y.; Wakelee, H.A. Monoclonal Antibodies Targeting Vascular Endothelial Growth Factor: Current Status and Future Challenges in Cancer Therapy. BioDrugs 2009, 23, 289–304. [Google Scholar] [CrossRef]
- Harlaar, N.J.; Koller, M.; de Jongh, S.J.; van Leeuwen, B.L.; Hemmer, P.H.; Kruijff, S.; van Ginkel, R.J.; Been, L.B.; de Jong, J.S.; Kats-Ugurlu, G.; et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: A single-centre feasibility study. Lancet Gastroenterol. Hepatol. 2016, 1, 283–290. [Google Scholar] [CrossRef]
- Lamberts, L.E.; Koch, M.; de Jong, J.S.; Adams, A.L.L.; Glatz, J.; Kranendonk, M.E.G.; Terwisscha van Scheltinga, A.G.T.; Jansen, L.; de Vries, J.; Lub-de Hooge, M.N.; et al. Tumor-Specific Uptake of Fluorescent Bevacizumab–IRDye800CW Microdosing in Patients with Primary Breast Cancer: A Phase I Feasibility Study. Clin. Cancer Res. 2017, 23, 2730–2741. [Google Scholar] [CrossRef] [PubMed]
- de Jongh, S.J.; Tjalma, J.J.J.; Koller, M.; Linssen, M.D.; Vonk, J.; Dobosz, M.; Jorritsma-Smit, A.; Kleibeuker, J.H.; Hospers, G.A.P.; Havenga, K.; et al. Back-Table Fluorescence-Guided Imaging for Circumferential Resection Margin Evaluation Using Bevacizumab-800CW in Patients with Locally Advanced Rectal Cancer. J. Nucl. Med. 2020, 61, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Tjalma, J.J.J.; Koller, M.; Linssen, M.D.; Hartmans, E.; de Jongh, S.; Jorritsma-Smit, A.; Karrenbeld, A.; de Vries, E.G.; Kleibeuker, J.H.; Pennings, J.P.; et al. Quantitative fluorescence endoscopy: An innovative endoscopy approach to evaluate neoadjuvant treatment response in locally advanced rectal cancer. Gut 2020, 69, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-T.; Seimbille, Y. New Developments in Carbonic Anhydrase IX-Targeted Fluorescence and Nuclear Imaging Agents. Int. J. Mol. Sci. 2022, 23, 6125. [Google Scholar] [CrossRef] [PubMed]
- Forker, L.; Gaunt, P.; Sioletic, S.; Shenjere, P.; Potter, R.; Roberts, D.; Irlam, J.; Valentine, H.; Hughes, D.; Hughes, A.; et al. The hypoxia marker CAIX is prognostic in the UK phase III VorteX-Biobank cohort: An important resource for translational research in soft tissue sarcoma. Br. J. Cancer 2018, 118, 698–704. [Google Scholar] [CrossRef]
- Lai, Y.; Zeng, T.; Liang, X.; Wu, W.; Zhong, F.; Wu, W. Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int. 2019, 19, 221. [Google Scholar] [CrossRef] [PubMed]
- Chamie, K.; Donin, N.M.; Klöpfer, P.; Bevan, P.; Fall, B.; Wilhelm, O.; Störkel, S.; Said, J.; Gambla, M.; Hawkins, R.E.; et al. Adjuvant Weekly Girentuximab Following Nephrectomy for High-Risk Renal Cell Carcinoma: The ARISER Randomized Clinical Trial. JAMA Oncol. 2017, 3, 913. [Google Scholar] [CrossRef]
- Merkx, R.I.J.; Lobeek, D.; Konijnenberg, M.; Jiménez-Franco, L.D.; Kluge, A.; Oosterwijk, E.; Mulders, P.F.A.; Rijpkema, M. Phase I study to assess safety, biodistribution and radiation dosimetry for 89Zr-girentuximab in patients with renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3277–3285. [Google Scholar] [CrossRef]
- Hekman, M.C.; Rijpkema, M.; Muselaers, C.H.; Oosterwijk, E.; Hulsbergen-Van de Kaa, C.A.; Boerman, O.C.; Oyen, W.J.; Langenhuijsen, J.F.; Mulders, P.F. Tumor-targeted Dual-modality Imaging to Improve Intraoperative Visualization of Clear Cell Renal Cell Carcinoma: A First in Man Study. Theranostics 2018, 8, 2161–2170. [Google Scholar] [CrossRef]
- De Gooyer, J.M.; Elekonawo, F.M.K.; Bremers, A.J.A.; Boerman, O.C.; Aarntzen, E.H.J.G.; De Reuver, P.R.; Nagtegaal, I.D.; Rijpkema, M.; De Wilt, J.H.W. Multimodal CEA-targeted fluorescence and radioguided cytoreductive surgery for peritoneal metastases of colorectal origin. Nat. Commun. 2022, 13, 2621. [Google Scholar] [CrossRef]
- Tai, W.; Mahato, R.; Cheng, K. The role of HER2 in cancer therapy and targeted drug delivery. J. Control. Release 2010, 146, 264–275. [Google Scholar] [CrossRef]
- Antoniou, G.; Lee, A.T.J.; Huang, P.H.; Jones, R.L. Olaratumab in soft tissue sarcoma—Current status and future perspectives. Eur. J. Cancer 2018, 92, 33–39. [Google Scholar] [CrossRef]
- Pender, A.; Jones, R.L. Olaratumab for the treatment of soft-tissue sarcoma. Future Oncol. 2017, 13, 2151–2157. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, M.; Nie, H.; Yuan, Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum. Vaccines Immunother. 2019, 15, 1111–1122. [Google Scholar] [CrossRef]
- Patel, S.P.; Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther. 2015, 14, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Sait, S.; Modak, S. Anti-GD2 immunotherapy for neuroblastoma. Expert. Rev. Anticancer Ther. 2017, 17, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Nazha, B.; Inal, C.; Owonikoko, T.K. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front. Oncol. 2020, 10, 1000. [Google Scholar] [CrossRef]
- Fisher, J.P.H.; Flutter, B.; Wesemann, F.; Frosch, J.; Rossig, C.; Gustafsson, K.; Anderson, J. Effective combination treatment of GD2-expressing neuroblastoma and Ewing’s sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells. OncoImmunology 2016, 5, e1025194. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Y.; Yang, X.; Tian, J. Neuroblastoma-targeting triangular gadolinium oxide nanoplates for precise excision of cancer. Acta Biomater. 2019, 87, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Wellens, L.M.; Deken, M.M.; Sier, C.F.M.; Johnson, H.R.; de la Jara Ortiz, F.; Bhairosingh, S.S.; Houvast, R.D.; Kholosy, W.M.; Baart, V.M.; Pieters, A.M.M.J.; et al. Anti-GD2-IRDye800CW as a targeted probe for fluorescence-guided surgery in neuroblastoma. Sci. Rep. 2020, 10, 17667. [Google Scholar] [CrossRef]
- Crombet Ramos, T.; Mestre Fernández, B.; Mazorra Herrera, Z.; Iznaga Escobar, N.E. Nimotuzumab for Patients with Inoperable Cancer of the Head and Neck. Front. Oncol. 2020, 10, 817. [Google Scholar] [CrossRef]
- Ramakrishnan, M.S.; Eswaraiah, A.; Crombet, T.; Piedra, P.; Saurez, G.; Iyer, H.; Arvind, A.S. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. mAbs 2009, 1, 41–48. [Google Scholar] [CrossRef]
- Daiichi Sankyo Press Release. April 25, 2014 Daiichi Sankyo Announces Discontinuation of Phase 3 Clinical Trial in Japan of Nimotuzumab (DE-766) in Lung Cancer. Available online: https://www.daiichisankyo.com/files/news/pressrelease/pdf/006115/20140425_511_E2.pdf (accessed on 25 April 2014).
- Getu, A.A.; Tigabu, A.; Zhou, M.; Lu, J.; Fodstad, Ø.; Tan, M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol. Cancer 2023, 22, 43. [Google Scholar] [CrossRef]
- Zhao, B.; Li, H.; Xia, Y.; Wang, Y.; Wang, Y.; Shi, Y.; Xing, H.; Qu, T.; Wang, Y.; Ma, W. Immune checkpoint of B7-H3 in cancer: From immunology to clinical immunotherapy. J. Hematol. Oncol. 2022, 15, 153. [Google Scholar] [CrossRef]
- Seaman, S.; Stevens, J.; Yang, M.Y.; Logsdon, D.; Graff-Cherry, C.; St Croix, B. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 2007, 11, 539–554. [Google Scholar] [CrossRef]
- Privitera, L.; Waterhouse, D.J.; Preziosi, A.; Paraboschi, I.; Ogunlade, O.; Da Pieve, C.; Barisa, M.; Ogunbiyi, O.; Weitsman, G.; Hutchinson, J.C.; et al. Short-wave infrared imaging enables high-contrast fluorescence-guided surgery in neuroblastoma. Cancer Res. 2023, 83, 2077–2089. [Google Scholar] [CrossRef] [PubMed]
- Carr, J.A.; Franke, D.; Caram, J.R.; Perkinson, C.F.; Saif, M.; Askoxylakis, V.; Datta, M.; Fukumura, D.; Jain, R.K.; Bawendi, M.G.; et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. USA 2018, 115, 4465–4470. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C.; et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2019, 4, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Mączyńska, J.; Da Pieve, C.; Burley, T.A.; Raes, F.; Shah, A.; Saczko, J.; Harrington, K.J.; Kramer-Marek, G. Immunomodulatory activity of IR700-labelled affibody targeting HER2. Cell Death Dis. 2020, 11, 886. [Google Scholar] [CrossRef] [PubMed]
Antigen | Drug Generic Name | Drug Brand Name | Format | Clinical Indication |
---|---|---|---|---|
EGFR | Cetuximab | Erbitux | Chimeric IgG1 | Squamous-Cell Carcinoma of the Head and Neck, Colorectal Cancer |
Panitumumab | Vectibix | Human IgG2 | Colorectal Cancer | |
Necitumumab | Portrazza | Human IgG1 | Squamous Non-Small-Cell Lung Cancer | |
HER2 | Trastuzumab | Herceptin | Humanized IgG1 | Breast Cancer |
Pertuzumab | Perjeta | Humanized IgG1 | Breast Cancer | |
VEGF | Bevacizumab | Avastin | Humanized IgG1 | Colorectal Cancer, Non-Squamous Non-Small Cell Lung Cancer, Glioblastoma, Renal-Cell Carcinoma, Cervical Cancer, Epithelial Ovarian, Fallopian Tube, Primary Peritoneal Cancer, Hepatocellular Carcinoma |
VEGFR2 | Ramucirumab | Cyramza | Human IgG1 | Gastric Or Gastro-Esophageal Junction Adenocarcinoma, Non-Small-Cell Lung Cancer, Colorectal Cancer, Hepatocellular Carcinoma |
PD-L1 | Atezolizumab | Tecentriq | Humanized IgG1 | Non-Small-Cell Lung Cancer, Small-Cell Lung Cancer, Hepatocellular Carcinoma, Melanoma, Alveolar Soft Part Sarcoma |
Avelumab | Bavencio | Human IgG1 | Merkel Cell Carcinoma | |
Durvalumab | Imfinzi | Human IgG1 | Non-Small-Cell Lung Cancer, Small-Cell Lung Cancer, Biliary Tract Cancer, Hepatocellular Carcinoma | |
GD2 | Dinutiximab | Unituxin | Chimeric IgG1 | Neuroblastoma |
Dinutiximab-beta | Quarziba | Chimeric IgG1 | Neuroblastoma | |
PDGFRα | Olaratumab | Lartruvo | Human IgG1 | Soft-Tissue Sarcoma |
Drug | Tumor Type | Phase | Recruitment Status | Estimated Patient Enrollment | Dose | Timing | ClinicalTrials.gov Identifier |
---|---|---|---|---|---|---|---|
Cetuximab-IRDye800CW | Esophageal Cancer | Phase I | nd | 40 | 1% of therapeutic dose (2.5 mg/m2); 10% of therapeutic dose (25 mg/m2); 25% of therapeutic dose (62.5 mg/m2) (iv) | 2 days before surgery | NCT04161560 |
Head and Neck Cancer | Phase I; Phase II | Recruiting | 79 | 10 mg; 25 mg; 50 mg; 75mg unlabeled test/loading dose cetuximab + 15 mg Cetuximab-IRDye800CW; 75 mg unlabeled test/loading dose cetuximab + 25 mg Cetuximab-IRDye800CW (iv) | 4 days before surgery | NCT03134846 | |
Head and Neck Cancer | Phase I | Terminated | 12 | 10 mg; 100 mg unlabeled test/loading dose of cetuximab + 50 mg dose of cetuximab-IRDye800 (iv) | Prior to surgery | NCT01987375 | |
Pancreatic Adenocarcinoma | Phase II | Terminated | 10 | 100 mg unlabeled test/loading dose of cetuximab + 50 mg; 100 mg unlabeled test/loading dose of cetuximab + 100 mg (iv) | 2–5 days before surgery | NCT02736578 | |
Brain Neoplasm | Phase I; Phase II | Terminated | 10 | unlabeled test/loading dose of cetuximab + 50 mg; unlabeled test/loading dose of cetuximab + 100 mg (iv) | 2–5 days before surgery | NCT02855086 | |
Rectal Cancer | Phase I | nd | 15 | 75 mg unlabeled test/loading dose of cetuximab + 15 mg (iv) | Prior to surgery | NCT04638036 | |
Penile Cancer | Phase I | Recruiting | 15 | 15 mg unlabeled test/loading dose of cetuximab + 15 mg (iv) | 2 days before surgery | NCT05376202 | |
Head and Neck Cancer | Phase II | Not yet recruiting | 20 | 75 mg unlabeled test/loading dose of cetuximab + 15 mg (iv) | Prior to surgery | NCT05499065 | |
Panitumumab-IRDye800CW | Head and Neck Cancer | Phase II | Recruiting | 25 | 50 mg (iv) | nd | NCT04511078 |
Head and Neck Cancer | Phase II | Completed | 20 | 50 mg (iv) | 1–5 days before surgery | NCT03405142 | |
Head and Neck Cancer | Phase I | Completed | 43 | nd (iv) | Prior to surgery | NCT02415881 | |
Head and Neck Cancer | Phase I | Completed | 14 | 30 mg (iv) | 2-5 days before surgery | NCT03733210 | |
Lung Cancer | Phase I; Phase II | Active, not recruiting | 30 | nd (iv) | 1–2 days or 3–5 days prior to surgery | NCT03582124 | |
Brain Tumor | Phase I; Phase II | Not yet recruiting | 12 | 0.006 mg/kg; 0.25 mg/kg; 0.5 mg/kg; 1.0 (with max cap dose 50 mg) | 1–5 days before surgery | NCT04085887 | |
Brain Tumor | Phase I; Phase II | Recruiting | 22 | 50 mg; 100 mg unlabeled test/loading dose of panitumumab + 50 mg; 100 mg; 100 mg unlabeled test/loading dose of panitumumab + 100 mg (iv) | 1–5 days before surgery | NCT03510208 | |
Pancreatic Adenocarcinoma | Phase I; Phase II | Active, not recruiting | 24 | 100 mg unlabeled test/loading dose of panitumumab + 25 mg; 100 mg unlabeled test/loading dose of panitumumab + 50 mg; 100 mg unlabeled test/loading dose of panitumumab + 75 mg; 50 mg (iv) | 2–5 days before surgery | NCT03384238 | |
Bevacizumab-IRDye800CW | Adenomatous Polyposis Coli | Phase I | Completed | 15 | 4.5 mg; 10 mg; 25 mg (iv) | 3 days before endoscopy | NCT02113202 |
Rectal Cancer | Phase I | Completed | 30 | 4.5 mg (iv) | 2–3 days before endoscopy | NCT01972373 | |
Breast Cancer | Phase I | Completed | 30 | 4.5 mg (iv) | 4 h, 2 days before imaging and 3 days before surgery | NCT01508572 | |
Breast Cancer | Phase I; Phase II | Completed | 26 | 4.5 mg; 10 mg; 25 mg; 50 mg (iv) | 3 days before surgery | NCT02583568 | |
Soft-Tissue Sarcoma | Phase I; Phase II | Completed | 23 | 10 mg; 25 mg; 50 mg (iv) | Prior to surgery | NCT03913806 | |
Esophageal Cancer | Phase I | Completed | 10 | 4.5 mg (iv) | 2 days before endoscopy | NCT02129933 | |
Esophageal Cancer | Phase I | Terminated | 25 | 4.5 mg; 10 mg; 25 mg (iv) | Prior to endoscopy | NCT03558724 | |
Hilar Cholangiocarcinoma | Phase I; Phase II | Recruiting | 12 | 10 mg; 25 mg; 50 mg (iv) | 3 days before surgery | NCT03620292 | |
Barrett Esophagus | Phase II | nd | 60 | nd (topical) | 5 min before endoscopy | NCT03877601 | |
Inverted Papilloma | Phase I | Active, not recruiting | 6 | 10 mg; 25 mg (iv) | 2–4 days before surgery | NCT03925285 | |
Pancreatic Cancer | Phase I; Phase II | Terminated | 26 | 4.5 mg; 10 mg; 25 mg; 50 mg (iv) | 3 days before surgery | NCT02743975 | |
Pituitary Tumor | Phase I | Recruiting | 15 | 4.5 mg; 10 mg; 25 mg (iv) | Prior to endoscopy | NCT04212793 | |
Girentuximab-IRDye800CW | Renal Tumor | Phase I | Recruiting | 22 | nd (iv) | 7 days before surgery | NCT03558724 |
Labetuzumab-IRDye800CW | Colorectal Cancer | Phase I; Phase II | Recruiting | 29 | nd (iv) | 6–7 days before surgery | NCT03699332 |
Nimotuzumab-IRDye800CW | Lung Cancer | Phase I; Phase II | Recruiting | 36 | 50 mg; 100 mg (iv) | 4–6 days before surgery | NCT04459065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliani, S.; Paraboschi, I.; McNair, A.; Smith, M.; Rankin, K.S.; Elson, D.S.; Paleri, V.; Leff, D.; Stasiuk, G.; Anderson, J., on behalf of the Precision Surgery Group at the NIHR Oncology Translational Research Collaboration. Monoclonal Antibodies for Targeted Fluorescence-Guided Surgery: A Review of Applicability across Multiple Solid Tumors. Cancers 2024, 16, 1045. https://doi.org/10.3390/cancers16051045
Giuliani S, Paraboschi I, McNair A, Smith M, Rankin KS, Elson DS, Paleri V, Leff D, Stasiuk G, Anderson J on behalf of the Precision Surgery Group at the NIHR Oncology Translational Research Collaboration. Monoclonal Antibodies for Targeted Fluorescence-Guided Surgery: A Review of Applicability across Multiple Solid Tumors. Cancers. 2024; 16(5):1045. https://doi.org/10.3390/cancers16051045
Chicago/Turabian StyleGiuliani, Stefano, Irene Paraboschi, Angus McNair, Myles Smith, Kenneth S. Rankin, Daniel S. Elson, Vinidh Paleri, Daniel Leff, Graeme Stasiuk, and John Anderson on behalf of the Precision Surgery Group at the NIHR Oncology Translational Research Collaboration. 2024. "Monoclonal Antibodies for Targeted Fluorescence-Guided Surgery: A Review of Applicability across Multiple Solid Tumors" Cancers 16, no. 5: 1045. https://doi.org/10.3390/cancers16051045