Recent Advances in Neuroblastoma Research
Acknowledgments
Conflicts of Interest
References
- Johnsen, J.I.; Dyberg, C.; Wickström, M. Neuroblastoma—A Neural Crest Derived Embryonal Malignancy. Front. Mol. Neurosci. 2019, 12, 9. [Google Scholar] [CrossRef]
- Jansky, S.; Sharma, A.K.; Körber, V.; Quintero, A.; Toprak, U.H.; Wecht, E.M.; Gartlgruber, M.; Greco, A.; Chomsky, E.; Grünewald, T.G.P.; et al. Single-Cell Transcriptomic Analyses Provide Insights into the Developmental Origins of Neuroblastoma. Nat. Genet. 2021, 53, 683–693. [Google Scholar] [CrossRef]
- Kameneva, P.; Artemov, A.V.; Kastriti, M.E.; Faure, L.; Olsen, T.K.; Otte, J.; Erickson, A.; Semsch, B.; Andersson, E.R.; Ratz, M.; et al. Single-Cell Transcriptomics of Human Embryos Identifies Multiple Sympathoblast Lineages with Potential Implications for Neuroblastoma Origin. Nat. Genet. 2021, 53, 694–706. [Google Scholar] [CrossRef]
- Van Groningen, T.; Koster, J.; Valentijn, L.J.; Zwijnenburg, D.A.; Akogul, N.; Hasselt, N.E.; Broekmans, M.; Haneveld, F.; Nowakowska, N.E.; Bras, J.; et al. Neuroblastoma Is Composed of Two Super-Enhancer-Associated Differentiation States. Nat. Genet. 2017, 49, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Gartlgruber, M.; Sharma, A.K.; Quintero, A.; Dreidax, D.; Jansky, S.; Park, Y.G.; Kreth, S.; Meder, J.; Doncevic, D.; Saary, P.; et al. Super Enhancers Define Regulatory Subtypes and Cell Identity in Neuroblastoma. Nat. Cancer 2021, 2, 114–128. [Google Scholar] [CrossRef] [PubMed]
- PDQ Pediatric Treatment Editorial Board Neuroblastoma Treatment (PDQ ): Health Professional Version. In PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda, MD, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK65747/ (accessed on 22 December 2023).
- Bartolucci, D.; Montemurro, L.; Raieli, S.; Lampis, S.; Pession, A.; Hrelia, P.; Tonelli, R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers 2022, 14, 4421. [Google Scholar] [CrossRef]
- Sriha, J.; Louis-Brennetot, C.; Pierre-Eugène, C.; Baulande, S.; Raynal, V.; Kramdi, A.; Adameyko, I.; Ernsberger, U.; Deller, T.; Delattre, O.; et al. BET and CDK Inhibition Reveal Differences in the Proliferation Control of Sympathetic Ganglion Neuroblasts and Adrenal Chromaffin Cells. Cancers 2022, 14, 2755. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, D.; Cherkasova, V.; Gerasymchuk, M.; Narendran, A.; Kovalchuk, I.; Kovalchuk, O. Cannabinol Inhibits Cellular Proliferation, Invasion, and Angiogenesis of Neuroblastoma via Novel miR-34a/tRiMetF31/PFKFB3 Axis. Cancers 2022, 14, 1908. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Alam, W.; Aschner, M.; Filosa, R.; Cheang, W.S.; Jeandet, P.; Saso, L.; Khan, H. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers 2023, 15, 2515. [Google Scholar] [CrossRef]
- Creanga-Murariu, I.; Filipiuc, L.E.; Cuciureanu, M.; Tamba, B.-I.; Alexa-Stratulat, T. Should Oncologists Trust Cannabinoids? Front. Pharmacol. 2023, 14, 1211506. [Google Scholar] [CrossRef]
- Yalcin, A.; Telang, S.; Clem, B.; Chesney, J. Regulation of Glucose Metabolism by 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatases in Cancer. Exp. Mol. Pathol. 2009, 86, 174–179. [Google Scholar] [CrossRef]
- Trojan, S.E.; Markiewicz, M.J.; Leśkiewicz, K.; Kocemba-Pilarczyk, K.A. The Influence of PFK-II Overexpression on Neuroblastoma Patients’ Survival May Be Dependent on the Particular Isoenzyme Expressed, PFKFB3 or PFKFB4. Cancer Cell Int. 2019, 19, 292. [Google Scholar] [CrossRef] [PubMed]
- Tadeo, I.; Bueno, G.; Berbegall, A.P.; Fernández-Carrobles, M.M.; Castel, V.; García-Rojo, M.; Navarro, S.; Noguera, R. Vascular Patterns Provide Therapeutic Targets in Aggressive Neuroblastic Tumors. Oncotarget 2016, 7, 19935–19947. [Google Scholar] [CrossRef]
- Privitera, L.; Musleh, L.; Paraboschi, I.; Ogunlade, O.; Ogunbiyi, O.; Hutchinson, J.C.; Sebire, N.; Beard, P.; Giuliani, S. Dynamic Changes in Microvascular Density Can Predict Viable and Non-Viable Areas in High-Risk Neuroblastoma. Cancers 2023, 15, 917. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, E.; Kitlińska, J. Preclinical Models of Neuroblastoma—Current Status and Perspectives. Cancers 2023, 15, 3314. [Google Scholar] [CrossRef] [PubMed]
- Aaltonen, K.; Radke, K.; Adamska, A.; Seger, A.; Mañas, A.; Bexell, D. Patient-Derived Models: Advanced Tools for Precision Medicine in Neuroblastoma. Front. Oncol. 2023, 12, 1085270. [Google Scholar] [CrossRef] [PubMed]
- Rokita, J.L.; Rathi, K.S.; Cardenas, M.F.; Upton, K.A.; Jayaseelan, J.; Cross, K.L.; Pfeil, J.; Egolf, L.E.; Way, G.P.; Farrel, A.; et al. Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Rep. 2019, 29, 1675–1689.e9. [Google Scholar] [CrossRef]
- Hagemann, S.; Misiak, D.; Bell, J.L.; Fuchs, T.; Lederer, M.I.; Bley, N.; Hämmerle, M.; Ghazy, E.; Sippl, W.; Schulte, J.H.; et al. IGF2BP1 Induces Neuroblastoma via a Druggable Feedforward Loop with MYCN Promoting 17q Oncogene Expression. Mol. Cancer 2023, 22, 88. [Google Scholar] [CrossRef]
- Verhoeven, B.M.; Mei, S.; Olsen, T.K.; Gustafsson, K.; Valind, A.; Lindström, A.; Gisselsson, D.; Fard, S.S.; Hagerling, C.; Kharchenko, P.V.; et al. The Immune Cell Atlas of Human Neuroblastoma. Cell Rep. Med. 2022, 3, 100657. [Google Scholar] [CrossRef]
- Del Bufalo, F.; De Angelis, B.; Caruana, I.; Del Baldo, G.; De Ioris, M.A.; Serra, A.; Mastronuzzi, A.; Cefalo, M.G.; Pagliara, D.; Amicucci, M.; et al. GD2-CART01 for Relapsed or Refractory High-Risk Neuroblastoma. N. Engl. J. Med. 2023, 388, 1284–1295. [Google Scholar] [CrossRef]
- Rossig, C.; Pearson, A.D.; Vassal, G.; Scobie, N.; Bird, N.; Blanc, P.; Vormoor, H.J.; Calkoen, F.G.; Locatelli, F.; Bufalo, F.D.; et al. Chimeric Antigen Receptor (CAR) T-Cell Products for Pediatric Cancers: Why Alternative Development Paths Are Needed. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 42, JCO2301314. [Google Scholar] [CrossRef] [PubMed]
- Bergaggio, E.; Tai, W.-T.; Aroldi, A.; Mecca, C.; Landoni, E.; Nüesch, M.; Mota, I.; Metovic, J.; Molinaro, L.; Ma, L.; et al. ALK Inhibitors Increase ALK Expression and Sensitize Neuroblastoma Cells to ALK.CAR-T Cells. Cancer Cell 2023, 41, 2100–2116.e10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnsen, J.I.; Kogner, P. Recent Advances in Neuroblastoma Research. Cancers 2024, 16, 812. https://doi.org/10.3390/cancers16040812
Johnsen JI, Kogner P. Recent Advances in Neuroblastoma Research. Cancers. 2024; 16(4):812. https://doi.org/10.3390/cancers16040812
Chicago/Turabian StyleJohnsen, John Inge, and Per Kogner. 2024. "Recent Advances in Neuroblastoma Research" Cancers 16, no. 4: 812. https://doi.org/10.3390/cancers16040812
APA StyleJohnsen, J. I., & Kogner, P. (2024). Recent Advances in Neuroblastoma Research. Cancers, 16(4), 812. https://doi.org/10.3390/cancers16040812