Recent Therapeutic Advances in Gynecologic Oncology: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immune Checkpoint Inhibitors
3. Antibody–Drug Conjugates
4. Cervical Cancer
4.1. Immunotherapeutic Advances in Cervical Cancer
4.1.1. Pembrolizumab
4.1.2. Biomarkers in Cervical Cancer
4.1.3. Pembrolizumab Approval in Cervical Cancer
4.2. Antibody–Drug Conjugate Advances in Cervical Cancer
4.2.1. Tisotumab Vedotin
4.2.2. Trastuzumab Deruxtecan
5. Endometrial Cancer
5.1. Immunotherapy Advances in Endometrial Cancer
5.1.1. Biomarkers in Endometrial Cancer
5.1.2. Pembrolizumab Approval in Endometrial Cancer
5.1.3. Dostarlimab Approval in Endometrial Cancer
5.1.4. Durvalumab
5.1.5. Atezolizumab
5.2. Monoclonal Antibodies and Antibody–Drug Conjugate Advances in Endometrial Cancer
5.2.1. Trastuzumab
5.2.2. Trastuzumab Deruxtecan
6. Ovarian Cancer
6.1. Immunotherapy in Ovarian Cancer
6.1.1. Biomarkers in Ovarian Cancer
6.1.2. Immunotherapy Trials in Ovarian Cancer
6.2. Antibody–Drug Conjugate Advances in Ovarian Cancer
6.2.1. Mirvetuximab Soravtansine
6.2.2. Trastuzumab Deruxtecan
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Gynecologic Cancer Incidence, United States—2012–2016. Available online: https://www.cdc.gov/cancer/uscs/about/data-briefs/no11-gynecologic-cancer-incidence-UnitedStates-2012-2016.htm (accessed on 9 November 2023).
- American Cancer Society. Global Cancer Facts and Figures, 4th Edition. 2018. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/global-cancer-facts-and-figures/global-cancer-facts-and-figures-4th-edition.pdf (accessed on 9 November 2023).
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 1, 17–48. [Google Scholar] [CrossRef]
- Lang, S.; Liao, C.-I.; Somasegar, S.; Johnson, C.; Darcy, K.; Tian, C.; Kapp, D.; Chan, J.K. EP169/#289 Trends in uterine cancer mortality in United States: A 50-year population-based analysis. Int. J. Gynecol. Cancer 2022, 32, A116. [Google Scholar]
- Stewart, S.L.; Lakhani, N.; Brown, P.M.; Larkin, O.A.; Moore, A.R.; Hayes, N.S. Gynecologic Cancer Prevention and Control in the National Comprehensive Cancer Control Program: Progress, Current Activities, and Future Directions. J. Women’s Health 2013, 22, 651–657. [Google Scholar] [CrossRef]
- McGuire, W.P.; Hoskins, W.J.; Brady, M.F.; Kucera, P.R.; Partridge, E.E.; Look, K.Y.; Clarke-Pearson, D.L.; Davidson, M. Cyclophosphamide and Cisplatin Compared with Paclitaxel and Cisplatin in Patients with Stage III and Stage IV Ovarian Cancer. N. Engl. J. Med. 1996, 334, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, X.; Teng, F.; Kong, L. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 2016, ume 9, 5023–5039. [Google Scholar] [CrossRef]
- Cha, J.-H.; Chan, L.-C.; Li, C.-W.; Hsu, J.L.; Hung, M.-C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 26, 2443–2454. [Google Scholar] [CrossRef]
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of Monoclonal Antibodies. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 576–588. [Google Scholar] [CrossRef]
- Delgado, M.; Garcia-Sanz, J.A. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells 2023, 12, 2837. [Google Scholar] [CrossRef]
- Castelli, M.S.; McGonigle, P.; Hornby, P.J. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol. Res. Perspect. 2019, 7, e00535. [Google Scholar] [CrossRef]
- Shastry, M.; Gupta, A.; Chandarlapaty, S.; Young, M.; Powles, T.; Hamilton, E. Rise of Antibody-Drug Conjugates: The Present and Future. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390094. [Google Scholar] [CrossRef]
- Karpel, H.C.; Powell, S.S.; Pothuri, B. Antibody-Drug Conjugates in Gynecologic Cancer. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390772. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Huang, C.-S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Kwok, G.; Yau, T.C.C.; Chiu, J.W.; Tse, E.; Kwong, Y.-L. Pembrolizumab (Keytruda). Hum. Vaccines Immunother. 2016, 12, 2777–2789. [Google Scholar] [CrossRef] [PubMed]
- Kooshkaki, O.; Derakhshani, A.; Safarpour, H.; Najafi, S.; Vahedi, P.; Brunetti, O.; Torabi, M.; Lotfinejad, P.; Paradiso, A.V.; Racanelli, V.; et al. The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers. Int. J. Mol. Sci. 2020, 14, 5034. [Google Scholar] [CrossRef] [PubMed]
- Merck & Co. Keytruda (Pembrolizumab). Available online: https://www.keytruda.com/ (accessed on 9 November 2023).
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Chung, H.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; E Michael, H.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.N.; Herzog, T.J.; Lewin, S.; Giuntoli, R.L.; Armstrong, D.K.; Rocconi, R.P.; Spannuth, W.A.; Gold, M.A. A comparison of cisplatin/paclitaxel and carboplatin/paclitaxel in stage IVB, recurrent or persistent cervical cancer. Gynecol. Oncol. 2007, 105, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, D.; Xiang, Y.; Hasegawa, K.; Scambia, G.; Galves, M.L.; Elias, P.R.; Acevedo, A.; Vizkeleti, J.; Gomes, A.; Mejia, F.C.; et al. LBA38 Pembrolizumab plus chemoradiotherapy for high-risk locally advanced cervical cancer: A randomized, double-blind, phase III ENGOT-cx11/GOG-3047/KEYNOTE-A18 study. Ann. Oncol. 2023, 34, S1279–S1280. [Google Scholar] [CrossRef]
- Makker, V.; Colombo, N.; Herráez, A.C.; Santin, A.D.; Colomba, E.; Miller, D.S.; Fujiwara, K.; Pignata, S.; Baron-Hay, S.; Ray-Coquard, I.; et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N. Engl. J. Med. 2022, 386, 437–448. [Google Scholar] [CrossRef]
- Eskander, R.N.; Sill, M.W.; Beffa, L.; Moore, R.G.; Hope, J.M.; Musa, F.B.; Mannel, R.; Shahin, M.S.; Cantuaria, G.H.; Girda, E.; et al. Pembrolizumab plus Chemotherapy in Advanced Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2159–2170. [Google Scholar] [CrossRef]
- Zsiros, E.; Lynam, S.; Attwood, K.M.; Wang, C.; Chilakapati, S.; Gomez, E.C.; Liu, S.; Akers, S.; Lele, S.; Frederick, P.J.; et al. Efficacy and Safety of Pembrolizumab in Combination With Bevacizumab and Oral Metronomic Cyclophosphamide in the Treatment of Recurrent Ovarian Cancer: A Phase 2 Nonrandomized Clinical Trial. JAMA Oncol. 2021, 7, 78–85. [Google Scholar] [CrossRef]
- Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; Christensen, R.D.; Novák, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef]
- Westin, S.N.; Moore, K.; Chon, H.S.; Lee, J.-Y.; Pepin, J.T.; Sundborg, M.; Shai, A.; de la Garza, J.; Nishio, S.; Gold, M.A.; et al. Durvalumab Plus Carboplatin/Paclitaxel Followed by Maintenance Durvalumab with or without Olaparib as First-Line Treatment for Advanced Endometrial Cancer: The Phase III DUO-E Trial. J. Clin. Oncol. 2024, 42, 283–299. [Google Scholar] [CrossRef]
- A Phase I/II Study of MEDI4736 in Combination with Olaparib in Patients with Advanced Solid Tumors. (MEDIOLA). ClinicalTrials.gov Identifier: NCT02734004. Last Updated: 13 October 2023. Available online: https://clinicaltrials.gov/study/NCT02734004 (accessed on 8 January 2024).
- Drew, Y.; Kim, J.W.; Penson, R.T.; O’Malley, D.M.; Parkinson, C.; Roxburgh, P.; Plummer, R.; Im, S.A.; Imbimbo, M.; Ferguson, M.; et al. Olaparib plus Durvalumab, with or without Bevacizumab, as Treatment in PARP Inhibitor-Naïve Platinum-Sensitive Relapsed Ovarian Cancer: A Phase II Multi-Cohort Study. Clin. Cancer Res. 2024, 30, 50–62. [Google Scholar] [CrossRef]
- Colombo, N.; Harano, K.; Hudson, E.; Galli, F.; Antill, Y.; Choi, C.H.; Rabaglio, M.; Marmé, F.; Petru, E.; Lai, C.; et al. Phase III double-blind randomized placebo controlled trial of atezolizumab in combination with carboplatin and paclitaxel in women with advanced/recurrent endometrial carcinoma. Ann. Oncol. 2023, 34, S1254–S1335. [Google Scholar] [CrossRef]
- Moore, K.N.; Bookman, M.; Sehouli, J.; Miller, A.; Anderson, C.; Scambia, G.; Myers, T.; Taskiran, C.; Robison, K.; Mäenpää, J.; et al. Atezolizumab, Bevacizumab, and Chemotherapy for Newly Diagnosed Stage III or IV Ovarian Cancer: Placebo-Controlled Randomized Phase III Trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. 2021, 39, 1842–1855. [Google Scholar] [CrossRef]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.-S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. Survival with Cemiplimab in Recurrent Cervical Cancer. N. Engl. J. Med. 2022, 386, 544–555. [Google Scholar] [CrossRef]
- Testing Nivolumab with or without Ipilimumab in Deficient Mismatch Repair System (dMMR) Recurrent Endometrial Carcinoma. ClinicalTrials.gov Identifier: NCT05112601. Last Updated: 15 December 2023. Available online: https://clinicaltrials.gov/study/NCT05112601?cond=endometrial%20Cancer&intr=Ipilimumab&rank=4 (accessed on 28 December 2023).
- Nivolumab with or without Ipilimumab in Treating Patients with Persistent or Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. ClinicalTrials.gov Identifier: NCT02498600. Last Updated: 30 November 2023. Available online: https://clinicaltrials.gov/study/NCT02498600?cond=Ovarian%20Cancer&intr=Ipilimumab&rank=3 (accessed on 28 December 2023).
- Nivolumab with or without Ipilimumab in Treating Patients with Recurrent or High Grade Gynecologic Cancer with Metastatic Peritoneal Carcinomatosis. ClinicalTrials.gov Identifier: NCT03508570. Last Updated: 27 December 2023. Available online: https://clinicaltrials.gov/study/NCT03508570?cond=endometrial%20Cancer&intr=Ipilimumab&rank=7 (accessed on 28 December 2023).
- Avelumab in Patients with MSS, MSI-H and POLE-mutated Recurrent or Persistent Endometrial Cancer and of Avelumab/Talazoparib and Avelumab/Axitinib in Patients with MSS Recurrent or Persistent Endometrial Cancer. ClinicalTrials.gov Identifier: NCT02912572. Last Updated: 4 July 2023. Available online: https://clinicaltrials.gov/study/NCT02912572?cond=endometrial%20Cancer&intr=avelumab&viewType=Table&rank=2 (accessed on 28 December 2023).
- Carboplatin, Paclitaxel with or without Avelumab in Advanced or Recurrent Endometrial Cancer (MITO END-3). ClinicalTrials.gov Identifier: NCT03503786. Last Updated: 13 November 2023. Available online: https://clinicaltrials.gov/study/NCT03503786?cond=endometrial%20Cancer&intr=avelumab&viewType=Table&rank=1 (accessed on 28 December 2023).
- Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 609–619. [Google Scholar] [CrossRef]
- Hong, D.S.; Concin, N.; Vergote, I.; de Bono, J.S.; Slomovitz, B.M.; Drew, Y.; Arkenau, H.-T.; Machiels, J.-P.; Spicer, J.F.; Jones, R.; et al. Tisotumab Vedotin in Previously Treated Recurrent or Metastatic Cervical Cancer. Clin. Cancer Res. 2020, 26, 1220–1228. [Google Scholar] [CrossRef]
- Breij, E.C.; de Goeij, B.E.; Verploegen, S.; Schuurhuis, D.H.; Amirkhosravi, A.; Francis, J.; Miller, V.B.; Houtkamp, M.; Bleeker, W.K.; Satijn, D.; et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014, 74, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cheng, C.; Gou, J.; Yi, T.; Qian, Y.; Du, X.; Zhao, X. Expression of tissue factor in human cervical carcinoma tissue. Exp. Ther. Med. 2018, 16, 4075–4081. [Google Scholar] [CrossRef] [PubMed]
- de Goeij, B.E.; Satijn, D.; Freitag, C.M.; Wubbolts, R.; Bleeker, W.K.; Khasanov, A.; Zhu, T.; Chen, G.; Miao, D.; van Berkel, P.H.; et al. High Turnover of Tissue Factor Enables Efficient Intracellular Delivery of Antibody–Drug Conjugates. Mol. Cancer Ther. 2015, 14, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Seagen. Tivdak (Tisotumab Vedotin). Available online: https://www.tivdak.com (accessed on 28 December 2023).
- Boussios, S.; Seraj, E.; Zarkavelis, G.; Petrakis, D.; Kollas, A.; Kafantari, A.; Assi, A.; Tatsi, K.; Pavlidis, N.; Pentheroudakis, G. Management of patients with recurrent/advanced cervical cancer beyond first line platinum regimens: Where do we stand? A literature review. Crit. Rev. Oncol. 2016, 108, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, A.S.; Wan, L.; Powell, M.A.; Massad, L.S. Repeating platinum/bevacizumab in recurrent or progressive cervical cancer yields marginal survival benefits. Gynecol. Oncol. Rep. 2017, 22, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.B.; Gonzales Martin, A.; Fujiwara, K.; Kalbacher, E.; Bagameri, A.; Ghamande, S.; Lee, J.; Banerjee, S.; Maluf, F.C.; Lorusso, D.; et al. innovaTV 301/ENGOT-cx12/GOG-3057: A global, randomized, open-label, phase III study of tisotumab vedotin vs. investigator’s choice of chemotherapy in 2L or 3L recurrent or metastatic cervical cancer. Ann. Oncol. 2023, 34, S1254–S1335. [Google Scholar] [CrossRef]
- Evaluation of Mirvetuximab Soravtansine (IMGN853) in Women with Folate Receptor-α Positive Endometrial Cancer. ClinicalTrials.gov ID: NCT03832361. Last Updated 13 November 2023. Available online: https://www.clinicaltrials.gov/study/NCT03832361?viewType=Table&term=IMGN853&rank=1 (accessed on 28 December 2023).
- A Phase 2 Study of Mirvetuximab Soravtansine (IMGN853) and Pembrolizumab in Endometrial Cancer (EC). ClinicalTrials.gov Identifier: NCT03835819. Last Updated: 14 November 2023. Available online: https://www.clinicaltrials.gov/study/NCT03835819?viewType=Table&term=IMGN853&rank=2 (accessed on 28 December 2023).
- Matulonis, U.A.; Lorusso, D.; Oaknin, A.; Pignata, S.; Dean, A.; Denys, H.; Colombo, N.; Van Gorp, T.; Konner, J.A.; Marin, M.R.; et al. Efficacy and Safety of Mirvetuximab Soravtansine in Patients with Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study. J. Clin. Oncol. 2023, 41, 2436–2445. [Google Scholar] [CrossRef]
- Moore, K.N.; Angelergues, A.; Konecny, G.E.; Banerjee, S.N.; Pignata, S.; Colombo, N.; Moroney, J.W.; Cosgrove, C.; Lee, J.-Y.; Roszak, A.; et al. Phase III MIRASOL (GOG 3045/ENGOT-ov55) study: Initial report of mirvetuximab soravtansine vs. investigator’s choice of chemotherapy in platinum-resistant, advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor-alpha expression. J. Clin. Oncol. 2023, 41, LBA5507. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Myers, T.K.N.; Zamagni, C.; Diver, E.; Lorusso, D. GLORIOSA: A randomized, open-label, phase 3 study of mirvetuximab soravtansine with bevacizumab vs. bevacizumab as maintenance in platinum-sensitive ovarian, fallopian tube, or primary peritoneal cancer. J. Clin. Oncol. 2023, 41, TPS5622. [Google Scholar] [CrossRef]
- IMGN853 with Carboplatin in Second-line Treatment of FRα Expressing, Platinum-Sensitive Epithelial Ovarian Cancer. ClinicalTrials.gov Identifier: NCT04482309. Last Updated: 11 August 2023. Available online: https://www.clinicaltrials.gov/study/NCT05456685?term=IMGN853-0420&rank=1 (accessed on 28 December 2023).
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.L.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients with HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2023, 42, 2302005. [Google Scholar] [CrossRef]
- Nishikawa, T.; Hasegawa, K.; Matsumoto, K.; Mori, M.; Hirashima, Y.; Takehara, K.; Ariyoshi, K.; Kato, T.; Yagishita, S.; Hamada, A.; et al. Trastuzumab Deruxtecan for Human Epidermal Growth Factor Receptor 2–Expressing Advanced or Recurrent Uterine Carcinosarcoma (NCCH1615): The STATICE Trial. J. Clin. Oncol. 2023, 41, 2789–2799. [Google Scholar] [CrossRef] [PubMed]
- A Study of Sacituzumab Govitecan (IMMU-132) in Patients with Recurrent or Persistent Cervical Cancer. ClinicalTrials.gov Identifier: NCT05838521. Last Updated: 8 July 2023. Available online: https://clinicaltrials.gov/study/NCT05838521?intr=Sacituzumab%20govitecan%20&viewType=Table&rank=1 (accessed on 28 December 2023).
- A Study of Sacituzumab Govitecan (IMMU-132) in Endometrial Carcinoma. ClinicalTrials.gov Identifier: NCT04251416. Last Updated: 27 March 2023. Available online: https://clinicaltrials.gov/study/NCT04251416?intr=IMMU-132&viewType=Table&rank=5 (accessed on 28 December 2023).
- A Study of Sacituzumab Govitecan (IMMU-132) in Platinum-resistant Ovarian Cancer Patients. ClinicalTrials.gov Identifier: NCT06028932. Last Updated: 27 December 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT06028932 (accessed on 28 December 2023).
- REFRaME-O1. ClinicalTrials.gov Identifier: NCT05870748. Last Updated: 10 December 2023. Available online: https://clinicaltrials.gov/study/NCT05870748?viewType=Table&intr=STRO-002%20&rank=3 (accessed on 28 December 2023).
- A Study of MORAb-202 Versus Investigator’s Choice Chemotherapy in Female Participants with Platinum-resistant High-grade Serous (HGS) Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. ClinicalTrials.gov Identifier: NCT05613088. Last Updated: 20 December 2023. Available online: https://www.clinicaltrials.gov/study/NCT05613088?intr=MORAb-202%20&viewType=Table&rank=4 (accessed on 28 December 2023).
- André, F.; Hee Park, Y.; Kim, S.B.; Takano, T.; Im, S.A.; Borges, G.; Lima, J.P.; Aksoy, S.; Gavila Gregori, J.; De Laurentiis, M.; et al. Trastuzumab deruxtecan versus treatment of physician’s choice in patients with HER2-positive metastatic breast cancer (DESTINY-Breast02): A randomised, open-label, multicentre, phase 3 trial. Lancet 2023, 401, 1773–1785. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network, NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Cervical Cancer, Version 1. 2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf (accessed on 28 December 2023).
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; Acosta, A.D.J.; Miller, W.H.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients with Microsatellite Instability–High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Matei, D.; Filiaci, V.; Randall, M.E.; Mutch, D.; Steinhoff, M.M.; DiSilvestro, P.A.; Moxley, K.M.; Kim, Y.M.; Powell, M.A.; O’Malley, D.M.; et al. Adjuvant Chemotherapy plus Radiation for Locally Advanced Endometrial Cancer. N. Engl. J. Med. 2019, 380, 2317–2326. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Uterine Neoplasms, Version 2. 2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf (accessed on 28 December 2023).
- André, T.; Berton, D.; Curigliano, G.; Sabatier, R.; Tinker, A.V.; Oaknin, A.; Ellard, S.; de Braud, F.; Arkenau, H.T.; Trigo, J.; et al. Antitumor Activity and Safety of Dostarlimab Monotherapy in Patients with Mismatch Repair Deficient Solid Tumors: A Nonrandomized Controlled Trial. JAMA Netw. Open 2023, 6, e2341165. [Google Scholar] [CrossRef]
- GARNET. ClinicalTrials.gov Identifier: NCT02715284. Available online: https://clinicaltrials.gov/study/NCT02715284 (accessed on 26 November 2023).
- GlaxoSmithKline. Jemperli (Dostarlimab-Gxly) Injection. Available online: https://gskpro.com/content/dam/global/hcpportal/en_US/Prescribing_Information/Jemperli/pdf/JEMPERLI-PI-MG.PDF (accessed on 26 November 2023).
- Oaknin, A.; Tinker, A.V.; Gilbert, L.; Samouëlian, V.; Mathews, C.; Brown, J.; Barretina-Ginesta, M.P.; Moreno, V.; Gravina, A.; Abdeddaim, C.; et al. Clinical Activity and Safety of the Anti-Programmed Death 1 Monoclonal Antibody Dostarlimab for Patients With Recurrent or Advanced Mismatch Repair-Deficient Endometrial Cancer: A Nonrandomized Phase 1 Clinical Trial. JAMA Oncol. 2020, 6, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Antill, Y.; Kok, P.-S.; Robledo, K.; Yip, S.; Cummins, M.; Smith, D.; Spurdle, A.; Barnes, E.; Lee, Y.C.; Friedlander, M.; et al. Clinical activity of durvalumab for patients with advanced mismatch repair-deficient and repair-proficient endometrial cancer. A nonrandomized phase 2 clinical trial. J. Immunother. Cancer 2021, 9, e002255. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.-Y.; Lee, K.-H.; Lee, D.-W.; Yoon, J.; Kim, T.-Y.; Bang, J.-H.; Nam, A.-R.; Oh, K.-S.; Kim, J.-M.; Lee, Y.; et al. Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: An open-label, single-centre, phase 2 study. Lancet Gastroenterol. Hepatol. 2022, 7, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Cho, B.C.; Luft, A.; Alatorre-Alexander, J.; Geater, S.L.; Laktionov, K.; Kim, S.-W.; Ursol, G.; Hussein, M.; Lim, F.L.; et al. Durvalumab with or Without Tremelimumab in Combination with Chemotherapy as First-Line Therapy for Metastatic Non–Small-Cell Lung Cancer: The Phase III POSEIDON Study. J. Clin. Oncol. 2023, 41, 1213–1227. [Google Scholar] [CrossRef] [PubMed]
- Imfinzi (durvalumab); AstraZeneca Pharmaceuticals LP, Inc.: Wilmington, DE, USA, 2022; Available online: https://www.imfinzihcp.com/ (accessed on 28 December 2023).
- Wanderley, C.W.S.; Correa, T.S.; Scaranti, M.; Cunha, F.Q.; Barroso-Sousa, R. Targeting PARP1 to Enhance Anticancer Checkpoint Immunotherapy Response: Rationale and Clinical Implications. Front. Immunol. 2022, 13, 816642. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, L.; Wang, Y.; Zhang, C.; Hong, Z.; Han, Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J. Hematol. Oncol. 2022, 15, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.J.; Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017, 355, 1152–1158. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef] [PubMed]
- Tecentriq (atezolizumab); Genentech, Inc.: San Francisco, CA, USA, 2021; Available online: https://www.tecentriq.com/ (accessed on 28 December 2023).
- Jeyakumar, A.; Younis, T. Trastuzumab for HER2-Positive Metastatic Breast Cancer: Clinical and Economic Considerations. Clin. Med. Insights: Oncol. 2012, 6, CMO-S6460. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Schwaederle, M.; Arguello, D.; Millis, S.Z.; Gatalica, Z.; Kurzrock, R. HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev. 2015, 34, 157–164. [Google Scholar] [CrossRef]
- Erickson, B.K.; Zeybek, B.; Santin, A.D.; Fader, A.N. Targeting human epidermal growth factor receptor 2 (HER2) in gynecologic malignancies. Curr. Opin. Obstet. Gynecol. 2020, 32, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Grushko, T.; Filiaci, V.; Mundt, A.; Ridderstråle, K.; Olopade, O.; Fleming, G. An exploratory analysis of HER-2 amplification and overexpression in advanced endometrial carcinoma: A gynecologic oncology group study. Gynecol. Oncol. 2008, 108, 3–9. [Google Scholar] [CrossRef]
- A Hamilton, C.; Cheung, M.K.; Osann, K.; Chen, L.; Teng, N.N.; A Longacre, T.; A Powell, M.; Hendrickson, M.R.; Kapp, D.S.; Chan, J.K. Uterine papillary serous and clear cell carcinomas predict for poorer survival compared to grade 3 endometrioid corpus cancers. Br. J. Cancer 2006, 94, 642–646. [Google Scholar] [CrossRef]
- Fader, A.N.; Roque, D.M.; Siegel, E.; Buza, N.; Hui, P.; Abdelghany, O.; Chambers, S.K.; Secord, A.A.; Havrilesky, L.; O’Malley, D.M.; et al. Randomized Phase II Trial of Carboplatin-Paclitaxel Versus Carboplatin-Paclitaxel-Trastuzumab in Uterine Serous Carcinomas That Overexpress Human Epidermal Growth Factor Receptor 2/neu. J. Clin. Oncol. 2018, 36, 2044–2051. [Google Scholar] [CrossRef]
- Diver, E.J.; Foster, R.; Rueda, B.R.; Growdon, W.B. The Therapeutic Challenge of Targeting HER2 in Endometrial Cancer. Oncol. 2015, 20, 1058–1068. [Google Scholar] [CrossRef]
- Jonson, A.L.; Bliss, R.L.; Truskinovsky, A.; Judson, P.; Argenta, P.; Carson, L.; Dusenbery, K.; Downs, L.S. Clinical features and outcomes of uterine and ovarian carcinosarcoma. Gynecol. Oncol. 2006, 100, 561–564. [Google Scholar] [CrossRef]
- Lokadasan, R.; James, F.V.; Naranayan, G.; Prabhakaran, P.K. Targeted agents in epithelial ovarian cancer: Review on emerging therapies and future developments. Ecancermedicalscience 2016, 10, 626. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Ovarian Cancer, Including Fallopian Tube Cancer and Primary Peritoneal Cancer, version 2. 2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf (accessed on 28 December 2023).
- Eskander, R.N.; Moore, K.N.; Monk, B.J.; Herzog, T.J.; Annunziata, C.M.; O’malley, D.M.; Coleman, R.L. Overcoming the challenges of drug development in platinum-resistant ovarian cancer. Front. Oncol. 2023, 13, 1258228. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.-A. Mirvetuximab Soravtansine: First Approval. Drugs 2023, 83, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Ponte, J.F.; Ab, O.; Lanieri, L.; Lee, J.; Coccia, J.; Bartle, L.M.; Themeles, M.; Zhou, Y.; Pinkas, J.; Ruiz-Soto, R. Mirvetuximab Soravtansine (IMGN853), a Folate Receptor Alpha–Targeting Antibody-Drug Conjugate, Potentiates the Activity of Standard of Care Therapeutics in Ovarian Cancer Models. Neoplasia 2016, 18, 775–784. [Google Scholar] [CrossRef]
- Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the folate receptor α in oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349–359. [Google Scholar] [CrossRef]
- Martin, L.P.; Konner, J.A.; Moore, K.N.; Seward, S.M.; Matulonis, U.A.; Perez, R.P.; Su, Y.; Berkenblit, A.; Ruiz-Soto, R.; Birrer, M.J. Characterization of folate receptor alpha (FRα) expression in archival tumor and biopsy samples from relapsed epithelial ovarian cancer patients: A phase I expansion study of the FRα-targeting antibody-drug conjugate mirvetuximab soravtansine. Gynecol. Oncol. 2017, 147, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Elahere (mirvetuximab soravtansine-gynx); ImmunoGen: Waltham, MA, USA, 2022; Available online: https://www.elahere.com/ (accessed on 28 December 2023).
- Lynam, S.; Lugade, A.A.; Odunsi, K. Immunotherapy for Gynecologic Cancer: Current Applications and Future Directions. Clin. Obstet. Gynecol. 2020, 63, 48–63. [Google Scholar] [CrossRef]
- Verhaar, E.R.; Woodham, A.W.; Ploegh, H.L. Nanobodies in cancer. Semin. Immunol. 2021, 52, 101425. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, H.; Zhao, L.; Ning, L.; Lang, J. CAR-T cell therapy in ovarian cancer: From the bench to the bedside. Oncotarget 2017, 8, 64607–64621. [Google Scholar] [CrossRef]
- Altunay, B.; Morgenroth, A.; Beheshti, M.; Vogg, A.; Wong, N.C.L.; Ting, H.H.; Biersack, H.-J.; Stickeler, E.; Mottaghy, F.M. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur. J. Nucl. Med. 2020, 48, 1371–1389. [Google Scholar] [CrossRef]
Agent | Target | Malignancy | Clinical Trial | Approval Year |
---|---|---|---|---|
Pembrolizumab | PD-1 | Cervix | KEYNOTE-158 [25] | 2021 |
KEYNOTE-826 [28] | ||||
KEYNOTE-A18 [29] | ||||
Uterine | KEYNOTE-775 [30] | 2021 | ||
GY018 [31] | ||||
Ovary | NCT02853318 [32] | N/A | ||
Dostarlimab | PD-1 | Uterine | RUBY [33] | 2023 |
Durvalumab | PD-L1 | Uterine | DUO-E [34] | N/A |
Ovary | MEDIOLA [35,36] | N/A | ||
Atezolizumab | PD-L1 | Uterine | AtTEnd [37] | N/A |
Ovary | IMagyn050 [38] | N/A | ||
Cemiplimab | PD-1 | Cervix | GOG-3016 [39] | NCCN compendium listed |
Ipilimumab + Nivolumab | CTLA4 + PD-1 | Uterine | NCI-2021-11881 [40] | N/A |
Ovary | NCI-2014-02424 [41] | N/A | ||
Ovary, Uterine, and Cervix | 2017-0264 [42] | N/A | ||
Avelumab | PD-L1 | Uterine | 16-322 [43] | N/A |
MITO END-3 [44] |
Agent | Antibody Target | Payload | Payload Mechanism of Action | Malignancy | Clinical Trial | Approval Year |
---|---|---|---|---|---|---|
Tisotumab vedotin | TF | Monomethyl auristatin E (MMAE) | Anti-microtubule agent | Cervix | innovaTV 204 [45] | 2021 |
innovaTV 301 [53] | ||||||
Mirvetuximab soravtansine | FRα | DM4 | Anti-tubulin maytansinoid agent | Uterine | 2000023841 [54] | N/A |
18-602 [55] | ||||||
Ovary | SORAYA [56] | 2022 | ||||
MIRASOL [57] | ||||||
GLORIOSA [58] | ||||||
IMGN853-0420 [59] | ||||||
Trastuzumab deruxtecan | HER2/neu | Deruxtecan | DNA topoisomerase I inhibitor | Cervix | DESTINY-PanTumor02 [60] | NCCN compendium listed |
Uterine | STATICE [61] | NCCN compendium listed | ||||
DESTINY-PanTumor02 [60] | ||||||
Ovary | DESTINY-PanTumor02 [60] | N/A | ||||
Sacituzumab govitecan | Trop2 | SN-38 | DNA topoisomerase I inhibitor | Cervix | 2000023639 [62] | N/A |
Uterine | 2000026850 [63] | N/A | ||||
Ovary | 2000036114 [64] | N/A | ||||
Luveltamab tazevibulin | FRα | SC209 | Hemiasterlin | Ovary | REFRaME [65] | N/A |
Farletuzumab ecteribulin | FRα | Eribulin | Microtubule inhibitor | Ovary | CA116-001 [66] | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, E.M.; Eskander, R.N.; Binder, P.S. Recent Therapeutic Advances in Gynecologic Oncology: A Review. Cancers 2024, 16, 770. https://doi.org/10.3390/cancers16040770
Wilson EM, Eskander RN, Binder PS. Recent Therapeutic Advances in Gynecologic Oncology: A Review. Cancers. 2024; 16(4):770. https://doi.org/10.3390/cancers16040770
Chicago/Turabian StyleWilson, Elise M., Ramez N. Eskander, and Pratibha S. Binder. 2024. "Recent Therapeutic Advances in Gynecologic Oncology: A Review" Cancers 16, no. 4: 770. https://doi.org/10.3390/cancers16040770
APA StyleWilson, E. M., Eskander, R. N., & Binder, P. S. (2024). Recent Therapeutic Advances in Gynecologic Oncology: A Review. Cancers, 16(4), 770. https://doi.org/10.3390/cancers16040770