Tumor Copy Number Alteration Burden as a Predictor for Resistance to Immune Checkpoint Blockade across Different Cancer Types
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Population and Design
2.2. Statistical Analysis of the MSK-IMPACT Translational Cohort
2.3. Assessment of Tumor Mutational and Copy Number Alteration Burden
2.4. Analysis of CNA Association with Immune Cell Abundance and Cofunctionality Network
2.5. Data Availability
3. Results
3.1. Association of CNA Burden with Metastasis and TMB
3.2. Correlation of CNA Burden with Overall Survival after Immune Checkpoint Blockade in the Whole Cohort and across Tumor Types
3.3. Combined Biomarkers of TMB and CNA Burden Stratified Patients with Distinct Survival Outcomes after Immune Checkpoint Blockade Treatment
3.4. Individual Key Copy Number Alterations Characterized Four Tumor Subsets with Differential Survival Outcomes after Immune Checkpoint Blockade Treatment
3.5. Distribution of Key Copy Number Alterations across Different Tumor Types and Their Association with Reduced CD8+ T-Cell Infiltration
3.6. Copy Number Alterations Included in Biomarker-Driven Clinical Trial Designs from the AACR GENIE Database
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakravarty, D.; Gao, J.; Phillips, S.M.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 1, 1–16. [Google Scholar] [CrossRef]
- Consortium, A.P.G. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Pestana, R.C.; Sen, S.; Hobbs, B.P.; Hong, D.S. Histology-agnostic drug development—Considering issues beyond the tissue. Nat. Rev. Clin. Oncol. 2020, 17, 555–568. [Google Scholar] [CrossRef]
- Gouda, M.A.; Nelson, B.E.; Buschhorn, L.; Wahida, A.; Subbiah, V. Tumor-Agnostic Precision Medicine from the AACR GENIE Database: Clinical Implications. Clin. Cancer Res. 2023, 29, 2753–2760. [Google Scholar] [CrossRef]
- Wahida, A.; Buschhorn, L.; Fröhling, S.; Jost, P.J.; Schneeweiss, A.; Lichter, P.; Kurzrock, R. The coming decade in precision oncology: Six riddles. Nat. Rev. Cancer 2023, 23, 43–54. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Subbiah, V.; Solit, D.B.; Chan, T.A.; Kurzrock, R. The FDA approval of pembrolizumab for adult and pediatric patients with tumor mutational burden (TMB) ≥10: A decision centered on empowering patients and their physicians. Ann. Oncol. 2020, 31, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Ciuleanu, T.E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef]
- Sun, Q.; Hong, Z.; Zhang, C.; Wang, L.; Han, Z.; Ma, D. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. Signal Transduct. Target. Ther. 2023, 8, 320. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. Cancer Immunology and Immunotherapy Showcased in the AACR Cancer Progress Report 2023. Cancer Immunol. Res. 2023, 11, 1298–1299. [Google Scholar] [CrossRef]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef]
- Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J. Clin. Oncol. 2018, 36, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Klempner, S.J.; Fabrizio, D.; Bane, S.; Reinhart, M.; Peoples, T.; Ali, S.M.; Sokol, E.S.; Frampton, G.; Schrock, A.B.; Anhorn, R.; et al. Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence. Oncologist 2020, 25, e147–e159. [Google Scholar] [CrossRef]
- Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 2017, 23, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Kluger, H.; Barrett, J.C.; Gainor, J.F.; Hamid, O.; Hurwitz, M.; LaVallee, T.; Moss, R.A.; Zappasodi, R.; Sullivan, R.J.; Tawbi, H.; et al. Society for Immunotherapy of Cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors. J. Immunother. Cancer 2023, 11, e005921. [Google Scholar] [CrossRef]
- McGrail, D.J.; Pilié, P.G.; Rashid, N.U.; Voorwerk, L.; Slagter, M.; Kok, M.; Jonasch, E.; Khasraw, M.; Heimberger, A.B.; Lim, B.; et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. 2021, 32, 661–672. [Google Scholar] [CrossRef]
- Prasad, V.; Addeo, A. The FDA approval of pembrolizumab for patients with TMB >10 mut/Mb: Was it a wise decision? No. Ann. Oncol. 2020, 31, 1112–1114. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef]
- Mellman, I.; Chen, D.S.; Powles, T.; Turley, S.J. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023, 56, 2188–2205. [Google Scholar] [CrossRef]
- Karasarides, M.; Cogdill, A.P.; Robbins, P.B.; Bowden, M.; Burton, E.M.; Butterfield, L.H.; Cesano, A.; Hammer, C.; Haymaker, C.L.; Horak, C.E.; et al. Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunol. Res. 2022, 10, 372–383. [Google Scholar] [CrossRef]
- Davoli, T.; Uno, H.; Wooten, E.C.; Elledge, S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 2017, 355, eaaf8399. [Google Scholar] [CrossRef]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef]
- Ock, C.Y.; Hwang, J.E.; Keam, B.; Kim, S.B.; Shim, J.J.; Jang, H.J.; Park, S.; Sohn, B.H.; Cha, M.; Ajani, J.A.; et al. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat. Commun. 2017, 8, 1050. [Google Scholar] [CrossRef] [PubMed]
- Roh, W.; Chen, P.L.; Reuben, A.; Spencer, C.N.; Prieto, P.A.; Miller, J.P.; Gopalakrishnan, V.; Wang, F.; Cooper, Z.A.; Reddy, S.M.; et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl. Med. 2017, 9, eaah3560. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Cha, H.; Kim, J.; Park, W.Y.; Choi, Y.L.; Sun, J.M.; Ahn, J.S.; Ahn, M.J.; Park, K.; Lee, S.H. Genomic scoring to determine clinical benefit of immunotherapy by targeted sequencing. Eur. J. Cancer 2019, 120, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, H.; Li, S.; Gong, J.; Li, J.; Zou, J.; Wu, L.; Yu, J.; Han, W.; Sun, H.; et al. Tumor copy-number alterations predict response to immune-checkpoint-blockade in gastrointestinal cancer. J. Immunother. Cancer 2020, 8, e000374. [Google Scholar] [CrossRef] [PubMed]
- Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M.; et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015, 350, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sanchez-Vega, F.; Caso, R.; Tan, K.S.; Brandt, W.S.; Jones, G.D.; Yan, S.; Adusumilli, P.S.; Bott, M.; Huang, J.; et al. Analysis of Tumor Genomic Pathway Alterations Using Broad-Panel Next-Generation Sequencing in Surgically Resected Lung Adenocarcinoma. Clin. Cancer Res. 2019, 25, 7475–7484. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020, 48, W509–W514. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Bense, R.D.; Urzúa-Traslaviña, C.G.; de Vries, E.G.E.; van Vugt, M.A.T.M.; Fehrmann, R.S.N. Transcriptional effects of copy number alterations in a large set of human cancers. Nat. Commun. 2020, 11, 715. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature 2012, 481, 306–313. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef]
- Riaz, N.; Morris, L.; Havel, J.J.; Makarov, V.; Desrichard, A.; Chan, T.A. The role of neoantigens in response to immune checkpoint blockade. Int. Immunol. 2016, 28, 411–419. [Google Scholar] [CrossRef]
- Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287. [Google Scholar] [CrossRef]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018, 173, 321–337.e10. [Google Scholar] [CrossRef]
- Lee, J.V.; Housley, F.; Yau, C.; Nakagawa, R.; Winkler, J.; Anttila, J.M.; Munne, P.M.; Savelius, M.; Houlahan, K.E.; Van de Mark, D.; et al. Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer. Nat. Commun. 2022, 13, 3671. [Google Scholar] [CrossRef]
- Kortlever, R.M.; Sodir, N.M.; Wilson, C.H.; Burkhart, D.L.; Pellegrinet, L.; Brown Swigart, L.; Littlewood, T.D.; Evan, G.I. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell 2017, 171, 1301–1315.e14. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.A.; de Carné Trécesson, S.; Rana, S.; Zecchin, D.; Moore, C.; Molina-Arcas, M.; East, P.; Spencer-Dene, B.; Nye, E.; Barnouin, K.; et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity 2017, 47, 1083–1099.e6. [Google Scholar] [CrossRef]
- Liao, W.; Overman, M.J.; Boutin, A.T.; Shang, X.; Zhao, D.; Dey, P.; Li, J.; Wang, G.; Lan, Z.; Tang, M.; et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell 2019, 35, 559–572.e7. [Google Scholar] [CrossRef] [PubMed]
- van der Woude, L.L.; Gorris, M.A.J.; Halilovic, A.; Figdor, C.G.; de Vries, I.J.M. Migrating into the Tumor: A Roadmap for T Cells. Trends Cancer 2017, 3, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 2021, 21, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Vlachostergios, P.J. Mutations predict survival benefit in advanced cancer patients treated with immune checkpoint inhibitors. Immunooncol. Technol. 2021, 10, 100035. [Google Scholar] [CrossRef] [PubMed]
- Burr, M.L.; Sparbier, C.E.; Chan, K.L.; Chan, Y.C.; Kersbergen, A.; Lam, E.Y.N.; Azidis-Yates, E.; Vassiliadis, D.; Bell, C.C.; Gilan, O.; et al. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell 2019, 36, 385–401.e8. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016, 16, 553–565. [Google Scholar] [CrossRef]
- Pilard, C.; Ancion, M.; Delvenne, P.; Jerusalem, G.; Hubert, P.; Herfs, M. Cancer immunotherapy: It’s time to better predict patients’ response. Br. J. Cancer 2021, 125, 927–938. [Google Scholar] [CrossRef]
- O’Dwyer, P.J.; Gray, R.J.; Flaherty, K.T.; Chen, A.P.; Li, S.; Wang, V.; McShane, L.M.; Patton, D.R.; Tricoli, J.V.; Williams, P.M.; et al. The NCI-MATCH trial: Lessons for precision oncology. Nat. Med. 2023, 29, 1349–1357. [Google Scholar] [CrossRef]
- Park, K.H.; Choi, J.Y.; Lim, A.R.; Kim, J.W.; Choi, Y.J.; Lee, S.; Sung, J.S.; Chung, H.J.; Jang, B.; Yoon, D.; et al. Genomic Landscape and Clinical Utility in Korean Advanced Pan-Cancer Patients from Prospective Clinical Sequencing: K-MASTER Program. Cancer Discov. 2022, 12, 938–948. [Google Scholar] [CrossRef]
- Pleasance, E.; Bohm, A.; Williamson, L.M.; Nelson, J.M.T.; Shen, Y.; Bonakdar, M.; Titmuss, E.; Csizmok, V.; Wee, K.; Hosseinzadeh, S.; et al. Whole-genome and transcriptome analysis enhances precision cancer treatment options. Ann. Oncol. 2022, 33, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Wemmert, S.; Ketter, R.; Rahnenführer, J.; Beerenwinkel, N.; Strowitzki, M.; Feiden, W.; Hartmann, C.; Lengauer, T.; Stockhammer, F.; Zang, K.D.; et al. Patients with high-grade gliomas harboring deletions of chromosomes 9p and 10q benefit from temozolomide treatment. Neoplasia 2005, 7, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.G.; Cao, Y.; Shulman, E.D.; Ben-David, U.; Schäffer, A.A.; Ruppin, E. Optimizing cancer immunotherapy response prediction by tumor aneuploidy score and fraction of copy number alterations. NPJ Precis. Oncol. 2023, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Bai, X.; Wang, J.; Tang, X.R.; Wu, D.H.; Du, S.S.; Du, X.J.; Zhang, Y.W.; Zhu, H.B.; Fang, Y.; et al. Combination of TMB and CNA Stratifies Prognostic and Predictive Responses to Immunotherapy Across Metastatic Cancer. Clin. Cancer Res. 2019, 25, 7413–7423. [Google Scholar] [CrossRef]
Variable 1 | n (%) |
---|---|
All tumors | 1661 |
Cancer type | |
Melanoma | 320 (19.27%) |
Renal cell carcinoma | 151 (9.09%) |
Bladder cancer | 215 (12.94%) |
Breast cancer | 44 (2.65%) |
HR+/HER2− | 17 |
HR+/HER2+ | 4 |
HR−/HER2+ | 3 |
Triple negative | 6 |
Non-small-cell lung cancer | 350 (21.07%) |
Colorectal cancer | 110 (6.62%) |
Head and neck cancer | 139 (8.37%) |
Esophagogastric cancer | 126 (7.59%) |
Glioma | 117 (7.04%) |
Cancer of unknown primary | 88 (5.30%) |
Skin cancer, nonmelanoma | 1 (0.06%) |
Drug class | |
Anti-PD-1/PD-L1 | 1307 (78.69%) |
Anti-CTLA-4 | 99 (5.96%) |
Combination | 255 (15.35%) |
Sample type | |
Primary | 731 (44%) |
Metastasis | 930 (56%) |
Age group (years) | |
<30 | 50 (3.01%) |
31–50 | 283 (17.05%) |
50–60 | 416 (25.04%) |
61–70 | 499 (30.04%) |
>71 | 413 (24.86%) |
Smoking history | |
Previous/current smoker | 443 (26.67%) |
Never | 462 (27.81%) |
Unknown | 756 (45.52%) |
Sex | |
Male | 1034 (62.25%) |
Female | 627 (37.75%) |
TMB category | |
High (≥10 mut/mb) | 499 (30.04%) |
Low (<10 mut/mb) | 1162 (69.96%) |
Subgroup | Pathway | Alterations Included in Molecularly Driven Biomarker Clinical Trial Designs | Therapies Tested |
---|---|---|---|
LowTMB/ HighCNA | Cell cycle pathway | ||
CDKN2A loss | Palbociclib, abemaciclib, ribociclib (CDK4/6 inhibitor) Ilorasertib (Aurora and VEGFR kinase inhibitor) | ||
CDKN2B loss | Abemaciclib, ribociclib (CDK4/6 inhibitor) | ||
CDK4 amplification | PF-07220060 (CDK4 inhibitor) | ||
CDK6 amplification | Palbociclib, abemaciclib, ribociclib (CDK4/6 inhibitor) | ||
RB1 loss | Abemaciclib (CDK4/6 inhibitor) Prexasertib, SRA737 (CHK1 inhibitor) Apalutamide (AR antagonist) with cetrelimab (PD-1 inhibitor) Ceterlimab (PD-1 inhibitor) with carboplatin, cabazitaxel, and niraparib Valemetostat (EZH2 inhibitor) and ipilimumab Osimertinib (tyrosine kinase inhibitor) Olaparib (PARP inhibitor) | ||
Receptor tyrosine kinase pathway | |||
ALK amplification | Belantamab mafodotin (B-cell maturation antigen inhibitor) AUY922 (HSP90 inhibitor) Ceritinib, ensartinib (ALK kinase inhibitor) Crizotinib, entrectinib (multitargeted tyrosine kinase inhibitor) TSR-011 (ALK and tropomyosin kinase inhibitor) | ||
EGFR amplification | BCA101 (TGF-β and EGFR inhibitor) Osimertinib, GC1118, nimotuzumab, Sym004, gefitinib (EGFR tyrosine kinase inhibitor) Sunitinib (multitargeted tyrosine kinase inhibitor) Afatinib (ErbB family blocker) Capivasertib (pan AKT kinase inhibitor) Depatuxizumab mafodotin (EGFR antibody–drug conjugate) Paziotinib (pan HER2 inhibitor) Lapatinib (EGFR and HER2 inhibitor) MSC2363318A (AKT dual inhibitor) PF-00299804 (pan HER inhibitor) | ||
ERBB3 amplification | Zotatifin (HER3 blocker) Pertuzumab (HER2-HER3 inhibitor) | ||
FGFR4 amplification | Rogaratinib (FGFR4 inhibitor) Infigratinib, Erdafitinib, pemigatinib (FGFR kinase inhibitor) Debio-1347, E7090, derazantinib (FGFR 1–3 inhibitor) | ||
FLT1 amplification | Regorafenib (multikinase inhibitor) Nintedanib (angiokinase inhibitor) | ||
FLT3 amplification | Regorafenib (multikinase inhibitor) Nintedanib (angiokinase inhibitor) Ponatinib (multikinase inhibitor) | ||
KDR amplification | Regorafenib (multikinase inhibitor) Nintedanib (angiokinase inhibitor) | ||
NF1 loss | Selumetinib, trametinib, cobimetinib, mirdametinib, binimetinib (MEK inhibitor) RMC-4630 (SPH2 inhibitor) Temsirolimus, everolimus (mTOR inhibitor) LY3214996 (ERK inhibitor) | ||
NF2 loss | Selumetinib, mirdametinib (MEK inhibitor) Temsirolimus, everolimus, AZD2014 (mTOR inhibitor) Axitinib (VEGFR tyrosine kinase inhibitor) Lapatinib (EGFR and HER2 inhibitor) | ||
PDGFRA amplification | Crenolanib (PDGFR inhibitor) Ripretinib (PDGFRA and kit inhibitor) Sitravatinib, ponatinib, sunitinib, dasatinib, regorafinib (multikinase inhibitor) Nilotinib (tyrosine kinase inhibitor) Nab-Rapamycin (mTOR inhibitor) Capivasertib (pan AKT kinase inhibitor) Samotolisib (PI3K and mTOR inhibitor) | ||
mTOR pathway | |||
FLCN loss | Temsirolimus (mTOR inhibitor) | ||
p53 pathway | |||
MDM2 amplification | Idasanutlin, ALRN-6924, BI 907828, AMG 232 (MDM2 inhibitor) | ||
MYC pathway | |||
MYC amplification | Fadraciclib (CDK2/9 inhibitor) KB-0742 (CDK9 inhibitor) ORIN1001 (IRE1 RNase inhibitor suppressing MYC high tumors) BMS-986158 (BET inhibitor) Berzosertib (ATR inhibitor) MIK665 (MCL1 inhibitor) Prexasertib, SRA737 (CHK1 inhibitor) Telaglenastat (glutaminase inhibitor) RMC-5552 (mTORC1 inhibitor) | ||
HighTMB/ HighCNA | Chromatin remodeling/ DNA methylation | ||
EZH2 amplification | Tazemetostat (EZH2 inhibitor) | ||
Apoptosis pathway | |||
MCL1 amplification | Fadraciclib (CDK2/9 inhibitor) | ||
PI3K/AKT1/ mTOR pathway | |||
PTEN loss | RMC-5552 (mTORC1 inhibitor) Copanlisib, alpelisib, paxalisib, capivasertib AZD8186, GSK2636771 (PI3K inhibitor) Ipatasertib, TAS-117 (AKT1/2/3 kinase inhibitor) TAS0612 (AKT/RSK/S6K inhibitor) Gedatolisib (PI3K and mTOR inhibitor) Temsirolimus, everolimus (mTOR inhibitor) Sapanisertib (mTORC1 and mTORC2 inhibitor) Sirolimus (mTOR inhibitor) Vistusertib (mTOR 1,2 inhibitor) PQR309 (PI3K/mTOR inhibitor) MSC2363318A (AKT1,3 and p70S6K inhibitor) Samotolisib (PI3K and mTOR inhibitor) Sunitinib (multitargeted tyrosine kinase inhibitor) Buparilisib (pan PI3K inhibitor) Niraparib, olaparib (PARP inhibitor) | ||
RICTOR amplification | RMC-5552 (mTORC1 inhibitor) Onatasertib, vistusertib (mTOR 1,2 inhibitor) Paxalisib, godatolisib (PI3K/mTOR inhibitor) Everolimus (mTOR inhibitor) Ipatasertib, capivasertib, TAS-117 (AKT1/2/3 kinase inhibitor) Samotolisib (PI3K and mTOR inhibitor) Nab-Rapamycin (mTOR inhibitor) GSK2636771 (PI3K inhibitor) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asleh, K.; Ouellette, R.J. Tumor Copy Number Alteration Burden as a Predictor for Resistance to Immune Checkpoint Blockade across Different Cancer Types. Cancers 2024, 16, 732. https://doi.org/10.3390/cancers16040732
Asleh K, Ouellette RJ. Tumor Copy Number Alteration Burden as a Predictor for Resistance to Immune Checkpoint Blockade across Different Cancer Types. Cancers. 2024; 16(4):732. https://doi.org/10.3390/cancers16040732
Chicago/Turabian StyleAsleh, Karama, and Rodney J. Ouellette. 2024. "Tumor Copy Number Alteration Burden as a Predictor for Resistance to Immune Checkpoint Blockade across Different Cancer Types" Cancers 16, no. 4: 732. https://doi.org/10.3390/cancers16040732
APA StyleAsleh, K., & Ouellette, R. J. (2024). Tumor Copy Number Alteration Burden as a Predictor for Resistance to Immune Checkpoint Blockade across Different Cancer Types. Cancers, 16(4), 732. https://doi.org/10.3390/cancers16040732