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Simple Summary: Drugs that help the immune system attack cancer, known as immunotherapy,
benefit only a small fraction of patients with cancer that has spread distant from the primary organ.
Thus, markers that indicate immunotherapy failure are needed. Overall changes to DNA structure
that lead to the gain or loss of extra copies of genes are known as copy number alteration (CNA)
burden. In this study, we obtained data on CNA burden, clinical information, and overall tumor
mutations, known as tumor mutational burden (TMB), for 1661 patients. These patients were all
treated with immunotherapy and had their cancer specimens analyzed by an approved clinical test
called MSK-IMPACT. We report that CNA burden could predict those patients who do not benefit
from immunotherapy. Additionally, tumors with high CNA but low TMB could identify those
with the worst survival. This work can better match patients to their most effective treatment of
immunotherapy or other therapies.

Abstract: Immune checkpoint blockade (ICB) benefits only a subset of advanced cancer patients, and
predictive biomarkers for immunotherapy response are needed. Recently, copy number alteration
(CNA) burden has been proposed to predict ICB resistance. We assessed this finding using the
publicly accessible data for 1661 ICB-treated patients whose tumors were profiled by MSK-IMPACT,
an approved targeted assay in clinical care. We tested the hypothesis that the continuous increase in
CNA burden is associated with poor overall survival following ICB. In addition, we hypothesized
that the combinatorial biomarkers of tumor mutational burden (TMB) and CNA burden would better
stratify patients for immune status and ICB response. Of the 1661 cases, 79% (n = 1307) were treated
with anti PD-1/PD-L1 and the remaining 21% (n = 354) with anti CTLA-4 or the combination of
both. In a multivariate analysis, increase in CNA burden was associated with poor overall survival
[HR = 1.52, 95% CI (1.01–2.30), p = 0.04]. The combination of biomarkers TMB and CNA burden
stratified patients into four clinically distinct subsets among which “LowTMB/HighCNA” showed
the worst survival (p < 0.0001). The four patient subsets had unique CNA profiles and enriched
pathways, which could predict transcriptional and phenotypic effects related to immune signaling
and CD8+ T-cell abundance in the tumor microenvironment. CNA burden was associated with poor
overall survival in patients receiving ICB and could improve patient stratification when incorporated
with TMB. These findings may guide patient selection for immunotherapy or alternative strategies.

Keywords: copy number alteration burden; tumor mutational burden; immune checkpoint blockade;
next-generation sequencing; MSK-IMPACT assay; predictive biomarkers
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1. Introduction

With the advent of next-generation sequencing (NGS) assays, the list of targeted
therapies that act on specific molecular alterations has exponentially grown over the past
decade [1,2]. The shift from a site-specific to genetic-specific approach is transforming
the field of precision oncology, with several tissue-agnostic biomarkers being proposed in
advanced cancers [3–5]. Indeed, many of these tissue-agnostic biomarkers have obtained
their regulatory approvals based on a proven efficacy in clinical trials across different cancer
histologies [4]. In 2020, tumor mutational burden (TMB) received an accelerated US Food
and Drug Administration (FDA) approval as a tissue-agnostic biomarker for immunother-
apy based on a significant benefit observed in a prospective–retrospective analysis of the
KEYNOTE-158 trial across multiple advanced solid tumors [6,7]. These findings, along with
data showing that TMB better associates with immunotherapy response when compared to
simple PD-L1 immunohistochemical (IHC) assessment [8–10], have driven the paradigm
shift toward endorsing TMB in the current treatment guidelines.

Immunotherapy is continuously expanding the arsenal of genomically driven thera-
peutic options through the incorporation of TMB as an important decision-making tool in
clinical practice [10,11]. Targeted NGS panels have been recently developed [9] to evaluate
TMB more easily in clinical practice when compared to the more expensive and complex
whole-exome sequencing assays. Currently, the two NGS FDA-approved companion diag-
nostics for immunotherapy agents of FoundationOne and the MSKCC (MSK-IMPACT) can
be used on tumor tissue biopsy to determine TMB in routine clinical care [12–15]. The MSK-
IMPACT assay identifies somatic exonic mutations and copy number alterations (CNAs)
in a predefined set of 468 cancer-related genes and has a proven capacity for predicting
immunotherapy response [16,17]. In a retrospective analysis that included 1662 patients
with advanced solid tumors of multiple origins profiled by the MSK-IMPACT assay, a
significant association between higher TMB and improved overall survival (OS) on immune
checkpoint blockade (ICB) was reported [17].

To date, several cut-points have been proposed for TMB estimation [9], with the re-
cent consensus being 10 mut/mb or greater for universally defining high TMB tumors
with response to immunotherapy regardless of cancer type [6]. While TMB has been
originally developed to expand patients’ selection for immunotherapy beyond the sole
assessment of IHC PD-L1, survival benefits are still only seen in a limited subset of cancer
patients [18–20]. Achieving a significantly durable clinical response on ICB is a pressing
challenge not only due to analytical variability issues that still exist across TMB and PD-
L1 assessment platforms [9] but mostly resulting from a complex network of biological
pathways eliciting innate and acquired therapeutic resistance in the patient’s tumor mi-
croenvironment (TME) [18,21,22]. Thus, it is not surprising that recent efforts have outlined
a framework that guides future immune-resistance research through defining eight biologi-
cal processes, referred to as immune resistance nodes, to identify biomarkers that explain
the high rates of failures still observed with immunotherapy [23]. The application of this
framework specifically calls for the integration of omics-based analyses beyond TMB to
provide insights into the selection of biomarkers that can be exploited for tailoring better
therapeutic strategies in the clinic [23].

At the genomic level, multiple analyses of the copy number alteration (CNA) repertoire
in advanced cancers have contributed to the understanding of mechanisms underlying
patient’s resistance to immunotherapy, with several CNA patterns being reported that
could be linked to ICB response [24–27]. More specifically, a CNA burden that reflects
the fraction of gains and losses across the profiled genome has been recently reported
to be a predictor for poor response to ICB in several tumors including melanoma, non-
small-cell lung cancer (NSCLC), and gastrointestinal cancer [25,28–30]. However, these
studies mainly investigated CNA burden using whole-exome sequencing methods not
widely utilized in routine clinical care. Furthermore, high CNA burden determined by
these assays is characterized by numerous low-frequency altered genes, which creates
challenges for the development of clinically useful biomarkers. As such, the determination
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of CNA burden from currently approved genomic-based tests would provide more readily
available information to guide therapeutic choices in the clinic.

In this study, we evaluated CNA burden as a predictor for response to immunother-
apy. As our data source, we analyzed a large, publicly available series containing ICB
treatment outcome information for 1661 patients with advanced cancers profiled by MSK-
IMPACT [16,17]. We tested the hypothesis that high CNA burden, as measured by the
MSK-IMPACT assay, is associated with poor overall survival after treatment with ICB. In
addition, we hypothesized that the combinatorial biomarkers of TMB and CNA burden
can stratify patients into distinct subsets with differential response to ICB. We further
investigated individual CNAs characteristic of these subsets, correlating results in the
context of biological processes and immune resistance mechanisms to inform personalized
treatment-biomarker-driven clinical trial designs.

2. Material and Methods
2.1. Study Population and Design

Data from 1661 cancer patients previously subjected to the FDA-authorized MSK-
IMPACT profiling (mostly as part of the clinical trial NCT01775072, with the remainder as
part of routine clinical care) and who had received at least one dose of ICB therapy were
obtained from Samstein et al. in Nat. Genet. 2019 [17] and constituted the translational
cohort of this study. Most of these cases (representing 94% of tumors excluding glioma;
n = 1446) had stage IV or metastatic disease, while a small number of patients had a
locoregional recurrent disease (n = 10) or stage III melanoma (n = 98). Of the total 1661
patients included, 1307 (79%) were treated with anti-PD-1 or -PD-L1 therapy, 99 (6%)
received anti-CTLA-4, and 255 (15%) were treated with the combination of anti-CTLA-4
and anti-PD-1/PD-L1 therapies. These 1661 cases spanned 10 different major tumor types,
comprising 350 NSCLC cases (21%), 320 melanoma cases (19%), 215 bladder cancers (13%),
139 head and neck cancers (8%), and others (Table 1, Figure 1A).

Table 1. Characteristics of the MSK-IMPACT translational study cohort.

Variable 1 n (%)

All tumors 1661
Cancer type

Melanoma 320 (19.27%)
Renal cell carcinoma 151 (9.09%)
Bladder cancer 215 (12.94%)
Breast cancer 44 (2.65%)

HR+/HER2− 17
HR+/HER2+ 4
HR−/HER2+ 3
Triple negative 6

Non-small-cell lung cancer 350 (21.07%)
Colorectal cancer 110 (6.62%)
Head and neck cancer 139 (8.37%)
Esophagogastric cancer 126 (7.59%)
Glioma 117 (7.04%)
Cancer of unknown primary 88 (5.30%)
Skin cancer, nonmelanoma 1 (0.06%)

Drug class
Anti-PD-1/PD-L1 1307 (78.69%)
Anti-CTLA-4 99 (5.96%)
Combination 255 (15.35%)

Sample type
Primary 731 (44%)
Metastasis 930 (56%)
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Table 1. Cont.

Variable 1 n (%)

Age group (years)
<30 50 (3.01%)
31–50 283 (17.05%)
50–60 416 (25.04%)
61–70 499 (30.04%)
>71 413 (24.86%)

Smoking history
Previous/current smoker 443 (26.67%)
Never 462 (27.81%)
Unknown 756 (45.52%)

Sex
Male 1034 (62.25%)
Female 627 (37.75%)

TMB category
High (≥10 mut/mb) 499 (30.04%)
Low (<10 mut/mb) 1162 (69.96%)

1 Abbreviations: HR—hormone receptor; HER2—human epidermal growth factor receptor 2; PD-1—programmed
cell death protein 1; PD-L1—programmed cell death protein ligand 1; CTLA-4–cytotoxic T-lymphocyte associated
protein 4; TMB—tumor mutational burden.

Cancers 2024, 16, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 1. Characteristics of the translational study cohort of the MSK-IMPACT treated with immune 
checkpoint blockade. (A) Vornoi treemap showing the distribution of the total of 1661 cases across 
different tumor types. (B) CNA burden, as determined by the fraction of genome altered values, 
across the different tumor types. Violin plots show the median (center bar), and the horizontal dot-
ted line displays the base mean of all. (C) Fraction of genome altered distribution according to spec-
imen type analyzed. Boxplots show the median (center bar), the third (upper edge), and first quar-
tiles (lower edge) of FGA scores. Each point represents one case. Pair-wise comparisons were per-
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different tumor types. (B) CNA burden, as determined by the fraction of genome altered values,
across the different tumor types. Violin plots show the median (center bar), and the horizontal dotted
line displays the base mean of all. (C) Fraction of genome altered distribution according to specimen
type analyzed. Boxplots show the median (center bar), the third (upper edge), and first quartiles
(lower edge) of FGA scores. Each point represents one case. Pair-wise comparisons were performed
with the two-sided Wilcoxon rank-sum test. (D) Fraction of genome altered distribution according
to tumor mutational burden (TMB). Box plots show the median (center bar), the third (upper edge),
and first quartiles (lower edge) of the FGA scores. The universal prespecified FDA-approved cut-
point of 10 mut/mb or greater was used to define “HighTMB” vs. “LowTMB” tumors. Each point
represents one case. Pair-wise comparisons were performed with the two-sided Wilcoxon rank-sum
test. (E) Scatter plot showing the correlation between the continuous expression of TMB and CNA
burden as determined by fraction of genome altered scores. Results were derived from the 2-sided
Pearson correlation coefficient (r) test.

2.2. Statistical Analysis of the MSK-IMPACT Translational Cohort

To test the primary hypothesis on whether increased FGA expression is associated with
poor overall survival after ICB treatment, univariate and multivariate survival analyses
were performed using Cox regression models and stratified log-rank tests. The associations
between hazard ratio (HR) and 95% confidence interval (CI) were calculated, and the results
were displayed using forest plots. Variables included in the multivariate model were age
(continuous), sex (male vs. female), sample type (primary vs. metastasis), and treatment
type (anti-PD-1/PD-L1 vs. anti-CTLA-4 vs. combination). When relevant, results were
further adjusted to smoking history for NSCLC and receptor status (according to hormonal
receptor and HER2) for breast cancer. Analyses evaluating the secondary hypothesis of
the combined expression of TMB and CNA burden used Kaplan–Meier curves to display
survival outcomes according to biomarker expression status. The universal prespecified
and established FDA-approved cut-point of 10 mut/mb was used to define “HighTMB”
vs. “LowTMB” tumors. For CNA burden, we defined subgroups by the median cut-
point within each tumor type since CNA burden varied across different tumor histologies.
Exploratory analyses evaluating associations between individual copy number alterations
within each distinct "TMB/CNA" subgroup vs. others were tested using Fisher’s test, with
balloon plots used to display results. The χ2 test was used to assess associations between
categorical variables. The assessment of continuous variables against categorical variables
was performed using Wilcoxon rank-sum tests for pair-wise comparisons and Kruskal–
Wallis for three categories and above. The correlation between continuous variables was
tested using the Pearson correlation coefficient (r). All tests were performed 2-sided at a
significance level of 0.05 using R statistical software (version #4.1.2).

2.3. Assessment of Tumor Mutational and Copy Number Alteration Burden

TMB was defined as the number of nonsynonymous mutations divided by the number
of megabases (mbs) in the coding region captured by the MSK-IMPACT assay as previously
described [17,31]. Data on CNA burden for the translational study cohort were obtained
through the cBioPortal for Cancer Genomics database [32]. CNA burden was defined as the
fraction of genome altered (FGA) and calculated as the log2 copy number variation (gain
or loss) >0.2 divided by the size of genome whose copy number was profiled [31]. Data on
individual copy number alterations, identified in an earlier version of the MSK-IMPACT
assay based on a 410-gene panel, were retrieved from Zehir et al. Nat. Med. [16]. The
levels of copy number per gene were defined according to a previous publication in the
following fashion: −2, deep deletion; −1, shallow deletion; 0, diploid; 1, low-level gain;
and 2, high-level amplification [32].
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2.4. Analysis of CNA Association with Immune Cell Abundance and Cofunctionality Network

The association between individual CNAs and the immune cell abundance of CD8+
T cells was evaluated in The Cancer Genome Atlas (TCGA) cohorts using the TIMER2.0
tool, a comprehensive resource of deconvolution method for the estimation of immune
infiltrate populations [33]. The log-fold changes of immune CD8+ T-cell infiltration levels
between the specified alteration group (gain/amplification or deletion) and the normal one
(diploid) were compared using Wilcoxon rank-sum tests. Results with log2FC > 0 indicated
a higher level of CD8+ T-cell infiltrates, while log2FC < 0 indicated a lower level of CD8+
T-cell infiltrates in the alteration group.

Prediction of gene functionality and biological processes based on CNAs were per-
formed using a guilt-by-association strategy as part of a comprehensive network created
using 23,372 well-described functional gene sets reported by Bhattacharya et al. in Nat.
Commun. [34]. Z scores were used for gene expression values, and the cofunctionality
correlation between genes was displayed using a scale from 0 to 1. Enriched biological
processes for the predicted altered gene expression were derived from Reactome and their
predicted phenotypic effects from the Mammalian Phenotype Ontology database available
at http://195.240.45.156//GuiltByAssociation/ (accessed on 27 November 2023) [34].

2.5. Data Availability

This study involved the collection and analysis of data from multiple publicly available
datasets. The MSK-IMPACT cancer data analyzed can be accessed through the cBioPor-
tal for Cancer Genomics repository (https://www.cbioportal.org/; accessed on 15 June
2023—unique identifier: “TMB and Immunotherapy (MSK, Nature Genetics 2019)”); Sup-
plementary Data were obtained from Samstein et al. in Nat. Genet. 2019 [17] and Zehir
et al. Nat. Med. [16]. The association between individual CNAs and the immune cell
abundance of CD8+ T cells in TCGA cohorts was evaluated using the TIMER2.0 tool [33],
which is available online (http://timer.comp-genomics.org/timer/) and was accessed on 3
December 2023. The cofunctionality network analysis and phenotypic effects prediction of
individual genes based on CNAs were performed using the framework [34] available at
http://195.240.45.156//GuiltByAssociation/, which was accessed on 27 November 2023.
Data investigating the incorporation of CNAs in biomarker-driven clinical trial designs
were retrieved from the AACR Project GENIE Consortium database [2] through the website
https://www.mycancergenome.org, which was accessed on 13 October 2023.

3. Results

Of the 1661 patients included in the translational study, 930 (56%) had their archival
tumor tissue specimens obtained from metastatic sites and profiled through the MSK-
IMPACT assay (Table 1). Using the universal cut-point of 10 mut/mb or greater to define
“HighTMB” vs. “LowTMB” tumors, 499 (30%) of the patients were assigned as having
“HighTMB” tumors (Table 1). CNA burden, as determined by FGA scores, varied across
the different tumor types, and displayed a mean of FGA = 0.21 for all cancers (Figure 1B).

3.1. Association of CNA Burden with Metastasis and TMB

When examining the CNA burden according to specimen type, FGA scores were
significantly higher in tissues obtained from metastatic sites when compared to primary
(Wilcoxon p < 0.001) (Figure 1C). Interestingly, FGA values of 0.75 and above were only
observed in metastatic specimens (Figure 1C) illustrating the higher complexity of CNAs in
metastatic sites [35]. Higher TMB scores were further observed to be significantly associated
with metastatic specimens (Wilcoxon p < 0.001).

When assessing the correlation between CNA burden and TMB, FGA scores were
significantly higher in tumors classified as “HighTMB” (Wilcoxon p = 0.001). However, the
correlation between FGA scores and TMB as continuous variables denoted a significantly
low correlation (Pearson r = 0.11, p < 0.001) (Figure 1D,E).

http://195.240.45.156//GuiltByAssociation/
https://www.cbioportal.org/
http://timer.comp-genomics.org/timer/
http://195.240.45.156//GuiltByAssociation/
https://www.mycancergenome.org
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3.2. Correlation of CNA Burden with Overall Survival after Immune Checkpoint Blockade in the
Whole Cohort and across Tumor Types

In a multivariate analysis testing the primary hypothesis of CNA burden as a contin-
uous variable, an increase in the scores of FGA was associated with a significantly lower
OS after treatment with ICB (HR, 1.52; 95% CI, 1.01–2.30; p = 0.04). This association was
further observed in melanoma and bladder cancer with a trend toward a lower OS in head
and neck cancers (Figure 2A; Supplementary Table S1). Interestingly, the increase in FGA
scores among glioma patients was found to be associated with a favorable OS after ICB
(Figure 2A; Supplementary Table S1).
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continuous expression values of CNA burden, as determined by fraction of genome altered scores,
across all cases and within each cancer type included. Hazard ratios, 95% confidence intervals, were
p-values are derived from Cox regression multivariate analysis adjusted for age, sex, sample type,
and treatment type, and when relevant, results were further adjusted for smoking history for NSCLC
and for receptor status for breast cancer. (B) Kaplan–Meier curves showing overall survival for cancer
patients stratified according to the combinatorial expression of TMB and CNA burden categories
in all cases and in (C) the melanoma cohort, (D) bladder cancer cohort, (E) NSCLC cohort, and
(F) colorectal cancer cohort.

3.3. Combined Biomarkers of TMB and CNA Burden Stratified Patients with Distinct Survival
Outcomes after Immune Checkpoint Blockade Treatment

Testing our secondary hypothesis that the combination of TMB and CNA burden can
better stratify patients into subsets with differential response to ICB revealed that tumors
with low TMB but high CNA burden, “LowTMB/HighCNA”, showed the worst OS when
compared to other subgroups (HR, 1.6; 95% CI, 1.37–1.88; p < 0.0001) (Figure 2B). In contrast,
the subgroup with high TMB but low CNA burden, “HighTMB/LowCNA”, exhibited
the best OS (log-rank p < 0.0001) (Figure 2B). The subgroups with high or low scores for
both TMB and CNA burden (i.e., “LowTMB/LowCNA” and “HighTMB/HighCNA”) were
characterized with intermediate OS after immunotherapy (Figure 2B). These observations
were also found to be significant in melanoma, bladder cancer, NSCLC, and colorectal
cancer (Figure 2C,D). Among these tumors, when CNA burden was evaluated as an
individual biomarker (i.e., “LowCNA” vs. “HighCNA”), the results were significant only
in the whole cohort, melanoma, and bladder cancer (Supplementary Figure S1A–E).

3.4. Individual Key Copy Number Alterations Characterized Four Tumor Subsets with Differential
Survival Outcomes after Immune Checkpoint Blockade Treatment

We next aimed to characterize the four subgroups we identified in terms of differential
survival outcomes after ICB. We first examined the distributions of different tumor types
across these subgroups and found that melanoma, NSCLC, and bladder cancers constituted
most of the cases in the subgroups that had high TMB. In contrast, less immunogenic
tumors of renal cell carcinoma (RCC) and head and neck, glioma, esophagogastric, and
breast cancer were mainly included in the subgroups that had low TMB. Colorectal cancers
had a mix of both high TMB and low TMB cases and were distributed across the four
“TMB/CNA” subgroups (Supplementary Figure S2; Supplementary Table S2). In addition,
a higher fraction of tumor tissue specimens obtained from metastatic sites were observed
in the subgroups that had high TMB (Supplementary Table S3). Additional characteristics
of these four subgroups are displayed in Supplementary Table S3.

To examine whether individual CNAs would be characteristic for at least one of the
subgroups identified, we compared the alterations frequency for the single 410 genes in-
cluded in the MSK-IMPACT assay within each “TMB/CNA” subgroup vs. those of others.
Among these 410 genes, individual alterations in 78 were found to significantly distinguish
at least one subgroup vs. others (Fisher’s test p ≤ 0.05) (Supplementary Table S4). A sum-
mary of these 78 genes with their frequencies and significant associations for each subgroup
vs. others are depicted in Figure 3. In this analysis, the “LowTMB/HighCNA” subgroup
which displayed the worst survival was characterized with significantly higher amplifica-
tions and losses in genes related to several pathways including cell cycle, receptor tyrosine
kinase, DNA repair, TGFβ signaling, MAPK signaling, MYC pathway, and others (Supple-
mentary Table S5). In contrast, the subgroup “HighTMB/LowCNA”, which exhibited the
best survival, showed a copy number profile associated with significantly lower alterations
in these genes (Supplementary Table S5). While the subgroup “HighTMB/HighCNA”
showed some pathways in common with “LowTMB/HighCNA”, the subgroup was more
characterized with higher alterations in genes related to chromatin remodeling and DNA
methylation, tricarboxylic acid cycle and metabolic reprogramming, PI3K/AKT1/mTOR
pathway, immune response, and the T-cell coinhibitory molecule B7-H4 (Supplementary
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Table S5). However, the subgroup “LowTMB/LowCNA” demonstrated a significantly
lower degree of alteration in genes involved in these pathways (Supplementary Table S5).
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Figure 3. Balloon plot depicting the 78 genes whose alterations were characteristic of the four
“TMB/CNA” subgroups with their frequencies and significant associations for each subgroup vs.
those of others. The list of 78 genes was derived from testing the CNAs of each of the individual
410 genes in each subgroup vs. those of others using Fisher’s test. Significance levels are displayed
with asterisks as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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3.5. Distribution of Key Copy Number Alterations across Different Tumor Types and Their
Association with Reduced CD8+ T-Cell Infiltration

In the analysis of the distribution of key copy number alterations in the 78 genes found
to be characteristic of the four “TMB/CNA” subgroups, the main findings revealed that
EGFR amplification was the most frequent alteration and was more prevalent in bladder
cancer, followed by RCC. The receptor tyrosine kinase ERBB2 was primarily amplified
in bladder cancer, while FGFR4 and EGFL7 alterations were mainly seen among RCC
cases. MYC amplification and PTEN loss were mostly prevalent in breast tumors, while
amplifications for SOX2 were mostly observed in melanoma (Supplementary Figure S3).

Since high CNA burden was associated with poor survival outcomes in our analysis,
we next examined whether individual alterations in the 78 genes that were found to be
characteristic of the four “TMB/CNA” subgroups may be correlated with the decreased
cytotoxic CD8+ T-cell infiltration that is known to be linked with lower survival rates
in immunotherapy [36]. We restricted the analysis to the same cancer types in TCGA
that represented the composition of tumor cases in our dataset. Interestingly, majority of
the alterations in the 78 genes displayed a significantly negative correlation with CD8+
T-cell infiltration in at least one tumor type (Supplementary Table S6). Higher numbers of
alterations that were found to be associated negatively with CD8+ T cells were observed
most commonly in breast cancer (26/78), followed by esophagogastric cancer (25/78)
(Supplementary Figure S4, Supplementary Table S6). Interestingly MYC and RB1 were the
most frequently altered genes that were associated significantly with a lower abundance of
CD8+ T-cell infiltrates across different tumor types (Supplementary Table S6).

Given the lack of paired RNA expression data available for the corresponding altered
genes in the MSK-IMPACT dataset, we sought to investigate how CNAs can transcrip-
tionally activate biological processes and affect the activity and composition of immune
cells present in the TME. We constructed a cofunctionality network for the individual alter-
ations that were found to be characteristic of the subgroups with high CNA burden (i.e.,
“LowTMB/HighCNA” and “HighTMB/HighCNA”) using an integrative tool that predicts
gene functions based on CNA profiles following a previously published guilt-by-association
strategy [34]. We identified two main clusters with one enriched for genes predicted to be
involved in the biological processes related to cell cycle and DNA replication and repair,
whereas another cluster was enriched for genes associated with immunological processes
(e.g., adaptive immune response, cytokine and interferon signaling, and T-cell receptor
signaling) (Figure 4). This suggests that CNAs within the tumors that have high CNA
burden can transcriptionally activate multiple processes that are linked to poor immune
response by simultaneously influencing cell cycle and immune-evasive mechanisms to sup-
port tumor growth. We then predicted the phenotypic effects of altered expression levels
of the genes in the “immune cluster” from our cofunctionality network in combination
with a gene set collection obtained from the Mammalian Phenotype Ontology database, as
previously published [34]. Interestingly, the altered expression levels of these genes were
predicted to result in decreased abundances of T cells, B cells, CD8+ T cells, and interferon
gamma secretion but an increased abundance of neutrophils (Figure 4).
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Figure 4. Constructed cofunctionality network for the individual alterations that were found to
be characteristic of the subgroups with high CNA burden (“LowTMB/HighCNA” and “High-
TMB/HighCNA”). Results were generated using an integrative tool that predicts gene functions
based on CNA profiles following a guilt-by-association strategy as previously published by Bhat-
tacharya et al. in Nat. Commun. [34]. Two main clusters are shown with one enriched for genes
predicted to be involved in biological processes related to cell cycle and DNA replication and re-
pair, whereas another cluster was enriched for genes associated with immunological processes (e.g.,
adaptive immune response, cytokine and interferon signaling, and T-cell receptor signaling). The
altered expression levels of genes in the “immune cluster” were predicted to result in decreased
abundance of T cells, CD8+ T cells, and interferon gamma secretion. Enriched biological processes for
the predicted altered gene expression were derived from Reactome and their predicted phenotypic
effects from Mammalian Phenotype Ontology database.
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3.6. Copy Number Alterations Included in Biomarker-Driven Clinical Trial Designs from the
AACR GENIE Database

Given that the 78 CNAs found to be characteristic of each subgroup and their asso-
ciated pathways could inform better strategies to match patients to personalized therapy,
we sought to investigate their incorporation in biomarker-driven clinical trials. We re-
viewed data from the AACR Project GENIE Consortium [2], a source compiled from
148,268 patients (168,423 samples), to identify clinical trials that used these CNAs in the
biomarker criteria of their prospective designs. For CNAs that were found to be signifi-
cantly higher in the subgroup, “LowTMB/HighCNA”, we identified several amplifications
and losses mainly related to cell cycle (e.g., CDK4/6 amplifications and CDKN2A/B losses)
and receptor tyrosine kinase pathway (e.g., EGFR amplification and NF1/2 losses) to be
included as biomarkers in clinical trial designs (Table 2). Most of the trials incorporating
alterations in cell cycle pathway included treatments with CDK4/6 inhibitors, while those
related to receptor tyrosine kinase were targeted with various kinase inhibitors (Table 2).
The full list of these molecularly driven clinical trials and their details regarding the tu-
mor cohorts, phases, and therapies evaluated are described in Supplementary Table S7.
Among the CNAs that characterized the subgroup “HighTMB/HighCNA”, we identified
four that were included as biomarkers in clinical trial designs, and these were related
to PI3K/AKT1/mTOR pathway and chromatin remodeling/DNA methylation, which
were mainly targeted using PI3K/mTOR and EZH2 inhibitors, respectively (Table 2 and
Supplementary Table S7).

Table 2. Gene alterations characteristic of the “High-CNA” burden subgroups included in the
molecularly driven biomarker clinical trial designs 1.

Subgroup Pathway

Alterations
Included in

Molecularly Driven
Biomarker Clinical

Trial Designs

Therapies Tested

LowTMB/
HighCNA

Cell cycle pathway

CDKN2A loss Palbociclib, abemaciclib, ribociclib (CDK4/6 inhibitor)
Ilorasertib (Aurora and VEGFR kinase inhibitor)

CDKN2B loss Abemaciclib, ribociclib (CDK4/6 inhibitor)

CDK4 amplification PF-07220060 (CDK4 inhibitor)

CDK6 amplification Palbociclib, abemaciclib, ribociclib (CDK4/6 inhibitor)

RB1 loss

Abemaciclib (CDK4/6 inhibitor)
Prexasertib, SRA737 (CHK1 inhibitor)

Apalutamide (AR antagonist) with cetrelimab (PD-1
inhibitor)

Ceterlimab (PD-1 inhibitor) with carboplatin, cabazitaxel,
and niraparib

Valemetostat (EZH2 inhibitor) and ipilimumab
Osimertinib (tyrosine kinase inhibitor)

Olaparib (PARP inhibitor)

Receptor tyrosine
kinase pathway

ALK amplification

Belantamab mafodotin (B-cell maturation antigen
inhibitor)

AUY922 (HSP90 inhibitor)
Ceritinib, ensartinib (ALK kinase inhibitor)

Crizotinib, entrectinib (multitargeted tyrosine kinase
inhibitor)

TSR-011 (ALK and tropomyosin kinase inhibitor)
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Table 2. Cont.

Subgroup Pathway

Alterations
Included in

Molecularly Driven
Biomarker Clinical

Trial Designs

Therapies Tested

LowTMB/
HighCNA

EGFR amplification

BCA101 (TGF-β and EGFR inhibitor)
Osimertinib, GC1118, nimotuzumab, Sym004, gefitinib

(EGFR tyrosine kinase inhibitor)
Sunitinib (multitargeted tyrosine kinase inhibitor)

Afatinib (ErbB family blocker)
Capivasertib (pan AKT kinase inhibitor)

Depatuxizumab mafodotin (EGFR antibody–drug
conjugate)

Paziotinib (pan HER2 inhibitor)
Lapatinib (EGFR and HER2 inhibitor)
MSC2363318A (AKT dual inhibitor)

PF-00299804 (pan HER inhibitor)

ERBB3 amplification Zotatifin (HER3 blocker)
Pertuzumab (HER2-HER3 inhibitor)

FGFR4 amplification

Rogaratinib (FGFR4 inhibitor)
Infigratinib, Erdafitinib, pemigatinib (FGFR kinase

inhibitor)
Debio-1347, E7090, derazantinib (FGFR 1–3 inhibitor)

FLT1 amplification Regorafenib (multikinase inhibitor)
Nintedanib (angiokinase inhibitor)

FLT3 amplification
Regorafenib (multikinase inhibitor)
Nintedanib (angiokinase inhibitor)
Ponatinib (multikinase inhibitor)

KDR amplification Regorafenib (multikinase inhibitor)
Nintedanib (angiokinase inhibitor)

NF1 loss

Selumetinib, trametinib, cobimetinib, mirdametinib,
binimetinib (MEK inhibitor)
RMC-4630 (SPH2 inhibitor)

Temsirolimus, everolimus (mTOR inhibitor)
LY3214996 (ERK inhibitor)

NF2 loss

Selumetinib, mirdametinib (MEK inhibitor)
Temsirolimus, everolimus, AZD2014 (mTOR inhibitor)

Axitinib (VEGFR tyrosine kinase inhibitor)
Lapatinib (EGFR and HER2 inhibitor)

PDGFRA
amplification

Crenolanib (PDGFR inhibitor)
Ripretinib (PDGFRA and kit inhibitor)

Sitravatinib, ponatinib, sunitinib, dasatinib, regorafinib
(multikinase inhibitor)

Nilotinib (tyrosine kinase inhibitor)
Nab-Rapamycin (mTOR inhibitor)

Capivasertib (pan AKT kinase inhibitor)
Samotolisib (PI3K and mTOR inhibitor)

mTOR pathway

FLCN loss Temsirolimus (mTOR inhibitor)

p53 pathway

MDM2 amplification Idasanutlin, ALRN-6924, BI 907828, AMG 232 (MDM2
inhibitor)
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Table 2. Cont.

Subgroup Pathway

Alterations
Included in

Molecularly Driven
Biomarker Clinical

Trial Designs

Therapies Tested

LowTMB/
HighCNA

MYC pathway

MYC amplification

Fadraciclib (CDK2/9 inhibitor)
KB-0742 (CDK9 inhibitor)

ORIN1001 (IRE1 RNase inhibitor suppressing MYC high
tumors)

BMS-986158 (BET inhibitor)
Berzosertib (ATR inhibitor)
MIK665 (MCL1 inhibitor)

Prexasertib, SRA737 (CHK1 inhibitor)
Telaglenastat (glutaminase inhibitor)

RMC-5552 (mTORC1 inhibitor)

HighTMB/
HighCNA

Chromatin
remodeling/

DNA methylation

EZH2 amplification Tazemetostat (EZH2 inhibitor)

Apoptosis pathway

MCL1 amplification Fadraciclib (CDK2/9 inhibitor)

PI3K/AKT1/
mTOR pathway

PTEN loss

RMC-5552 (mTORC1 inhibitor)
Copanlisib, alpelisib, paxalisib, capivasertib AZD8186,

GSK2636771 (PI3K inhibitor)
Ipatasertib, TAS-117 (AKT1/2/3 kinase inhibitor)

TAS0612 (AKT/RSK/S6K inhibitor)
Gedatolisib (PI3K and mTOR inhibitor)

Temsirolimus, everolimus (mTOR inhibitor)
Sapanisertib (mTORC1 and mTORC2 inhibitor)

Sirolimus (mTOR inhibitor)
Vistusertib (mTOR 1,2 inhibitor)
PQR309 (PI3K/mTOR inhibitor)

MSC2363318A (AKT1,3 and p70S6K inhibitor)
Samotolisib (PI3K and mTOR inhibitor)

Sunitinib (multitargeted tyrosine kinase inhibitor)
Buparilisib (pan PI3K inhibitor)

Niraparib, olaparib (PARP inhibitor)

RICTOR
amplification

RMC-5552 (mTORC1 inhibitor)
Onatasertib, vistusertib (mTOR 1,2 inhibitor)
Paxalisib, godatolisib (PI3K/mTOR inhibitor)

Everolimus (mTOR inhibitor)
Ipatasertib, capivasertib, TAS-117 (AKT1/2/3 kinase

inhibitor)
Samotolisib (PI3K and mTOR inhibitor)

Nab-Rapamycin (mTOR inhibitor)
GSK2636771 (PI3K inhibitor)

1 Full details on the molecularly driven biomarker clinical trials retrieved from the AACR Project GENIE Con-
sortium database; their cohorts and designs can be found in Supplementary Table S7. TMB—tumor mutational
burden; CNA—copy number alteration.
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4. Discussion

In this paper, we present the results of a correlative analysis testing our primary
hypothesis that an increased CNA burden predicts those patients who do not achieve a
survival benefit on immunotherapy in the advanced setting through using a large, pub-
licly available dataset of 1661 tumors profiled by the FDA-approved targeted assay of
MSK-IMPACT. We further demonstrated our secondary hypothesis that the combinatorial
biomarkers of TMB and CNA burden better stratify patients into subsets with differential
response to ICB. These subsets were found to display distinct clinical outcomes, unique
CNA profiles, enriched pathways, and predicted phenotypic effects related to immune
signaling and CD8+ T-cell infiltration in the TME.

While our main observations that CNA burden is a predictor of resistance to im-
munotherapy is consistent with recent findings from studies investigating melanoma,
NSCLC, and gastrointestinal tumors [25,27–30], these studies were mostly based on whole-
exome sequencing methods not routinely utilized in clinical care as is the MSK-IMPACT.
Thus, our analysis proposing the use of a current and already FDA-approved platform to
determine CNA burden in concert with TMB has the advantage of providing critical infor-
mation with a direct translation to refine current guidelines that utilize the same platform
to assign patients to immunotherapy based on TMB only. These findings further shed the
light on TMB as an imperfect predictive biomarker for immunotherapy response [9,19], as
only a fraction of somatic mutations in DNA ultimately give rise to sufficient quantities of
antigens containing neopeptides that elicit an effective antitumor immune response [19,37].
Moreover, our findings highlight the importance of assessing TMB while taking into ac-
count the overall genetic alterations of copy number gains and losses that could influence
immune response through activating several immune evasive mechanisms in the TME.
In this context, several individual CNAs that were found to be significantly higher in the
subgroups characterized with “high CNA burden” in our analysis have been reported to
be linked to an immunosuppressive TME that may confer immune resistance [38]. These
observations were further illustrated in our cofunctionality network analysis of these indi-
vidual alterations displaying a unique “immune cluster” predicted to result in decreased
abundance of CD8+ T cells and interferon gamma signaling.

Our findings that the subgroup of “LowTMB/HighCNA”, which displayed the worst
survival, had characteristic CNAs related to diverse pathways (e.g., cell cycle, receptor
tyrosine kinase, DNA repair, TGFβ signaling, MAPK signaling, and MYC pathway) suggest
that these tumors can simultaneously activate multiple oncogenic signaling processes while
still lacking inflammation in the TME. These oncogenic processes have been shown to
foster immunotherapy resistance through influencing several immune subsets in the TME,
including the depletion of CD8+ T cells, the induction of regulatory T cells and myeloid-
derived suppressor cells (MDSCs), the deregulation of interferon gamma signaling, and the
upregulation of PD-L1 expression [23,39]. For instance, amplified MYC signaling can pro-
mote tumor proliferation, angiogenesis, and the creation of an immunosuppressive stroma
that induces T-cell exclusion and dampens the capacity of antigen presentation [23,38].
Targeting MYC-dependent immune evasion has been proposed as a potential strategy to
overcoming immunotherapy resistance to improve patients’ outcomes [40]. The coopera-
tion of MYC signaling with other oncogenic processes such as RAS signaling further elicits
immune suppression [41], which in turn drives immunotherapy resistance via multiple
mechanisms, such as stabilizing mRNA expression [42] and activating the KRAS–IRF2
axis [43]. Altogether, these tumors may be classified as immunologically ignorant or ex-
cluded and may benefit from treatments targeting the immune stromal barrier elicited by
oncogenic signaling along with immune augmentation strategies [44].

The observation that the “HighTMB/HighCNA” subgroup was more characterized
with alterations related to epigenetic modifications (e.g., EZH2 and SUZ12) and metabolic
reprogramming when compared to the subgroup of “LowTMB/HighCNA” suggests that
while these tumors exhibit high TMB and are more likely to form neoantigens, their antigen
presentation ability may be hindered by epigenetic modifications known to downregulate
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HLA gene expression and subsequently induce several immune-resistance mechanisms via
major histocompatibility complex (MHC) loss and T-cell exhaustion [23,45]. Alterations
found to be characteristic of this subgroup affect components of the polycomb repressive
complex 2 (PRC2) involved in chromatin silencing (e.g., EZH2 and SUZ12) and could
repress the transcription of MHC-I antigen-processing genes, rendering these tumors
sensitive to strategies, such as use of EZH2 inhibitors, to restore antitumor immunity and
elicit a response to ICB [46,47]. Furthermore, characteristic alterations in genes related to
metabolic reprogramming such as succinate dehydrogenases (e.g., SDHA, SDHC) involved
in the tricarboxylic acid cycle can lead to hypoxic induction of aerobic glycolysis that
induces the expansion of immunosuppressive cells in the TME (e.g., regulatory T cells and
MDSCs) and M2 macrophage polarization [10,48], suggesting that new combinations of
metabolic reprogramming agents with ICB may promote immune activation and mitigate
therapeutic resistance [23].

While significantly fewer alterations that are linked to an immunosuppressive TME
were seen in the “LowTMB/LowCNA” subgroup, these tumors benefitted less from ICB
when compared to those of the “HighTMB/LowCNA” subgroup, likely due to the low
burden of somatic mutations that these tumors possess, resulting in a low neoantigenic
load and thus making them immunologically cold and invisible to T cells to elicit tumor
killing [23]. These tumors may have a pre-existing phenotype with a selection of tumor
clones characterized by a paucity of immunogenic neoantigens [23], suggesting that these
tumors may be better targeted with immune augmentation strategies such as adoptive T
cells and cancer vaccines or potential natural-killer-based therapies that do not require
neoantigen presentation to improve immunotherapy efficacy [23].

Our findings may be of a clinical value in guiding therapeutic choices in advanced
cancers, as we provide evidence to hypothesize that “HighTMB/LowCNA” status bet-
ter defines the tumors that respond to ICB harboring a greater mutational load and an
increased likelihood of recognition by neoantigen-reactive T cells. This “immune hot”
subgroup accounted for nearly 14% of the cases included in our analysis of the translational
MSK-IMPACT cohort, which is close to the overall (<15%) average fraction of patients
with various advanced cancers reported to benefit from immunotherapy [49]. Indeed,
resistance to immunotherapy is still seen over an extended period of follow-up for most
of patients with advanced cancers, and therefore improving their survival rates prevails
as a high priority for the immuno-oncology community [18]. The identification of distinct
subgroups and their unique 78 individual CNAs in this study highlights that incorporat-
ing CNA burden along with TMB assessment may better inform treatment decisions for
immunotherapy or the prioritization of alternative strategies in clinical practice. In this
context, several pancancer initiatives completed thus far apart from the MSK-IMPACT, such
as NCI-MATCH [50], K-MASTER [51], and BC Cancer Personalized OncoGenomics [52], as
well as other ongoing clinical trial programs, such as TAPUR (NCT02693535) and CAPTUR
(NCT03297606), have been characterizing the complex genomic makeup of advanced tu-
mors to identify druggable changes to match patients for improved personalized treatments
in the clinical setting. While the majority of the molecularly driven biomarker-defined
subsets found to be responsive to specific targets in these studies are commonly mutation-
based, many potential amplification/loss targets were identified as well. Indeed, our review
of the large, publicly accessible registry of the AACR-GENIE Project Consortium, including
genomic data of 168,423 samples [2], revealed several of the key individual CNAs identified
in our study that can be incorporated in the prospective design of clinical trials, which may
have the potential to target specific histologies.

The association between high CNA burden and immunotherapy benefit observed
in glioma that was distinct from other cancer types might be explained by the previous
exposure of these tumors to the alkylating agent temozolomide, which has been shown
to benefit gliomas harboring several CNAs [53]. Furthermore, the original analysis of the
same MSK-IMPACT dataset showed that high TMB was associated with poor survival after
immunotherapy in gliomas, suggesting that the previous exposure of these tumors to temo-



Cancers 2024, 16, 732 17 of 20

zolomide can promote less immunogenic subclonal mutations and confer immunotherapy
resistance [17].

Our study has several limitations. First, while we used the MSK-IMPACT cohort,
which is a large, publicly available dataset of patients treated with ICB, the small number
of cases classified with high TMB included in tumors other than melanoma, NSCLC, and
bladder cancer might have decreased the power to observe significant findings for the pre-
dictive capacity of the “TMB/CNA" subgroups for immunotherapy response within these
tumors. Second, unlike the prespecified FDA-approved cut-point of 10 mut/mb followed
in this study to define high TMB tumors, we used the median cut-point within each tumor
type to define high CNA burden since validated cut-points for CNA burden are currently
lacking. Nonetheless, we followed a similar approach to the original MSK-IMPACT study,
which initially demonstrated the capacity of TMB to predict immunotherapy benefit using
the median cut-point of TMB burden prior to the subsequent validation and development
of the universal tissue-agnostic 10 mut/mb. In a similar fashion, our study provides a
proof-of-concept required to train and validate a tissue-agnostic universal cut-point for
CNA burden that is more likely to be translated into clinic. While previous attempts using
MSK-IMPACT data for immunotherapy response have proposed methods, such as elbow-
point, that are based on all cases or the lower tertile in the NSCLC cohort to determine the
cut-off used for calling CNAs [54,55], analytical variability issues related to the assessment
of CNA burden still need to be optimized and standardized to reach a consensus on the
best modality for defining tumors with high CNA burden. Lastly, while we identified 78
individual CNAs to be characteristic of four clinically distinct subgroups with a potential to
be included in biomarker-driven clinical trial designs, other CNAs might also be of interest
and should be further investigated in additional large cohorts of patients treated with ICB.

5. Conclusions

In this study we demonstrated the predictive capacity of CNA burden to be a biomarker
for immunotherapy resistance on a large dataset of 1661 cases spanning different advanced
cancer types and using an FDA-approved test available in clinical practice. We further
showed that the combination of TMB and CNA burden better stratifies patients into sub-
sets with differential response to ICB with unique CNA profiles, enriched pathways, and
predicted transcriptional and phenotypic effects related to immune signaling and CD8+
T-cell abundance in the tumor microenvironment. These findings may better guide patient
selection for immunotherapy or alternative/matched strategies in clinical practice.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers16040732/s1: Figure S1: Kaplan–Meier curves showing
overall survival for cancer patients stratified according to CNA burden categories in all cases and in
(C) the melanoma cohort, (D) bladder cancer cohort, (E_ NSCLC cohort, and (F) colorectal cancer
cohort; Figure S2: Alluvial plot showing the distribution of the four subgroups stratified according to
the combinatorial expression of TMB and CNA burden across the different cancer types; Figure S3:
Stack plot showing the frequency of the copy number alterations in the 78 genes found to be charac-
teristic of the four “TMB/CNA" subgroups according to cancer type; Figure S4: Circulatory heatmaps
showing the association between individual CNAs and the immune cell abundance of CD8+ T
cells evaluated in The Cancer Genome Atlas (TCGA) cohorts of breast cancer and esophagogastric
cancer; Table S1: Multivariate analysis for the continuous increase in CNA burden as determined
by the fraction of genome altered scores, with their association being tested with overall survival
after immune checkpoint blockade across different tumor types; Table S2: Distribution of the four
subgroups stratified according to the combinatorial expression of TMB and CNA burden across the
different cancer types; Table S3: Characteristics of the four “TMB/CNA” subgroups identified in the
MSK-IMPACT translational study cohort; Table S4: Genes with individual copy number alterations
characteristic of at least one “TMB/CNA” subgroup vs. others; Table S5: A list of 78 genes whose al-
terations significantly distinguish at least one “TMB/CNA” subgroup vs. others and their associated
pathways; Table S6: Association between the 78 gene copy number alterations that characterize the
“TMB/CNA” subgroups with CD8+ T-cell abundance; Table S7: Gene alterations that characterize

https://www.mdpi.com/article/10.3390/cancers16040732/s1
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the subgroups with high CNA burden included in biomarker-driven clinical trial designs (retrieved
from the AACR GENIE Project Consortium database).
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