Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Conventional Chromosome Analysis
2.3. Optical Genome Mapping
2.4. Next-Generation Sequencing
2.5. FLT3 ITD and TKD Analysis
2.6. Archer RNA Fusion Assay
3. Results
3.1. Patients
3.2. Detection of KMT2A PTD by OGM and Confirmation by Archer RNA Fusion Assay
3.3. Cytogenomic Abnormalities Detected by G-Banded Karyotyping and OGM
3.4. Gene Mutations and FLT3 ITD
3.5. Response to Treatments and Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, C.; Larghero, P.; Almeida Lopes, B.; Burmeister Gröger, D.; Sutton, R.; Venn, N.C.; Cazzaniga, G.; Corral Abascal, L.; Tsaur, G. The KMT2A Recombinome of Acute Leukemias in 2023. Leukemia 2023, 37, 988–1005. [Google Scholar] [CrossRef] [PubMed]
- Steudel, C.; Wermke, M.; Schaich, M.; Schäkel, U.; Illmer, T.; Ehninger, G.; Thiede, C. Comparative Analysis of MLL Partial Tandem Duplication and FLT3 Internal Tandem Duplication Mutations in 956 Adult Patients with Acute Myeloid Leukemia. Genes Chromosomes Cancer 2003, 37, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Shiah, H.S.; Kuo, Y.Y.; Tang, J.L.; Huang, S.Y.; Yao, M.; Tsay, W.; Chen, Y.C.; Wang, C.H.; Shen, M.C.; Lin, D.T.; et al. Clinical and Biological Implications of Partial Tandem Duplication of the MLL Gene in Acute Myeloid Leukemia without Chromosomal Abnormalities at 11q23. Leukemia 2002, 16, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Basecke, J.; Whelan, J.T.; Griesinger, F.; Bertrand, F.E. The MLL Partial Tandem Duplication in Acute Myeloid Leukaemia. Br. J. Haematol. 2006, 135, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Dicker, F.; Haferlach, C.; Sundermann, J.; Wendland, N.; Weiss, T.; Kern, W.; Haferlach, T.; Schnittger, S. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 Patients with MDS or Secondary AML. Leukemia 2010, 24, 1528–1532. [Google Scholar] [CrossRef]
- Zorko, N.A.; Bernot, K.M.; Whitman, S.P.; Siebenaler, R.F.; Ahmed, E.H.; Marcucci, G.G.; Yanes, D.A.; McConnell, K.K.; Mao, C.; Kalu, C.; et al. Mll Partial Tandem Duplication and Flt3 Internal Tandem Duplication in a Double Knock-In Mouse Recapitulates Features of Counterpart Human Acute Myeloid Leukemias. Blood 2012, 120, 1130–1136. [Google Scholar] [CrossRef]
- Schnittger, S.; Wörmann, B.; Hiddemann, W.; Griesinger, F. Partial Tandem Duplications of the MLL Gene Are Detectable in Peripheral Blood and Bone Marrow of Nearly All Healthy Donors. Blood 1998, 92, 1728–1734. [Google Scholar] [CrossRef]
- Testa, U.; Riccioni, R.; Militi, S.; Coccia, E.; Stellacci, E.; Samoggia, P.; Latagliata, R.; Mariani, G.; Rossini, A.; Battistini, A.; et al. Elevated Expression of IL-3Ralpha in Acute Myelogenous Leukemia is Associated with Enhanced Blast Proliferation, Increased Cellularity, and Poor Prognosis. Blood 2002, 100, 2980–2988. [Google Scholar] [CrossRef]
- Hinai, A.; Pratcorona, M.; Grob, T.; Kavelaars, F.G.; Bussaglia, E.; Sanders, M.A.; Nomdedeu, J.; Valk, P.J.M. The Landscape of KMT2A-PTD AML: Concurrent Mutations, Gene Expression Signatures, and Clinical Outcome. Hemasphere 2019, 3, e181. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Ding, L.W.; Tan, K.T.; Chien, W.; Mayakonda, A.; Lin, D.C.; Loh, X.Y.; Xiao, J.F.; Meggendorfer, M.; Alpermann, T.; et al. Ordering of Mutations in Acute Myeloid Leukemia with Partial Tandem Duplication of MLL (MLL-PTD). Leukemia 2017, 31, 1–10. [Google Scholar] [CrossRef]
- Ye, W.; Ma, M.; Wu, X.; Deng, J.; Liu, X.; Zheng, X.; Gong, Y. Prognostic Significance of KMT2A-PTD in Patients with Acute Myeloid Leukaemia: A Systematic Review and Meta-Analysis. BMJ Open 2023, 13, e062376. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Arango Ossa, J.E.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid. 2022, 1, EVIDoa2200008. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.M.; Dewar, R.; Burke, P.W.; Shao, L. Partial Tandem Duplication of KMT2A (MLL) May Predict a Subset of Myelodysplastic Syndrome with Unique Characteristics and Poor Outcome. Haematologica 2018, 103, e131–e134. [Google Scholar] [CrossRef] [PubMed]
- Dorrance, A.M.; Liu, S.; Yuan, W.; Becknell, B.; Arnoczky, K.J.; Guimond, M.; Strout, M.P.; Feng, L.; Nakamura, T.; Yu, L.; et al. Mll Partial Tandem Duplication Induces Aberrant Hox Expression In Vivo via Specific Epigenetic Alterations. J. Clin. Invest. 2006, 116, 2707–2716. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Sun, J.Z.; Liu, F.; Zhang, H.; Ma, Y. Higher Expression Levels of the HOXA9 Gene, Closely Associated with MLL-PTD and EZH2 Mutations, Predict Inferior Outcome in Acute Myeloid Leukemia. OncoTargets Ther. 2016, 9, 711–722. [Google Scholar] [CrossRef]
- Issa, G.C.; Ravandi, F.; DiNardo, C.D.; Jabbour, E.; Kantarjian, H.M.; Andreeff, M. Therapeutic Implications of Menin Inhibition in Acute Leukemias. Leukemia 2021, 35, 2482–2495. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Y.; Li, J.; Yang, G.; Zhang, S. The KMT2A Rearrangement is an Early Event Prior to KMT2A-PTD in AML Patients with Both Molecular Aberrations. Ann. Hematol. 2023, 102, 495–497. [Google Scholar] [CrossRef]
- Dohner, K.; Tobis, K.; Ulrich, R.; Fröhling, S.; Benner, A.; Schlenk, R.F.; Döhner, H. Prognostic Significance of Partial Tandem Duplications of the MLL Gene in Adult Patients 16 to 60 Years Old with Acute Myeloid Leukemia and Normal Cytogenetics: A Study of the Acute Myeloid Leukemia Study Group Ulm. J. Clin. Oncol. 2002, 20, 3254–3261. [Google Scholar] [CrossRef]
- Schnittger, S.; Kinkelin, U.; Schoch, C.; Heinecke, A.; Haase, D.; Haferlach, T.; Büchner, T.; Wörmann, B.; Hiddemann, W.; Griesinger, F. Screening for MLL Tandem Duplication in 387 Unselected Patients with AML Identify a Prognostically Unfavorable Subset of AML. Leukemia 2000, 14, 796–804. [Google Scholar] [CrossRef]
- Tsai, H.K.; Gibson, C.J.; Murdock, H.M.; Davineni, P.; Harris, M.H.; Wang, E.S.; Gondek, L.P.; Kim, A.S.; Nardi, V.; Lindsley, R.C. Allelic Complexity of KMT2A Partial Tandem Duplications in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Blood Adv. 2022, 6, 4236–4240. [Google Scholar] [CrossRef]
- Dai, B.; Yu, H.; Ma, T.; Lei, Y.; Wang, J.; Zhang, Y.; Lu, J.; Yan, H.; Jiang, L.; Chen, B. The Application of Targeted RNA Sequencing for KMT2A-Partial Tandem Duplication Identification and Integrated Analysis of Molecular Characterization in Acute Myeloid Leukemia. J. Mol. Diagn. 2021, 23, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- McKerrell, T.; Moreno, T.; Ponstingl, H.; Bolli, N.; Dias, J.M.L.; Tischler, G.; Colonna, V.; Manasse, B.; Bench, A.; Bloxham, D.; et al. Development and Validation of a Comprehensive Genomic Diagnostic Tool for Myeloid Malignancies. Blood 2016, 128, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Seto, A.; Downs, G.; King, O.; Salehi-Rad, S.; Baptista, A.; Chin, K.; Grenier, S.; Nwachukwu, B.; Tierens, A.; Minden, M.D.; et al. Genomic Characterization of Partial Tandem Duplication Involving the KMT2A Gene in Adult Acute Myeloid Leukemia. Cancers 2024, 16, 1693. [Google Scholar] [CrossRef] [PubMed]
- Loghavi, S.; Wei, Q.; Ravandi, F.; Quesada, A.E.; Routbort, M.J.; Hu, S.; Toruner, G.A.; Wang, S.A.; Wang, W.; Miranda, R.N.; et al. Optical Genome Mapping Improves the Accuracy of Classification, Risk Stratification, and Personalized Treatment Strategies for Patients with Acute Myeloid Leukemia. Am. J. Hematol. 2024, 10, 1959–1968. [Google Scholar] [CrossRef]
- Ok, C.Y.; Loghavi, S.; Sui, D.; Wei, P.; Kanagal-Shamanna, R.; Yin, C.C.; Zuo, Z.; Routbort, M.J.; Tang, G.; Tang, Z.; et al. Persistent IDH1/2 Mutations in Remission Can Predict Relapse in Patients with Acute Myeloid Leukemia. Haematologica 2019, 104, 305–311. [Google Scholar] [CrossRef]
- Warren, M.; Luthra, R.; Yin, C.C.; Ravandi, F.; Cortes, J.E.; Kantarjian, H.M.; Medeiros, L.J.; Zuo, Z. Clinical Impact of Change of FLT3 Mutation Status in Acute Myeloid Leukemia Patients. Mod. Pathol. 2012, 25, 1405–1412. [Google Scholar] [CrossRef]
- Wang, S.A.; Jabbar, K.; Lu, G.; Chen, S.S.; Galili, N.; Vega, F.; Jones, D.; Raza, A.; Kantarjian, H.; Garcia-Manero, G.; et al. Trisomy 11 in Myelodysplastic Syndromes Defines a Unique Group of Disease with Aggressive Clinicopathologic Features. Leukemia 2010, 24, 740–747. [Google Scholar] [CrossRef]
- Eisfeld, A.K.; Kohlschmidt, J.; Mrózek, K.; Blachly, J.S.; Nicolet, D.; Kroll, K.; Orwick, S.; Carroll, A.J.; Stone, R.M.; de la Chapelle, A.; et al. Adult Acute Myeloid Leukemia with Trisomy 11 as the Sole Abnormality is Characterized by the Presence of Five Distinct Gene Mutations: MLL-PTD, DNMT3A, U2AF1, FLT3-ITD and IDH2. Leukemia 2016, 30, 2254–2258. [Google Scholar] [CrossRef]
- Caligiuri, M.A.; Strout, M.P.; Schichman, S.A.; Mrózek, K.; Arthur, D.C.; Herzig, G.P.; Baer, M.R.; Schiffer, C.A.; Heinonen, K.; Knuutila, S.; et al. Partial Tandem Duplication of ALL1 as a Recurrent Molecular Defect in Acute Myeloid Leukemia with Trisomy 11. Cancer Res. 1996, 56, 1418–1425. [Google Scholar]
- Vetro, C.; Haferlach, T.; Meggendorfer, M.; Stengel, A.; Jeromin, S.; Kern, W.; Haferlach, C. Cytogenetic and Molecular Genetic Characterization of KMT2A-PTD Positive Acute Myeloid Leukemia in Comparison to KMT2A-Rearranged Acute Myeloid Leukemia. Cancer Genet. 2020, 240, 15–22. [Google Scholar] [CrossRef]
- Bera, R.; Chiu, M.C.; Huang, Y.J.; Huang, G.; Lee, Y.S.; Shih, L.Y. DNMT3A Mutants Provide Proliferating Advantage with Augmentation of Self-Renewal Activity in the Pathogenesis of AML in KMT2A-PTD-Positive Leukemic Cells. Oncogenesis 2020, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Zhao, X.S.; Qin, Y.Z.; Zhu, H.H.; Jia, J.S.; Jiang, Q.; Wang, J.; Zhao, T.; Huang, X.J.; Jiang, H. The Initial Level of MLL-Partial Tandem Duplication Affects the Clinical Outcomes in Patients with Acute Myeloid Leukemia. Leuk. Lymphoma 2018, 59, 967–972. [Google Scholar] [CrossRef] [PubMed]
Case | Sex/Age | Diagnosis | BM Blasts | Main Treatment | Response to Treatments | SCT | FU Time (Mon) * | FU Time (Mon) ** | Last FU |
---|---|---|---|---|---|---|---|---|---|
1 | M/68 | de novo AML | 73% | CLIA + Ven | CR | Yes | 12.3 | 12.3 | ACR |
2 | F/40 | de novo AML | 60% | CLIA + Ven | CR | 5.1 | 5.1 | Alive (loss of FU) | |
3 | M/81 | de novo AML | 88% | IMGN632 + AZA + Ven | Responded, BM aplasia | 3.6 | 3.6 | Died | |
4 | M/45 | de novo AML | 30% | 7 + 3 plus Midostaurin | CR | Yes | 8.1 | 8.1 | ACR |
5 | F/59 | de novo AML | 52% | CLIA +Ven | Partial response | 2.9 | 3.0 | ACR | |
6 | F/44 | de novo AML | 35% | CLIA + Ven | CR | 5.7 | 5.6 | ACR | |
7 | F/62 | de novo AML | 72% | NA | NA | 0.4 | 0.4 | Died | |
8 | F/58 | de novo AML | 53% | CLIA + Ven | CR | 3.0 | 3.0 | ACR | |
9 | M/65 | de novo AML | 53% | CLIA + Ven | CR | 4.8 | 4.8 | ACR | |
10 | M/63 | de novo AML | 53% | DAC + Ven + Quiz | Responded, BM aplasia | Yes | 9.7 | 9.7 | Died |
11 | M/64 | de novo AML | 45% | DAC + Ven + Quiz | Partial response | Yes | 5.4 | 5.4 | ACR |
12 | F/69 | de novo AML | 73% | DAC + Ven + Quiz | CR | Yes | 12.7 | 12.7 | ACR |
13 | M/75 | de novo AML | 48% | AZA + Ven | NA | 0.7 | 0.7 | Alive (no FU BM) | |
14 | M/71 | de novo AML | 37% | Clad + Ldac + Ven | NA | 0.5 | 0.5 | Alive (no FU BM) | |
15 | M/80 | sAML | 84% | CLAD + LDAC + enasidenib | Partial response | 4.0 | 3.8 | Died | |
16 | M/69 | sAML | 47% | AZA + Ven + Gilt | Refractory | 2.2 | 2.2 | Died | |
17 | M/84 | sAML | 35% | AraC + Ven | Refractory | 4.5 | 4.2 | Died | |
18 | M/84 | sAML | 42% | ASTX727 + Ven | Partial response | 6.0 | 6.0 | AWD | |
19 | M/65 | sAML | 89% | Many | Refractory | Yes+ | 21.0 | 2.1 | Died |
20 | M/78 | sAML | 48% | DAC + Ven + Quiz | Refractory | 1.6 | 1.6 | AWD | |
21 | M/75 | sAML | 20% | Clad + Ldac + Ven | Partial response | 1.5 | 1.5 | AWD | |
22 | M/74 | R/R AML | 69% | AZA + DAC + Ven + Gilt | Refractory | 24.6 | 8.5 | AWD | |
23 | F/52 | R/R AML | 95% | Many | Refractory | Yes+ | 19.2 | 0.9 | Died |
24 | M/59 | R/R AML | 83% | Aza | Refractory | 3.2 | 0.0 | Alive (loss of FU) | |
25 | M/71 | R/R AML | 46% | ASTX727 + Ven + Gilt | CR | Yes | 15.8 | 15.8 | ACR |
26 | M/53 | R/R AML | 83% | CLIA + Gilt | CR | Yes | 9.6 | 4.6 | ACR |
27 | M/73 | R/R AML | 90% | DAC + Ven | Refractory | 15.0 | 3.3 | Died | |
28 | F/64 | R/R AML | 89% | DAC + Ven + Gilt | Partial response | 8.9 | 7.4 | AWD | |
29 | M/29 | R/R AML | 89% | multiple, including CLIA + Ven | Refractory | Yes+ | 13.9 | 5.3 | Died |
30 | F/72 | R/R AML | 87% | DAC + Ven + Enasidenib | Refractory | 11.4 | 3.8 | Died | |
31 | M/68 | R/R AML | 92% | Aza + Ven, CLAG + Gilt | Partial response | 12.4 | 2.4 | Died | |
32 | M/23 | R/R AML | 24% | Multiple | Refractory | Yes+ | 29.8 | 7.9 | Died |
33 | M/63 | R/R AML | 10% | CLAG | Refractory | 13.3 | 0.0 | Alive (loss of FU) | |
34 | F/79 | R/R AML | 88% | 7 + 3; ASTX727 + Ven | Refractory | 15.6 | 1.0 | Died | |
35 | F/69 | R/R AML | 84% | AZA + Ven | Partial response | 16.3 | 7.5 | AWD | |
36 | M/70 | MDS | 4% | NA | NA | 1.1 | 1.1 | Died | |
37 | M/71 | MDS, R/R | 3% | ASTX030 | Refractory | 9.1 | 6.0 | AWD | |
38 | F/66 | MDS, R/R | 17% | Aza | Refractory, progress to AML | Yes+ | 19.5 | 8.5 | Died |
39 | M/71 | MDS, R/R | 9% | Aza, DAC | Refractory | 14.5 | 4.8 | Died | |
40 | F/65 | MDS, R/R | 2% | ASTX030 | Refractory | 23.0 | 1.9 | AWD | |
41 | M/73 | CMML | 13% | DAC + Ven | Good response | Yes | 7.2 | 5.8 | ACR |
42 | F/46 | CMML | 10% | Clad + Ldac + Gilt | Refractory | 5.0 | 5.0 | AWD | |
43 | M/55 | CMML | 18% | Ven + Clad + LDAC + Aza | Refractory, prog to AML | Yes | 19.3 | 19.3 | AWD |
44 | M/86 | CMML | 2% | DAC | Refractory | 6.6 | 6.0 | AWD | |
45 | M/65 | CMML | 5% | DAC + Ven | Refractory | Yes | 5.3 | 4.4 | Died |
Case | Karyotype | CNV by OGM | SV by OGM | Archer RNA |
---|---|---|---|---|
1 | 46,XY,der(7)t(7;11)(q22;q13)[6]/46,XY [14] | 7q22.1q36.3(101111770_157627636)x1 11q13.4q25(72147563_135069565)) × 3 | ins(11;?)(q23.3;?)/ KMT2A t(7;11)(q22.1;q13.4) | NA |
2 | 46,XX,del(9)(q13q22),del(12)(p11.2)[2]/ 46,XX [18] | No | ins(11;?)(q23.3;?)/ KMT2A | NA |
3 | 47,XY, +13[11]/94,idemx2[3]/46,XY [6] | (13) × 3 | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
4 | 46,Y,t(X;3)(q28;q21)[20] | 5q35.2q35.3(176056006_178036827) × 1 | ins(11;?)(q23.3;?)/ KMT2A t(X;3)(q28;q21.3)/GATA2::BRCC3 | NA |
5 | 46,XX [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
6 | 46,XX [20] | (9p24.1p23) × 1 | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
7 | 46,XX [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
8 | 46,XX [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon10−exon2 |
9 | 47,XY, +11[19]/46,XY [1] | (11) × 3 | ins(11;?)(q23.3;?)/ KMT2A | exon10−exon2 |
10 | 47,XY, +11[20] | (11) × 3 | ins(11;?)(q23.3;?)/ KMT2A | NA |
11 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
12 | 46,XX [20] | No | ins(11;?)(q23.3;?)/ KMT2A | NA |
13 | 47,XY, +11[17]/46,XY [3] | (11) × 3 | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
14 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
15 | 46,XY,add(5)(q13),add(7)(q31),add(11)(p15)[13]/45~46,idem,del(12)(q14),add(15)(q22)[cp7] | 5q13.3q35.3(76241632_181472714) × 1 7q22.1q36.3(102532017_157625834) × 1 11q13.4q25(73229466_135069565) × 3~4 | ins(11;?)(q23.3;?)/ KMT2A (7, 9, 12)cx | NA |
16 | NA | (9q21.13q31.1) × 1 | ins(11;?)(q23.3;?)/ KMT2A | NA |
17 | 47,XY, +8,del(12)(p13p11.1),del(20)(q11.2q13.3)[20] | 6p25.3p23(76216_14959181)x1 (8) × 3 9q22.32q34.2(95217699_133526602) × 3 12p13.33p11.1(14568_34717946) × 1 16q11.1q24.3(38277017_90079974) × 1 20q11.22q13.31(33803800_56426222) × 1 | ins(11;?)(q23.3;?)/ KMT2A ins(21;?)(q22.12;?)/ RUNX1 | NA |
18 | 46,XY [20] | No | ins(6;?)(q23.3;?)/ MYB dup(11)(q23.3q23.3)/ KMT2A dup(21)(q22.2q22.2)/ ERG | exon10−exon2 |
19 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon10−exon2 |
20 | 46,XY,der(7)t(7;11)(q11.2;q13)[20] | No | ins(11;?)(q23.3;?)/ KMT2A dup(21)(q22.2q22.2)/ ERG | exon10−exon2 |
21 | 46,XY,del(20)(q11.2q13.1)[20] | 20q11.21q13.13(32611202_50826425) × 1 | ins(11;?)(q23.3;?)/ KMT2A | exon10−exon2 |
22 | 46,XY,del(9)(q21q33)[18]/46,XY [2] | 9q21.11q33.3(66694956_124441888) × 1 | ins(11;?)(q23.3;?)/ KMT2A | exon10−exon2 |
23 | 46,XX,del(6)(p25p22)[20] | 6p25.2p22.1(3099106_30367222) × 1 | ins(11;?)(q23.3;?)/ KMT2A | exon10−exon2 |
24 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | NA |
25 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | NA |
26 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
27 | 48,XY, +4, +13[20] | (4) × 3 (13) × 3 | ins(11;?)(q23.3;?)/ KMT2A | NA |
28 | 46,XX [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
29 | 46,XY,t(7;10)(p22;q22)[3]/46,XY [17] | No | ins(11;?)(q23.3;?)/ KMT2A | RNA sequencing |
30 | 46,XX [20] | No | ins(11;?)(q23.3;?)/ KMT2A | NA |
31 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
32 | 47,XY, +8[3]/46,XY,r(7)[2]/46,XY [15] | 7q11.21q36.3(17599785_157009697) × 1 (8) × 3 | dup(11)(q23.3q23.3)/ KMT2A | NA |
33 | 46,XY,ider(20)(q10)del(20)(q11.2q13.1) [20] | 20p13q13.13(70156_50932235) × 1 20q13.13q13.33(50934299_61861320) × 3 | ins(11;?)(q23.3;?)/ KMT2A | exon10−exon2 |
34 | 46,XX,del(20)(q11.2q13.3)[1]/47,idem, +8[16] /46~47,idem,ins(8;11)(q24.2;q14q25)[cp3] | (8) × 3 20q11.21q13.31(33455109_57482326) × 1 | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
35 | 46,XX,del(7)(q21q36)[20] | 7q21.3q36.2(96488457_154090770) × 1 | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
36 | 46,XY,del(20)(q11.2q13.3)[19]/46,XY [1] | 20q11.21q13.13(32241971_51006470) × 1 | dup(11)(q23.3q23.3)/ KMT2A | NA |
37 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A ins(21;?)(q22.12;?)/ RUNX1 | exon8−exon2 |
38 | 46,XX,del(5)(q14q33)[1]/46,idem,der(7)t(7;12)(q22;q21)del(12)(q21q22),der(12)inv(12)(p12q12)t(7;12)(q22;q21)[19] | 5q14.3q33.2(89805168_155246009) × 1 7q22.2q22.3(104860533_106117224) × 1 7q35q36.1(146173208_149417208) × 1 12p13.2p12.2(11529351_21072975) × 1 12q21.1q21.31(74918720_81220056) × 1 | ins(11;?)(q23.3;?)/ KMT2A | exon10−exon2 |
39 | 46,XY [20] | 12q21.2q23.1(77212558_96570626) × 1 | ins(11;?)(q23.3;?)/ KMT2A | NA |
40 | 46,XX,der(16)t(1;16)(q21;q22)[3]/46,XX [17] | No | ins(11;?)(q23.3;?)/ KMT2A | NA |
41 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
42 | 46,XX [20] | No | ins(11;?)(q23.3;?)/ KMT2A | exon8−exon2 |
43 | 46,XY [20] | No | ins(11;?)(q23.3;?)/ KMT2A | NA |
44 | 46,XY,del(20)(q11.2q13.2)[20] | 20q11.21q13.2(32497427_51733992) × 1 | ins(11;?)(q23.3;?)/ KMT2A | NA |
45 | 46,XY [20] | No | dup(11)(q23.3q23.3)/ KMT2A | NA |
Case | Gene Mutation and VAF | Nomenclature by HGSV and COSMIC-ID | FLT3 ITD VAF and AR |
---|---|---|---|
1 | NF1 p.R1534* 20% NF1 p.P2310fs 28% U2AF1 p.S34F 37% BCOR1 p.Q1314* 73% | NF1 (NM_001042492.3):c.6927_6928insAG p.P2310fs* 10 NF1 (NM_001042492.3): c.4600C > T p.R1534* COSM24466 U2AF1 (NM_006758.3): c.101C > T p.S34F COSM166866 BCOR (NM_017745.6): c.3940C > T p.Q1314* | VAF 1% AR 0.01 |
2 | ETV6 p.S139fs 41% IDH2 p.R172K 37% | ETV6 (NM_001987.5): c.416_417del p.S139fs* 14 IDH2 (NM_002168.4): c.515G > A p.R172K COSM33733 | Negative |
3 | DNMT3A p.Y735C 45% RUNX1 p.A251fs 27% RUNX1 p.R162 94% SRSF2 p.P95_R102del 63% | DNMT3A (NM_022552.5): c.2204A > G p.Y735C COSM231560 RUNX1 (NM_001754.5): c.749_750insGGGGAGG p.A251fs RUNX1 (NM_001754.5): c.485G > A p.R162K COSM96546 SRSF2 (NM_003016.5): c.284_307del p.P95_R102del | VAF 2% AR 0.02 |
4 | NRAS p.G13R 34% | NRAS (NM_002524.5): c.37G > C p.G13R COSM569 | Negative |
5 | DNMT3A p.R882H 23% | DNMT3A (NM_022552.5): c.2645G > A p.R882H COSM52944 | VAF 1% AR 0.01 |
6 | FLT3 p.N676K 37% PHF6 p.T170fs 32% RUNX1 p.D93fs 37% WT1 p.L383fs < 5% | FLT3 (NM_004119.3): c.2028C > A p.N676K COSM303886 PHF6 (NM_032458.3): c.509delinsTT p.T170fs RUNX1 (NM_001754.5): c.276_277insTC p.D93fs WT1 (NM_024426.6): c.1145_1146insAAGAGCAGCGACGTGTGCCTGGAGTAGCCCCGAC p.L383fs | Negative |
7 | DNMT3A p.I780N 43% IDH1 p.R132C 39% STAG2 p.Q275* 31% | DNMT3A (NM_022552.5):c.2339T > A p.I780N IDH1 (NM_005896.4): c.394C > T p.R132C COSM28747 STAG2 (NM_006603.5): c.823C > T p.Q275* | Negative |
8 | ASXL1 p.G646fs 12% NRAS p.G13R < 5% PTPN11 p.D61Y < 5% | ASXL1 (NM_015338.6): c.1934dupG p.G646fs COSM34210 NRAS (NM_002524.5): c.37G > C p.G13R COSM569 PTPN11 (NM_002834.5): c.181G > T p.D61Y COSM13022 | Negative |
9 | IDH1 p.R132S 30% STAG2 p.W315*, 63% | IDH1 (NM_005896.4): c.394C > A p.R132S COSM28747 STAG2 (NM_006603.5): c.945G > A p.W315* | Negative |
10 | DNMT3A p.R882C 40% IDH2 p.R140Q 42% | DNMT3A (NM_022552.5): c.2644C > T p.R882C COSM5304 IDH2 (NM_002168.4): c.419G > A p.R140Q COSM41590 | VAF 66% AR 1.93 |
11 | DNMT3A p.T834I 43% RUNX1 p.R207fs 45% SF3B1 p. p.G742D 42% | DNMT3A (NM_022552.5): c.2501C > T p.T834I COSM1169638 RUNX1 (NM_001754.5): c.619dupC p.R207fs SF3B1 (NM_012433.4): c.2225G > A p.G742D COSM145923 | VAF 41% AR 0.69 |
12 | RUNX1 p.S318fs 32% IDH2 p.R140Q 46% | RUNX1 (NM_001754.5):c.952dupT p.S318fs IDH2 (NM_002168.4): c.419G > A p.R140Q COSM41590 | VAF 16% AR 0.19 |
13 | DNMT3A p.Q816* <5% IDH2 p.R172K 14% | DNMT3A (NM_022552.5): c.2446C > T p.Q816* COSM99739 IDH2 (NM_002168.4):c.515G > A p.R172K COSM41295 | Negative |
14 | ASXL1 p.G646fs 17% RUNX1 p.Y380* 48% | ASXL1 (NM_015338.6): c.1934dupG p.G646fs COSM34210 RUNX1 (NM_001754.5): c.1140C > A p.Y380* | Negative |
15 | IDH2 p.R140Q 46% JAK2 V617F <5% TET2 p. E1186* 42% TP53 p.R175G 94% WT1 p.F144fs 11% | IDH2 (NM_002168.4): c.419G > A p.R140Q COSM41590 JAK2 (NM_004972.4): c.1849G > T p.V617F COSM12600 TET2 (NM_001127208.3): c.3556G > T p.E1186* TP53 (NM_000546.6): c.523C > G p.R175G COSM10870 WT1 (NM_024426.6): c.4342_437delinsG p.F144fs | VAF 16% AR 0.2 |
16 | TP53 p.R273C 41% U2AF1 p.S34F 45% NRAS p. Q61K 8% EVT6 p. p.N382fs* 41% | TP53 (NM_000546.6): c.817C > T p.R273C COSM10659 U2AF1 (NM_006758.3):c.101C > T p.S34F COSM166866 NRAS (NM_002524.5):c.181C > A p.Q61K COSM580 ETV6 (NM_001987.5): c.1145dupA p.N382fs* | VAF 5% AR 0.05 |
17 | BCOR p.K1330* 66% DNMT3A p.R885W 36% KRAS p.G12D 47% U2AF1 p.S34F 48% NRAS p.G13R 7% | BCOR (NM_017745.6): c.3988A > T p.K1330* DNMT3A (NM_022552.5): c.2653A > T p.R885W COSM10075189 KRAS (NM_004985.5): c.35G > A p.G12D COSM521 U2AF1 (NM_006758.3): c.101C > T p.S34F COSM166866 NRAS (NM_002524.5): c.37G > C p.G13R COSM569 | Negative |
18 | BCOR p.Y1373* 82% NF1 p.I679fs 33% TET2 p.S1898T 38% U2AF1 p.S34F 41% | BCOR (NM_017745.6.6): c.4118_4119del p.Y1373* NF1 (NM_001042492.3): c.2033dupC p.I679fs* 21 TET2 (NM_001127208.30): c.5692T > A p.S1898T U2AF1 (NM_006758.3): c.101C > T p.S34F COSM166866 | Negative |
19 | BCOR p? 72% NRAS p.G12C 36% RUNX1 p.L98fs*24 36% TP53 p.C277F 8% | BCOR (NM_017745.6): c.4326 + 1G > A p.? NRAS (NM_002524.5): c.34G > T p.G12C COSM562 RUNX1 (NM_001754.5): c.292del p.L98fs* 24 TP53 (NM_000546.6): c.830G > T p.C277F COSM10749 | Negative |
20 | DNMT3A p.R771* 48% DNMT3A p.R366H 47% U2AF1 p.S34F 36% FLT3 p.D835V <5% | DNMT3A (NM_022552.5): c.2311C > T p.R771* COSM231563 DNMT3A (NM_022552.5): c.1097G > A p.R366H COSM1169226 U2AF1 (NM_006758.3): c.101C > T p.S34F COSM166866 FLT3 (NM_004119.3): c.2504A > T p.D835V COSM784 | Negative |
21 | TET2 p.C1396W 31% U2AF1 p.S34F 26% | TET2 (NM_001127208.3): c.4188C > G p.C1396W COSM211732 U2AF1 (NM_006758.3): c.101C > T p.S34F | Negative |
22 | DNMT3A p.G543C 40% SF3B1 p.G740V 36% | DNMT3A c.1627G > T p.G543C COSM87002 SF3B1 c.2219G > T p.G740V COSM6156130 | VAF 34% AR 0.52 |
23 | CBL splice site mutation FLT3 D835F 13%, FLT3 P.D835Y 30% PHF6 p.I314T 44% RUNX1 p.C108fs 41% STAG2 p.W485* 45% | CBL (NM_005188): c.1096-1G > C p.? FLT3 (NM_004119.3): c.2504A > T p.D835V COSM784 FLT3 (NM_004119.3):c.2503G > T p.D835Y COSM783 PHF6 (NM_032458.3): c.941T > C p.I314T COSM4385517 RUNX1 (NM_001754.5): c.320_321insGCTGGCG p.C108fs STAG2 (NM_006603.5): c.1455G > A p.W485* | VAF 45% AR 0.83 |
24 | ASXL1 p.G642* < 5% DNMT3A p.P451fs 45% JAK2 p. V617F < 5% SRSF2 p.P95L 29% TET2 p.C1298Y 44% TET2 p.N488fs 42% | ASXL1 (NM_015338.6): c.1924G > T p.G642* COSM110710 DNMT3A (NM_022552.5): c.1352del p.P451fs* JAK2 (NM_004972.4): c.1849G > T p.V617F COSM12600 SRSF2 (NM_003016.5): c.284C > T p.P95L COSM146288 TET2 (NM_001127208.3): c.3893G > A p.C1298Y COSM87138 TET2 (NM_001127208.3): c.1461del p.N488fs | Negative |
25 | DNMT3A p.R882H 29% WT1 p.S386*, 12% | DNMT3A (NM_022552.5): c.2645G > A p.R882H COSM52944 WT1 (NM_024426.6): c.1157C > A p.S386* COSM27307 | VAF 6% AR 0.06 |
26 | STAG2 p.? 81% TET2 p.L1721fs 32% WT1 p.Y300* 27% | STAG2 (NM_006603.5): c.1822-1G > A p.? TET2 (NM_001127208.3): c.5162dupT p.L1721fs WT1 (NM_024426.6): c.900C > G p.Y300* | VAF 34% AR 0.51 |
27 | DNMT3A p.M801V 40% TET2 p.Y437* 66%, TET2 p.N801fs 31% U2AF1 p.S34F 49%, CBL p.p417R < 5% | DNMT3A (NM_022552.5): c.2401A > G p.M801V COSM5944905 TET2 (NM_001127208.3):c.1311C > A p.Y437* TET2 (NM_001127208.3):c.2400_2415del p.N801fs U2AF1 (NM_006758.3): c.101C > T p.S34F COSM166866 CBL (NM_005188):c.1250C > G p.P417R COSM34081 | VAF 84% AR 5.2 |
28 | DNMT3A p.R 882C 36% PHF6 p.R274*, 41%, WT1 p.K464fs 48% WT1 p.H412fs 34% FLT3 p.V592D 45% | DNMT3A (NM_022552.5): c.2644C > T p. R882C; COSM53042 PHF6 (NM_032458.3): c.820C > T p.R274* WT1 (NM_024426.6): c.1390_1391 insGGGACTA p.K464fs WT1 (NM_024426.6): c.1235_1259 delinsCCG p.H412fs FLT3 (NM_004119.3): c.1775T > A p.V592D COSM5879551 | Negative |
29 | ETV6 p.A377V 36% IDH2 p.R140Q 40% WT1 p.G186fs 83% | ETV6 (NM_001987.5):c.1130C > T IDH2 (NM_002168.4): c.419G > A; p.R140Q COSM41590 WT1 (NM_024426.6): c.555dupC p.G186fs | Negative |
30 | DNMT3A p. R882H 39% IDH2 p.R 140Q 47% TP53 p.R273H VAF 31% | DNMT3A (NM_022552.5): c.2645G > A p.R882H COSM52944 IDH2 (NM_002168.4): c.419G > A p.R140Q COSM41590 TP53 (NM_000546.6):c.818G > A p.R273H COSM10660 | VAF 26% AR 0.35 |
31 | DNMT3A p. R882H 38% BCOR p.Q1624fs* 99% WT1 p.S285fs 43% | DNMT3A (NM_022552.5): c.2645G > A p.R882H COSM52944 BCOR (NM_017745.6): c.4871_4872del p.Q1624fs* 13 WT1 (NM_024426.6): c.850_851dupGG p.S285fs* 7 | VAF 74% AR 2.81 |
32 | BCOR p.M461fs 91% DNMT3A p.R882C 94% IDH1 p.R132S 38% RUNX1 p.P201Q 50% | BCOR (NM_017745.6):c.1378_1379dupAA p. M461fs DNMT3A (NM_022552.5): c.2644C > T p.R882C IDH1 (NM_005896.4): c.394C > A p.R132S COSM28748 RUNX1 (NM_001754.5): c.602G > A p.P201Q COSM24805 | Negative |
33 | TET2 p.R1660fs VAF 26% U2AF1 p.S34F VAF 42% | TET2 (NM_001127208.3): c.4979_4994del p.R1660fs U2AF1 (NM_006758.3): c.101C > T p.S34F COSM166866 | Negative |
34 | ASXL1 p.Q768* 44% FLT3 p.N676K 22% IDH1 p.R132C 43% NF1 p.2558* 48% RUNX1 p.240Q 54% SRSF2 p.P95H 45% STAG2 p.Y578* 39% KRAS p.G12A 5% | ASXL1 (NM_015338.6): c.2302C > T p.Q768* COSM41717 FLT3 (NM_004119.3): c.2028C > G p.N676K COSM303886 IDH1 (NM_005896.4): c.394C > T p.R132C COSM28747 NF1 (NM_001042492.3): c.6772C > T p.R2258* RUNX1 (NM_001754.5): c.611G > A p.R204Q COSM24731 SRSF2 (NM_003016.5): c.284C > A p.P95H COSM144993 STAG2 (NM_006603.5): c.1734C > G p.Y578* KRAS c.35G > C p.G12A COSM522 | Negative |
35 | TET2 p.C1211del 37% TET2 p.F519fs 26% | TET2 (NM_001127208.3):c.3632_3634del p.C1211del TET2 (NM_001127208.3): c.1557del p.F519fs* 14 | VAF 12% AR 0.14 |
36 | DNMT3A p. W297* 40% U2AF1 p.S34F 45% | DNMT3A (NM_022552.5): c.891G > A p.W297* U2AF1 (NM_006758.3): c.101C > T p.S34F COSM166866 | Negative |
37 | DNMT3A p.R288C 35% FLT3 p.D839G < 5% U2AF1 p.S34F 49% | DNMT3A (NM_022552.5): c.2644C > T p.R882C COSM53042 FLT3 (NM_004119.3): T > C c.2516A > G p.D839G COSM1166729 U2AF1 (NM_006758.3): G > A c.101C > T p.S34F COSM166866 | Negative |
38 | PTPN11 p.G503A 35% STAG2 p? 35% RUNX1 p.Q262fs < 5% | PTPN11 (NM_002834.5):c.1508G > C p.G503A COSM13027 STAG2 (NM_006603.5):c.1416G > T (splicing site) p.? RUNX1 (NM_001754.5):c.784C > T p.Q262* COSM270868 | Negative |
39 | STAG2 p.T1122fs 42% RUNX1 p. N153fs 38% SRSF2 p. P95L 27% IDH2 p.R172K 5% ASXL1 p.G646fs 5% | STAG2 (NM_006603.5):c.3364_3365insAA p.T1122fs RUNX1 (NM_001754.5): c.456_457dupGA p.N153fs SRSF2 (NM_003016.5): c.284C > T p.P95L COSM146288 IDH2 (NM_002168.4): c.515G > A p.R172K COSM41295 ASXL1 (NM_015338.6): c.1934dupG p.G646fs COSM34210 | Negative |
40 | DNMT3A p.R635W 38% IDH2 p.R140G 42% SF3B1 p.K700E 47% | DNMT3A (NM_022552.5):c.1903C > T p.R635W COSM87012 IDH2 (NM_002168.4): c.418C > G p.R140G COSM96477 SF3B1 (NM_012433.4): c.2098A > G p.K700E COSM133591 | Negative |
41 | ASXL1 p.G6464fs 17% FLT3 p.A680V < 5% RUNX1 p.A292fs 43% NRAS p.Q61K < 5% | ASXL1 (NM_015338.6): c.1934dupG p.G646fs COSM34210 FLT3 (NM_004119.3): c.2039C > T p.A680V COSM786 NRAS (NM_002524.5): c.181C > A p.Q61K COSM580 RUNX1 (NM_001754.5): c.870_873dupCATT p.A292fs | Negative |
42 | DNMT3A p.R882H 37% FLT3 p.D835E < 5% | DNMT3A (NM_022552.5): c.2645G > A p.R882H COSM52944 FLT3 (NM_004119.3): c.2505T > G p.D835E COSM788 | VAF 10% AR 0.11 |
43 | DNMT3A p. R882C 36% NRAS p.Q61K 33% | DNMT3A (NM_022552.5): c.2644C > T p. R882C COSM53042 NRAS (NM_002524.5): c.181C > A p.Q61K COSM580 | Negative |
44 | BCOR p.R1480* 81% NRAS p.G13V 35% U2AF1 p.34F 39% RUNX1 p.S48fs 52% | BCOR (NM_017745.6): c.4438C > T p.R1480* NRAS (NM_002524.5): c.38G > T p.G13V COSM574 U2AF1 (NM_006758.3):c.101C > T p.S34F COSM166866 RUNX1 (NM_001754.5): c.140dupT p.S48fs*90 | Negative |
45 | ASXL1 p.G646fs 16% CBL p.C384F 29% FLT3 p.D835Y 7% KIT p.D816V 14% RUNX1 p.R162G 43% | ASXL1 (NM_015338.6): c.1934dupG p.G646fs* COSM34210 CBL (NM_005188): c.1151G > T p.C384F COSM34068 FLT3 (NM_004119.3):c.2503G > T p.D835Y COSM783 KIT (NM_000222.3):c.2447A > T p.D816V COSM1314 RUNX1 (NM_001754.5):c.484A > G p.R162G COSM24718 | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Hu, S.; Xu, J.; Loghavi, S.; Daver, N.; Toruner, G.A.; Wang, W.; Medeiros, L.J.; Tang, G. Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes. Cancers 2024, 16, 4193. https://doi.org/10.3390/cancers16244193
Wei Q, Hu S, Xu J, Loghavi S, Daver N, Toruner GA, Wang W, Medeiros LJ, Tang G. Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes. Cancers. 2024; 16(24):4193. https://doi.org/10.3390/cancers16244193
Chicago/Turabian StyleWei, Qing, Shimin Hu, Jie Xu, Sanam Loghavi, Naval Daver, Gokce A. Toruner, Wei Wang, L. Jeffrey Medeiros, and Guilin Tang. 2024. "Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes" Cancers 16, no. 24: 4193. https://doi.org/10.3390/cancers16244193
APA StyleWei, Q., Hu, S., Xu, J., Loghavi, S., Daver, N., Toruner, G. A., Wang, W., Medeiros, L. J., & Tang, G. (2024). Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes. Cancers, 16(24), 4193. https://doi.org/10.3390/cancers16244193