Acute Myeloid Leukaemia and Acute Lymphoblastic Leukaemia Classification and Metabolic Characteristics for Informing and Advancing Treatment
Simple Summary
Abstract
1. Introduction
2. Pathophysiology
3. Classification and Risk Stratification, Informing Treatment and Prognosis
3.1. AML
3.2. ALL
4. Treating Acute Leukaemia
4.1. Drug Classification
4.2. Current Standard of Care
4.3. Adverse Reactions
4.4. Hypersensitivity Reactions
5. Metabolic Characteristics, Vulnerabilities, and Treatment Strategy
5.1. Key Differences in Metabolic Profiles Between Lymphoid and Myeloid Leukaemia Cells
5.1.1. Glycolysis and Oxidative Phosphorylation
5.1.2. Amino Acid Metabolism
5.1.3. Lipid Metabolism
5.2. Key Insights into How These Vulnerabilities Are Being Utilised for Therapeutic Purposes
5.2.1. Targeting Specific Metabolic Pathways
5.2.2. Leukaemia Stem Cells
5.2.3. Combination Therapies
5.2.4. Personalised Medicine
6. Asparaginase as Targeted Treatment in Acute Leukaemia
6.1. Current Limitations of Asparaginase Therapy
6.2. Obstacles to Asparaginase Use in AML
6.3. Metabolic Characteristics and Sensitivity to Asparaginase Treatment
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cancer Research UK. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk (accessed on 17 November 2024).
- Chen, C.; Hao, X.; Lai, X.; Liu, L.; Zhu, J.; Shao, H.; Huang, D.; Gu, H.; Zhang, T.; Yu, Z.; et al. Oxidative phosphorylation enhances the leukemogenic capacity and resistance to chemotherapy of B cell acute lymphoblastic leukemia. Sci. Adv. 2021, 7, eabd6280. [Google Scholar] [CrossRef]
- Jia, L.; Gribben, J.G. Dangerous power: Mitochondria in CLL cells. Blood 2014, 123, 2596–2597. [Google Scholar] [CrossRef]
- Baker, F.; Polat, I.H.; Abou-El-Ardat, K.; Alshamleh, I.; Thoelken, M.; Hymon, D.; Gubas, A.; Koschade, S.E.; Vischedyk, J.B.; Kaulich, M.; et al. Metabolic Rewiring Is Essential for AML Cell Survival to Overcome Autophagy Inhibition by Loss of ATG3. Cancers 2021, 13, 6142. [Google Scholar] [CrossRef]
- Galicia-Vázquez, G.; Smith, S.; Aloyz, R. Del11q-positive CLL lymphocytes exhibit altered glutamine metabolism and differential response to GLS1 and glucose metabolism inhibition. Blood Cancer J. 2018, 8, 13. [Google Scholar] [CrossRef]
- Mayer, R.L.; Schwarzmeier, J.D.; Gerner, M.C.; Bileck, A.; Mader, J.C.; Meier-Menches, S.M.; Gerner, S.M.; Schmetterer, K.G.; Pukrop, T.; Reichle, A.; et al. Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. Mol. Cell. Proteom. 2018, 17, 290–303. [Google Scholar] [CrossRef]
- Zhang, W.; Trachootham, D.; Liu, J.; Chen, G.; Pelicano, H.; Garcia-Prieto, C.; Lu, W.; Burger, J.A.; Croce, C.M.; Plunkett, W.; et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 2012, 14, 276–286. [Google Scholar] [CrossRef]
- Pei, S.; Minhajuddin, M.; Callahan, K.P.; Balys, M.; Ashton, J.M.; Neering, S.J.; Lagadinou, E.D.; Corbett, C.; Ye, H.; Liesveld, J.L.; et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J. Biol. Chem. 2013, 288, 33542–33558. [Google Scholar] [CrossRef]
- Thurgood, L.A.; Best, O.G.; Rowland, A.; Lower, K.M.; Brooks, D.A.; Kuss, B.J. Lipid uptake in chronic lymphocytic leukemia. Exp. Hematol. 2022, 106, 58–67. [Google Scholar] [CrossRef]
- Li, D.; Liang, J.; Yang, W.; Guo, W.; Song, W.; Zhang, W.; Wu, X.; He, B. A distinct lipid metabolism signature of acute myeloid leukemia with prognostic value. Front. Oncol. 2022, 12, 876981. [Google Scholar] [CrossRef]
- Schilstra, C.E.; McCleary, K.; Fardell, J.E.; Donoghoe, M.W.; McCormack, E.; Kotecha, R.S.; Lourenco, R.D.A.; Ramachandran, S.; Cockcroft, R.; Conyers, R.; et al. Prospective longitudinal evaluation of treatment-related toxicity and health-related quality of life during the first year of treatment for pediatric acute lymphoblastic leukemia. BMC Cancer 2022, 22, 985. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Schmiegelow, K.; Levinsen, M.F.; Attarbaschi, A.; Baruchel, A.; Devidas, M.; Escherich, G.; Gibson, B.; Heydrich, C.; Horibe, K.; Ishida, Y.; et al. Second malignant neoplasms after treatment of childhood acute lymphoblastic leukemia. J. Clin. Oncol. 2013, 31, 2469–2476. [Google Scholar] [CrossRef]
- Dübbers, A.; Würthwein, G.; Müller, H.J.; Schulze-Westhoff, P.; Winkelhorst, M.; Kurzknabe, E.; Lanvers, C.; Pieters, R.; Kaspers, G.J.; Creutzig, U.; et al. Asparagine synthetase activity in paediatric acute leukaemias: AML-M5 subtype shows lowest activity. Br. J. Haematol. 2000, 109, 427–429. [Google Scholar] [CrossRef]
- Hlozkova, K.; Pecinova, A.; Alquezar-Artieda, N.; Pajuelo-Reguera, D.; Simcikova, M.; Hovorkova, L.; Rejlova, K.; Zaliova, M.; Mracek, T.; Kolenova, A.; et al. Metabolic profile of leukemia cells influences treatment efficacy of L-asparaginase. BMC Cancer 2020, 20, 526. [Google Scholar] [CrossRef]
- Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr.; Laird, P.W.; Baty, J.D.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [CrossRef]
- Cobaleda, C.; Godley, L.A.; Nichols, K.E.; Wlodarski, M.W.; Sanchez-Garcia, I. Insights into the Molecular Mechanisms of Genetic Predisposition to Hematopoietic Malignancies: The Importance of Gene–Environment Interactions. Cancer Discov. 2024, 14, 396–405. [Google Scholar] [CrossRef]
- Kachuri, L.; Jeon, S.; DeWan, A.T.; Metayer, C.; Ma, X.; Witte, J.S.; Chiang, C.W.K.; Wiemels, J.L.; de Smith, A.J. Genetic determinants of blood-cell traits influence susceptibility to childhood acute lymphoblastic leukemia. Am. J. Hum. Genet. 2021, 108, 1823–1835. [Google Scholar] [CrossRef]
- Rosendahl Huber, A.; Van Hoeck, A.; Van Boxtel, R. The Mutagenic Impact of Environmental Exposures in Human Cells and Cancer: Imprints Through Time. Front. Genet. 2021, 12, 760039. [Google Scholar] [CrossRef]
- Clark, A.D.; Nair, N.; Anderson, A.E.; Thalayasingam, N.; Naamane, N.; Skelton, A.J.; Diboll, J.; Barton, A.; Eyre, S.; Isaacs, J.D.; et al. Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci. J. Allergy Clin. Immunol. 2020, 145, 1438–1451. [Google Scholar] [CrossRef]
- Wu, C.; Ning, H.; Liu, M.; Lin, J.; Luo, S.; Zhu, W.; Xu, J.; Wu, W.-C.; Liang, J.; Shao, C.-K.; et al. Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. J. Clin. Investig. 2018, 128, 3425–3438. [Google Scholar] [CrossRef]
- Wang, W.; Beird, H.; Kroll, C.J.; Hu, S.; Bueso-Ramos, C.E.; Fang, H.; Tang, G.; Tang, Z.; Wang, F.; Takahashi, K.; et al. T(6;14)(q25;q32) involves BCL11B and is highly associated with mixed-phenotype acute leukemia, T/myeloid. Leukemia 2020, 34, 2509–2512. [Google Scholar] [CrossRef]
- Di Giacomo, D.; La Starza, R.; Gorello, P.; Pellanera, F.; Kalender Atak, Z.; De Keersmaecker, K.; Pierini, V.; Harrison, C.J.; Arniani, S.; Moretti, M.; et al. 14q32 rearrangements deregulating BCL11B mark a distinct subgroup of T-lymphoid and myeloid immature acute leukemia. Blood 2021, 138, 773–784. [Google Scholar] [CrossRef]
- Montefiori, L.E.; Bendig, S.; Gu, Z.; Chen, X.; Pölönen, P.; Ma, X.; Murison, A.; Zeng, A.; Garcia-Prat, L.; Dickerson, K.; et al. Enhancer Hijacking Drives Oncogenic BCL11B Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discov. 2021, 11, 2846–2867. [Google Scholar] [CrossRef]
- Alexander, T.B.; Gu, Z.; Iacobucci, I.; Dickerson, K.; Choi, J.K.; Xu, B.; Payne-Turner, D.; Yoshihara, H.; Loh, M.L.; Horan, J.; et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 2018, 562, 373–379. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Alvarnas, J.C.; Brown, P.A.; Aoun, P.; Ballen, K.K.; Barta, S.K.; Borate, U.; Boyer, M.W.; Burke, P.W.; Cassaday, R.; Castro, J.E.; et al. Acute Lymphoblastic Leukemia, Version 2.2015. J. Natl. Compr. Cancer Netw. 2015, 13, 1240–1279. [Google Scholar] [CrossRef]
- Faderl, S.; Kantarjian, H.M.; Talpaz, M.; Estrov, Z. Clinical Significance of Cytogenetic Abnormalities in Adult Acute Lymphoblastic Leukemia. Blood 1998, 91, 3995–4019. [Google Scholar] [CrossRef]
- van Dongen, J.J.; van der Velden, V.H.; Brüggemann, M.; Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 2015, 125, 3996–4009. [Google Scholar] [CrossRef]
- Brüggemann, M.; Raff, T.; Flohr, T.; Gökbuget, N.; Nakao, M.; Droese, J.; Lüschen, S.; Pott, C.; Ritgen, M.; Scheuring, U.; et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood 2006, 107, 1116–1123. [Google Scholar] [CrossRef]
- Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017, 7, e577. [Google Scholar] [CrossRef]
- Burkart, M.; Dinner, S. Advances in the treatment of Philadelphia chromosome negative acute lymphoblastic leukemia. Blood Rev. 2024, 66, 101208. [Google Scholar] [CrossRef]
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021, 11, 41. [Google Scholar] [CrossRef]
- Bhansali, R.S.; Pratz, K.W.; Lai, C. Recent advances in targeted therapies in acute myeloid leukemia. J. Hematol. Oncol. 2023, 16, 29. [Google Scholar] [CrossRef]
- Di Francia, R.; Crisci, S.; De Monaco, A.; Cafiero, C.; Re, A.; Iaccarino, G.; De Filippi, R.; Frigeri, F.; Corazzelli, G.; Micera, A.; et al. Response and Toxicity to Cytarabine Therapy in Leukemia and Lymphoma: From Dose Puzzle to Pharmacogenomic Biomarkers. Cancers 2021, 13, 966. [Google Scholar] [CrossRef]
- Blair, H.A. Daunorubicin/Cytarabine Liposome: A Review in Acute Myeloid Leukaemia. Drugs 2018, 78, 1903–1910. [Google Scholar] [CrossRef]
- Wang, Y.; Ronckers, C.M.; van Leeuwen, F.E.; Moskowitz, C.S.; Leisenring, W.; Armstrong, G.T.; de Vathaire, F.; Hudson, M.M.; Kuehni, C.E.; Arnold, M.A.; et al. Subsequent female breast cancer risk associated with anthracycline chemotherapy for childhood cancer. Nat. Med. 2023, 29, 2268–2277. [Google Scholar] [CrossRef]
- Ohtake, S.; Miyawaki, S.; Fujita, H.; Kiyoi, H.; Shinagawa, K.; Usui, N.; Okumura, H.; Miyamura, K.; Nakaseko, C.; Miyazaki, Y.; et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: The JALSG AML201 Study. Blood 2011, 117, 2358–2365. [Google Scholar] [CrossRef] [PubMed]
- Stroet, A.; Hemmelmann, C.; Starck, M.; Zettl, U.; Dörr, J.; Friedemann, P.; Flachenecker, P.; Fleischer, V.; Zipp, F.; Nückel, H.; et al. Incidence of therapy-related acute leukaemia in mitoxantrone-treated multiple sclerosis patients in Germany. Ther. Adv. Neurol. Disord. 2012, 5, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Yanishevski, Y.; Nemec, J.; Evans, W.E.; Boyett, J.M.; Behm, F.G.; Pui, C.H. Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 1998, 12, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Cotteret, C.; Rousseau, J.; Zribi, K.; Schlatter, J. Severe hypersensitivity reaction to etoposide phosphate: A case report. Clin. Case Rep. 2020, 8, 1821–1823. [Google Scholar] [CrossRef] [PubMed]
- Apiraksattayakul, N.; Jitprapaikulsan, J.; Sanpakit, K.; Kumutpongpanich, T. Potential neurotoxicity associated with methotrexate. Sci. Rep. 2024, 14, 18548. [Google Scholar] [CrossRef]
- Maiguma, T.; Hayashi, Y.; Ueshima, S.; Kaji, H.; Egawa, T.; Chayama, K.; Morishima, T.; Kitamura, Y.; Sendo, T.; Gomita, Y.; et al. Relationship between oral mucositis and high-dose methotrexate therapy in pediatric acute lymphoblastic leukemia. Int. J. Clin. Pharmacol. Ther. 2008, 46, 584–590. [Google Scholar] [CrossRef]
- Gomber, S.; Dewan, P.; Chhonker, D. Vincristine induced neurotoxicity in cancer patients. Indian J. Pediatr. 2010, 77, 97–100. [Google Scholar] [CrossRef]
- Yasu, T.; Ohno, N.; Kawamata, T.; Kurokawa, Y. Vincristine-induced paralytic ileus during induction therapy of treatment protocols for acute lymphoblastic leukemia in adult patients. Int. J. Clin. Pharmacol. Ther. 2016, 54, 471–473. [Google Scholar] [CrossRef]
- Rank, C.U.; Wolthers, B.O.; Grell, K.; Albertsen, B.K.; Frandsen, T.L.; Overgaard, U.M.; Toft, N.; Nielsen, O.J.; Wehner, P.S.; Harila-Saari, A.; et al. Asparaginase-Associated Pancreatitis in Acute Lymphoblastic Leukemia: Results From the NOPHO ALL2008 Treatment of Patients 1-45 Years of Age. J. Clin. Oncol. 2020, 38, 145–154. [Google Scholar] [CrossRef]
- Hernández-Espinosa, D.; Miñano, A.; Martínez, C.; Pérez-Ceballos, E.; Heras, I.; Fuster, J.L.; Vicente, V.; Corral, J. L-asparaginase-induced antithrombin type I deficiency: Implications for conformational diseases. Am. J. Pathol. 2006, 169, 142–153. [Google Scholar] [CrossRef]
- Hongo, T.; Okada, S.; Ohzeki, T.; Ohta, H.; Nishimura, S.; Hamamoto, K.; Yagi, K.; Misu, H.; Eguchi, N.; Suzuki, N.; et al. Low plasma levels of hemostatic proteins during the induction phase in children with acute lymphoblastic leukemia: A retrospective study by the JACLS. Japan Association of Childhood Leukemia Study. Pediatr. Int. 2002, 44, 293–299. [Google Scholar] [CrossRef]
- Mitchell, L.; Hoogendoorn, H.; Giles, A.R.; Vegh, P.; Andrew, M. Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: Risk of thrombotic complications in L’Asparaginase-induced antithrombin III deficiency. Blood 1994, 83, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Zerra, P.; Bergsagel, J.; Keller, F.G.; Lew, G.; Pauly, M. Maintenance Treatment With Low-Dose Mercaptopurine in Combination With Allopurinol in Children With Acute Lymphoblastic Leukemia and Mercaptopurine-Induced Pancreatitis. Pediatr. Blood Cancer 2016, 63, 712–715. [Google Scholar] [CrossRef] [PubMed]
- Varma, P.P.; Subba, D.B.; Madhoosudanan, P. Cyclophosphamide Induced Haemorrhagic Cystitis (A Case Report). Med. J. Armed Forces India 1998, 54, 59–60. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Zhou, S.; Yu, M.; Wang, X.; Fu, K.; Qian, Z.; Zhang, H.; Qiu, L.; Liu, X.; et al. Risk of second malignant neoplasms after cyclophosphamide-based chemotherapy with or without radiotherapy for non-Hodgkin lymphoma. Leuk. Lymphoma 2013, 54, 1396–1404. [Google Scholar] [CrossRef]
- Naka, R.; Kondo, T.; Nishikubo, M.; Muranushi, H.; Ueda, Y.; Oka, T.; Wada, F.; Kanda, J.; Yamamoto, S.; Watanabe, M.; et al. PB1862: Venetoclax and Azacitidine Therapy in Acute Myeloid Leukemia Patients with Severe Renal Impairment. HemaSphere 2023, 7, e8463360. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Michael, L.; Björn, H.R.; Rainer, C.; Claudia, S.; Mathias, S.; Ulrich, G.; Andrea, K.; Volker, R.; Arnold, G.; Uwe, P.; et al. A multicenter phase II trial of decitabine as first-line treatment for older patients with acute myeloid leukemia judged unfit for induction chemotherapy. Haematologica 2012, 97, 393–401. [Google Scholar] [CrossRef]
- Rowe, J.M.; Tallman, M.S. How I treat acute myeloid leukemia. Blood 2010, 116, 3147–3156. [Google Scholar] [CrossRef]
- Rowe, J.M.; Buck, G.; Burnett, A.K.; Chopra, R.; Wiernik, P.H.; Richards, S.M.; Lazarus, H.M.; Franklin, I.M.; Litzow, M.R.; Ciobanu, N.; et al. Induction therapy for adults with acute lymphoblastic leukemia: Results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood 2005, 106, 3760–3767. [Google Scholar] [CrossRef]
- Esparza, S.; Muluneh, B.; Galeotti, J.; Matson, M.; Richardson, D.R.; Montgomery, N.D.; Coombs, C.C.; Jamieson, K.; Foster, M.C.; Zeidner, J.F. Venetoclax-induced tumour lysis syndrome in acute myeloid leukaemia. Br. J. Haematol. 2020, 188, 173–177. [Google Scholar] [CrossRef]
- McMahon, C.M.; Canaani, J.; Rea, B.; Sargent, R.L.; Qualtieri, J.N.; Watt, C.D.; Morrissette, J.J.D.; Carroll, M.; Perl, A.E. Gilteritinib induces differentiation in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood Adv. 2019, 3, 1581–1585. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Stein, E.M.; Botton, S.d.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.; Wang, E.S. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev. Clin. Pharmacol. 2018, 11, 549–559. [Google Scholar] [CrossRef]
- Norsworthy, K.J.; By, K.; Subramaniam, S.; Zhuang, L.; Del Valle, P.L.; Przepiorka, D.; Shen, Y.-L.; Sheth, C.M.; Liu, C.; Leong, R.; et al. FDA Approval Summary: Glasdegib for Newly Diagnosed Acute Myeloid Leukemia. Clin. Cancer Res. 2019, 25, 6021–6025. [Google Scholar] [CrossRef]
- Ottmann, O.G.; Druker, B.J.; Sawyers, C.L.; Goldman, J.M.; Reiffers, J.; Silver, R.T.; Tura, S.; Fischer, T.; Deininger, M.W.; Schiffer, C.A.; et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome–positive acute lymphoid leukemias. Blood 2002, 100, 1965–1971. [Google Scholar] [CrossRef]
- Shen, S.; Chen, X.; Cai, J.; Yu, J.; Gao, J.; Hu, S.; Zhai, X.; Liang, C.; Ju, X.; Jiang, H.; et al. Effect of Dasatinib vs Imatinib in the Treatment of Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 358–366. [Google Scholar] [CrossRef]
- Özgür Yurttaş, N.; Eşkazan, A.E. Dasatinib-induced pulmonary arterial hypertension. Br. J. Clin. Pharmacol. 2018, 84, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Abu Rmilah, A.A.; Lin, G.; Begna, K.H.; Friedman, P.A.; Herrmann, J. Risk of QTc prolongation among cancer patients treated with tyrosine kinase inhibitors. Int. J. Cancer 2020, 147, 3160–3167. [Google Scholar] [CrossRef]
- Stein, A.S.; Schiller, G.; Benjamin, R.; Jia, C.; Zhang, A.; Zhu, M.; Zimmerman, Z.; Topp, M.S. Neurologic adverse events in patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab: Management and mitigating factors. Ann. Hematol. 2019, 98, 159–167. [Google Scholar] [CrossRef]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; DeAngelo, D.J.; Advani, A.S.; Stelljes, M.; Kebriaei, P.; Cassaday, R.D.; Merchant, A.A.; Fujishima, N.; Uchida, T.; Calbacho, M.; et al. Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: Results from the open-label, randomised, phase 3 INO-VATE study. Lancet Haematol. 2017, 4, e387–e398. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah (accessed on 17 November 2024).
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: Phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021, 398, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Dubey, M.; Randhawa, A.S.; Khanikar, D.; Hazarika, M.; Roy, P.S.; Dutta, C.; Barbhuiyan, S.; Deka, R. Improved Treatment Outcomes With Modified Induction Therapy in Acute Myeloid Leukemia (AML): A Retrospective Observational Study From a Regional Cancer Center. Cureus 2024, 16, e53303. [Google Scholar] [CrossRef] [PubMed]
- Jitschin, R.; Saul, D.; Braun, M.; Tohumeken, S.; Völkl, S.; Kischel, R.; Lutteropp, M.; Dos Santos, C.; Mackensen, A.; Mougiakakos, D. CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells. J. Immunother. Cancer 2018, 6, 116. [Google Scholar] [CrossRef]
- Ebinger, S.; Zeller, C.; Carlet, M.; Senft, D.; Bagnoli, J.W.; Liu, W.H.; Rothenberg-Thurley, M.; Enard, W.; Metzeler, K.H.; Herold, T.; et al. Plasticity in growth behavior of patients’ acute myeloid leukemia stem cells growing in mice. Haematologica 2020, 105, 2855–2860. [Google Scholar] [CrossRef]
- Mukherjee, A.; Ahmed, N.; Rose, F.T.; Ahmad, A.N.; Javed, T.A.; Wen, L.; Bottino, R.; Xiao, X.; Kilberg, M.S.; Husain, S.Z. Asparagine Synthetase Is Highly Expressed at Baseline in the Pancreas Through Heightened PERK Signaling. Cell. Mol. Gastroenterol. Hepatol. 2020, 9, 1–13. [Google Scholar] [CrossRef]
- Merryman, R.; Stevenson, K.E.; Gostic, W.J., 2nd; Neuberg, D.; O’Brien, J.; Sallan, S.E.; Silverman, L.B. Asparaginase-associated myelosuppression and effects on dosing of other chemotherapeutic agents in childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 2012, 59, 925–927. [Google Scholar] [CrossRef]
- Kieslich, M.; Porto, L.; Lanfermann, H.; Jacobi, G.; Schwabe, D.; Böhles, H. Cerebrovascular Complications of l-Asparaginase in the Therapy of Acute Lymphoblastic Leukemia. J. Pediatr. Hematol./Oncol. 2003, 25, 484–487. [Google Scholar] [CrossRef]
- Rathod, S.; Ramsey, M.; Relling, M.V.; Finkelman, F.D.; Fernandez, C.A. Hypersensitivity reactions to asparaginase in mice are mediated by anti-asparaginase IgE and IgG and the immunoglobulin receptors FcεRI and FcγRIII. Haematologica 2019, 104, 319–329. [Google Scholar] [CrossRef]
- Kamal, N.; Koh, C.; Samala, N.; Fontana, R.J.; Stolz, A.; Durazo, F.; Hayashi, P.H.; Phillips, E.; Wang, T.; Hoofnagle, J.H. Asparaginase-induced hepatotoxicity: Rapid development of cholestasis and hepatic steatosis. Hepatol. Int. 2019, 13, 641–648. [Google Scholar] [CrossRef]
- Lavine, R.L.; Brodsky, I.; Garofano, C.D.; Rose, L.I. The effect of E. coli L-asparaginase on oral glucose tolerance and insulin release in man. Diabetologia 1978, 15, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.; Yetgin, S.; Kara, A.; Tuncer, A.M.; Günay, M.; Gümrük, F.; Gürgey, A. Hyperglycemia, ketoacidosis and other complications of L-asparaginase in children with acute lymphoblastic leukemia. J. Med. 1994, 25, 219–229. [Google Scholar]
- Erdem, A.; Marin, S.; Pereira-Martins, D.A.; Cortés, R.; Cunningham, A.; Pruis, M.G.; de Boer, B.; van den Heuvel, F.A.J.; Geugien, M.; Wierenga, A.T.J.; et al. The Glycolytic Gatekeeper PDK1 defines different metabolic states between genetically distinct subtypes of human acute myeloid leukemia. Nat. Commun. 2022, 13, 1105. [Google Scholar] [CrossRef]
- Chen, W.-L.; Wang, J.-H.; Zhao, A.-H.; Xu, X.; Wang, Y.-H.; Chen, T.-L.; Li, J.-M.; Mi, J.-Q.; Zhu, Y.-M.; Liu, Y.-F.; et al. A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value. Blood 2014, 124, 1645–1654. [Google Scholar] [CrossRef]
- Hermanova, I.; Arruabarrena-Aristorena, A.; Valis, K.; Nuskova, H.; Alberich-Jorda, M.; Fiser, K.; Fernandez-Ruiz, S.; Kavan, D.; Pecinova, A.; Niso-Santano, M.; et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia 2016, 30, 209–218. [Google Scholar] [CrossRef]
- Ye, H.; Adane, B.; Khan, N.; Sullivan, T.; Minhajuddin, M.; Gasparetto, M.; Stevens, B.; Pei, S.; Balys, M.; Ashton, J.M.; et al. Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell 2016, 19, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.L.; Stevens, B.M.; Pollyea, D.A.; Culp-Hill, R.; Reisz, J.A.; Nemkov, T.; Gehrke, S.; Gamboni, F.; Krug, A.; Winters, A.; et al. Nicotinamide Metabolism Mediates Resistance to Venetoclax in Relapsed Acute Myeloid Leukemia Stem Cells. Cell Stem Cell 2020, 27, 748–764.e4. [Google Scholar] [CrossRef]
- Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Reisz, J.A.; Culp-Hill, R.; Nemkov, T.; Pei, S.; Khan, N.; Adane, B.; Ye, H.; et al. Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Cancer Cell 2018, 34, 724–740.e4. [Google Scholar] [CrossRef] [PubMed]
- Pajak, B.; Siwiak, E.; Sołtyka, M.; Priebe, A.; Zieliński, R.; Fokt, I.; Ziemniak, M.; Jaśkiewicz, A.; Borowski, R.; Domoradzki, T.; et al. 2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents. Int. J. Mol. Sci. 2020, 21, 234. [Google Scholar] [CrossRef]
- Klco, J.M.; Spencer, D.H.; Miller, C.A.; Griffith, M.; Lamprecht, T.L.; O’Laughlin, M.; Fronick, C.; Magrini, V.; Demeter, R.T.; Fulton, R.S.; et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014, 25, 379–392. [Google Scholar] [CrossRef]
- de Boer, B.; Prick, J.; Pruis, M.G.; Keane, P.; Imperato, M.R.; Jaques, J.; Brouwers-Vos, A.Z.; Hogeling, S.M.; Woolthuis, C.M.; Nijk, M.T.; et al. Prospective Isolation and Characterization of Genetically and Functionally Distinct AML Subclones. Cancer Cell 2018, 34, 674–689.e8. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Lutz, C.; van Delft, F.W.; Bateman, C.M.; Guo, Y.; Colman, S.M.; Kempski, H.; Moorman, A.V.; Titley, I.; Swansbury, J.; et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011, 469, 356–361. [Google Scholar] [CrossRef]
- Takubo, K.; Nagamatsu, G.; Kobayashi, C.I.; Nakamura-Ishizu, A.; Kobayashi, H.; Ikeda, E.; Goda, N.; Rahimi, Y.; Johnson, R.S.; Soga, T.; et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013, 12, 49–61. [Google Scholar] [CrossRef]
- Poort, V.M.; Hagelaar, R.; van Roosmalen, M.J.; Trabut, L.; Buijs-Gladdines, J.G.C.A.M.; van Wijk, B.; Meijerink, J.; van Boxtel, R. Transient Differentiation-State Plasticity Occurs during Acute Lymphoblastic Leukemia Initiation. Cancer Res. 2024, 84, 2720–2733. [Google Scholar] [CrossRef]
- Morris, V.; Marion, W.; Hughes, T.; Sousa, P.; Sensharma, P.; Pikman, Y.; Harris, M.; Shalek, A.K.; North, T.E.; Daley, G.Q.; et al. Single-cell analysis reveals mechanisms of plasticity of leukemia initiating cells. bioRxiv 2020. preprint. [Google Scholar] [CrossRef]
- Nguyen, H.A.; Su, Y.; Zhang, J.Y.; Antanasijevic, A.; Caffrey, M.; Schalk, A.M.; Liu, L.; Rondelli, D.; Oh, A.; Mahmud, D.L.; et al. A Novel l-Asparaginase with low l-Glutaminase Coactivity Is Highly Efficacious against Both T- and B-cell Acute Lymphoblastic Leukemias In Vivo. Cancer Res. 2018, 78, 1549–1560. [Google Scholar] [CrossRef]
- Sengupta, S.; Biswas, M.; Gandhi, K.A.; Gupta, S.K.; Gera, P.B.; Gota, V.; Sonawane, A. Preclinical evaluation of engineered L-asparaginase variants to improve the treatment of Acute Lymphoblastic Leukemia. Transl. Oncol. 2024, 43, 101909. [Google Scholar] [CrossRef]
- Schmidt, M.P.; Ivanov, A.V.; Coriu, D.; Miron, I.C. L-Asparaginase Toxicity in the Treatment of Children and Adolescents with Acute Lymphoblastic Leukemia. J. Clin. Med. 2021, 10, 4419. [Google Scholar] [CrossRef]
- Zwaan, C.M.; Kaspers, G.J.; Pieters, R.; Ramakers-Van Woerden, N.L.; den Boer, M.L.; Wünsche, R.; Rottier, M.M.; Hählen, K.; van Wering, E.R.; Janka-Schaub, G.E.; et al. Cellular drug resistance profiles in childhood acute myeloid leukemia: Differences between FAB types and comparison with acute lymphoblastic leukemia. Blood 2000, 96, 2879–2886. [Google Scholar]
- Michelozzi, I.M.; Granata, V.; De Ponti, G.; Alberti, G.; Tomasoni, C.; Antolini, L.; Gambacorti-Passerini, C.; Gentner, B.; Dazzi, F.; Biondi, A.; et al. Acute myeloid leukaemia niche regulates response to L-asparaginase. Br. J. Haematol. 2019, 186, 420–430. [Google Scholar] [CrossRef]
- Kaspers, G.J.L. Acute myeloid leukaemia niche regulates response to L-asparaginase. Br. J. Haematol. 2019, 186, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Capizzi, R.L.; Davis, R.; Powell, B.; Cuttner, J.; Ellison, R.R.; Cooper, M.R.; Dillman, R.; Major, W.B.; Dupre, E.; McIntyre, O.R. Synergy between high-dose cytarabine and asparaginase in the treatment of adults with refractory and relapsed acute myelogenous leukemia—A Cancer and Leukemia Group B Study. J. Clin. Oncol. 1988, 6, 499–508. [Google Scholar] [CrossRef]
- Buaboonnam, J.; Cao, X.; Pauley, J.L.; Pui, C.H.; Ribeiro, R.C.; Rubnitz, J.E.; Inaba, H. Sequential administration of methotrexate and asparaginase in relapsed or refractory pediatric acute myeloid leukemia. Pediatr. Blood Cancer 2013, 60, 1161–1164. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, J.; Zeng, H.; Zhang, Y.; Zhang, Y.; Zhou, X.; Zhou, H. Antiproliferative effects of L-asparaginase in acute myeloid leukemia. Exp. Ther. Med. 2020, 20, 2070–2078. [Google Scholar] [CrossRef]
- Martínez-Cuadrón, D.; Boluda, B.; Martínez, P.; Bergua, J.; Rodríguez-Veiga, R.; Esteve, J.; Vives, S.; Serrano, J.; Vidriales, B.; Salamero, O.; et al. A phase I-II study of plerixafor in combination with fludarabine, idarubicin, cytarabine, and G-CSF (PLERIFLAG regimen) for the treatment of patients with the first early-relapsed or refractory acute myeloid leukemia. Ann. Hematol. 2018, 97, 763–772. [Google Scholar] [CrossRef]
- Mishra, S.K.; Millman, S.E.; Zhang, L. Metabolism in acute myeloid leukemia: Mechanistic insights and therapeutic targets. Blood 2023, 141, 1119–1135. [Google Scholar] [CrossRef]
- Willems, L.; Jacque, N.; Jacquel, A.; Neveux, N.; Maciel, T.T.; Lambert, M.; Schmitt, A.; Poulain, L.; Green, A.S.; Uzunov, M.; et al. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 2013, 122, 3521–3532. [Google Scholar] [CrossRef]
- Chan, W.K.; Horvath, T.D.; Tan, L.; Link, T.; Harutyunyan, K.G.; Pontikos, M.A.; Anishkin, A.; Du, D.; Martin, L.A.; Yin, E.; et al. Glutaminase Activity of L-Asparaginase Contributes to Durable Preclinical Activity against Acute Lymphoblastic Leukemia. Mol. Cancer Ther. 2019, 18, 1587–1592. [Google Scholar] [CrossRef]
Cell Lineage | Classification | Subtype |
---|---|---|
Lymphoid | B-cell ALL with certain genetic abnormalities |
|
T-cell ALL |
| |
Myeloid | AML with defining genetic abnormalities |
|
AML, defined by differentiation |
| |
Acute leukaemia of ambiguous lineage (ALAL) and mixed-phenotype acute leukaemia (MPAL) | ALAL/MPAL with defining genetic abnormalities |
|
ALAL, immunophenotypically defined |
|
Risk Profile | Subsets |
---|---|
Favourable | t(8;21)(q22;q22); RUNX1-RUNX1T1 inv(16)(p13.1;q22); or t(16;16)(p13.1;q22); CBFB-MYH11 Mutated NPM1 without FLT3-ITD (normal karyotype) Biallelic mutated CEBPA (normal karyotype) |
Intermediate-I | Mutated NPM1 and FLT3-ITD (normal karyotype) Wild-type NPM1 and FLT3-ITD (normal karyotype) Wild-type NPM1 without FLT3-ITD (normal karyotype) |
Intermediate-II | t(9;11)(p22;q23); MLLT3-KMT2A Cytogenic abnormalities not classified as favourable or adverse |
Adverse | inv(3)(q21;q26.2) or t(3;3)(q21;q26.2); GATA2-MECOM (EVI1) t(6;9)(p23;q34); DEK-NUP214 t(v;11)(v;q23); KMT2A rearranged −5 or del(5q); −7; abnl(17p); complex karyotype |
Risk Profile | Cytogenetics | Other Factors | MRD |
---|---|---|---|
High | Unfavourable cytogenetics a | OR Age > 35 AND Elevated white blood cell (WBC) count b | OR MRD (>10−4) |
Intermediate | No risk factors based on cytogenetics | Age > 35 OR Elevated WBC count | MRD (<10−4) |
Low | No risk factors based on cytogenetics | No risk factors based on: Age OR WBC count | MRD (<10−4) |
Disease | Standard Induction Treatment | Targeted Drugs | Additional Drugs |
---|---|---|---|
AML | “7+3” regimen: Cytarabine (7-days) AND Anthracycline (3 days)
| For FLT3-mutated AML:
| Less intensive options:
|
ALL | Vincristine AND Anthracycline
A steroid
| For Ph+ ALL:
| As per risk stratification:
|
Drug | Type | Indication | Common Adverse Effects | Serious Adverse Effects | Reference |
---|---|---|---|---|---|
Cytarabine | Antimetabolite | AML, ALL | Myelosuppression, nausea/vomiting, diarrhoea, mucositis | Cerebellar toxicity, acute pulmonary syndrome, hepatotoxicity | [37] |
Daunorubicin | Anthracycline | AML, ALL | Myelosuppression, cardiotoxicity, alopecia, mucositis | Cardiotoxicity, secondary malignancies | [38,39] |
Idarubicin | Anthracycline | AML | Myelosuppression, cardiotoxicity, alopecia, mucositis | Cardiotoxicity, hepatotoxicity | [40] |
Mitoxantrone | Anthracenedione | AML | Myelosuppression, cardiotoxicity, alopecia | Cardiotoxicity, therapy-related acute myeloid leukaemia | [41] |
Etoposide | Topoisomerase II inhibitor | AML | Myelosuppression, nausea/vomiting, alopecia | Secondary leukaemias, anaphylaxis | [42,43] |
Methotrexate | Antimetabolite | ALL | Myelosuppression, mucositis, hepatotoxicity, nephrotoxicity | Neurotoxicity, severe mucositis, acute kidney injury, hepatotoxicity | [44,45] |
Vincristine | Vinca alkaloid | ALL | Peripheral neuropathy, constipation | Severe neurotoxicity, paralytic ileus | [46,47] |
L-Asparaginase | Enzyme | ALL | Hypersensitivity reactions, pancreatitis, coagulopathy | Pancreatitis, thrombosis | [48,49,50,51] |
6-Mercaptopurine | Antimetabolite | ALL | Myelosuppression, hepatotoxicity | Severe hepatotoxicity, pancreatitis | [52] |
Cyclophosphamide | Alkylating agent | ALL | Myelosuppression, haemorrhagic cystitis, alopecia | Haemorrhagic cystitis, cardiotoxicity, secondary malignancies | [13,53,54] |
Azacitidine | Hypomethylating agent | AML (older/unfit patients) | Myelosuppression, nausea/vomiting, injection site reactions | Tumour lysis syndrome, renal failure | [55,56] |
Decitabine | Hypomethylating agent | AML (older/unfit patients) | Myelosuppression, fatigue, nausea | Severe infections | [57] |
Drug | Target | Type | Indication | Common Adverse Effects | Serious Adverse Effects | Reference |
---|---|---|---|---|---|---|
Venetoclax | BCL2 | BCL-2 Inhibitor | AML | Nausea, diarrhoea, fatigue | Tumour lysis syndrome, severe myelosuppression | [60] |
Midostaurin | FLT3 | FLT3 Inhibitor | FLT3-mutated AML | Nausea, vomiting, headache | QT prolongation, interstitial lung disease | [12] |
Gilteritinib | FLT3 | FLT3 Inhibitor | FLT3-mutated AML | Myalgia, transaminase elevation | Differentiation syndrome, posterior reversible encephalopathy syndrome | [61] |
Ivosidenib | IDH1 | IDH Inhibitor | IDH1-mutated AML | Fatigue, nausea, diarrhoea | Differentiation syndrome, QT prolongation | [62] |
Enasidenib | IDH2 | IDH Inhibitor | IDH2-mutated AML | Nausea, diarrhoea, decreased appetite | Differentiation syndrome, liver toxicity | [63] |
Gemtuzumab ozogamicin | CD33 | Antibody–Drug Conjugate | CD33+ AML | Fever, nausea, infection | Veno-occlusive disease, severe myelosuppression | [64] |
Glasdegib | Hedgehog pathway | Hedgehog Pathway Inhibitor | AML | Muscle spasms, alopecia, fatigue | QT prolongation, embryo/foetal toxicity | [65] |
Imatinib | BCR-ABL | Tyrosine Kinase Inhibitor (TKI) | Ph+ ALL | Nausea, vomiting, diarrhoea, muscle cramps, fluid retention | Myelosuppression, hepatotoxicity | [66] |
Dasatinib | BCR-ABL | Tyrosine Kinase Inhibitor (TKI) | Ph+ ALL | Diarrhoea, nausea, headache, muscle/joint pain, fluid retention | Myelosuppression, pleural effusion, pulmonary arterial hypertension, QT prolongation, pancreatitis | [67,68,69] |
Blinatumomab | CD19, bispecific antibody | Bispecific T-cell Engager | Relapsed or refractory B-cell ALL | Fever, headache, nausea | Cytokine release syndrome, neurotoxicity | [70,71] |
Inotuzumab ozogamicin | CD22, antibody–drug conjugate | Antibody–Drug Conjugate (ADC) | Relapsed or refractory B-cell ALL | Thrombocytopenia, neutropenia, infections | Veno-occlusive disease, increased risk of infections | [72] |
Tisagenlecleucel | CD19 | CART-cell | B-cell ALL, relapsed or refractory B-cell ALL | Fever, cytopaenia, headache, oedema, nausea, fatigue | Cytokine release syndrome (CRS), neurological toxicities, increased risk of infections, anaphylaxis, T-cell malignancies | [73] |
brexucabtagene autoleucel | CD19 | CART-cell | B-cell ALL, relapsed or refractory B-cell ALL | Fever, cytopaenia, headache, oedema, nausea, constipation, fatigue | Cytokine release syndrome (CRS), neurological toxicities, increased risk of infections, renal and respiratory problems | [74] |
Body System | Common Adverse Effects | Serious Adverse Effects | Mechanism of Action of Adverse Effects | References |
---|---|---|---|---|
Gastrointestinal |
|
|
| [48,77,78] |
Haematological |
|
|
| [49,50,51,79] |
Neurological |
|
|
| [80] |
Dermatological |
|
|
| [81] |
Hepatic |
|
|
| [82] |
Metabolic |
|
|
| [83,84] |
Renal |
|
|
| [49,50,51] |
Cardiovascular |
|
|
| [49,50,51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wemyss, C.; Jones, E.; Stentz, R.; Carding, S.R. Acute Myeloid Leukaemia and Acute Lymphoblastic Leukaemia Classification and Metabolic Characteristics for Informing and Advancing Treatment. Cancers 2024, 16, 4136. https://doi.org/10.3390/cancers16244136
Wemyss C, Jones E, Stentz R, Carding SR. Acute Myeloid Leukaemia and Acute Lymphoblastic Leukaemia Classification and Metabolic Characteristics for Informing and Advancing Treatment. Cancers. 2024; 16(24):4136. https://doi.org/10.3390/cancers16244136
Chicago/Turabian StyleWemyss, Carrie, Emily Jones, Régis Stentz, and Simon R. Carding. 2024. "Acute Myeloid Leukaemia and Acute Lymphoblastic Leukaemia Classification and Metabolic Characteristics for Informing and Advancing Treatment" Cancers 16, no. 24: 4136. https://doi.org/10.3390/cancers16244136
APA StyleWemyss, C., Jones, E., Stentz, R., & Carding, S. R. (2024). Acute Myeloid Leukaemia and Acute Lymphoblastic Leukaemia Classification and Metabolic Characteristics for Informing and Advancing Treatment. Cancers, 16(24), 4136. https://doi.org/10.3390/cancers16244136