Diagnostic Efficacy of Five Different Imaging Modalities in the Assessment of Women Recalled at Breast Screening—A Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Study Selection
2.3. Quality Assessment
2.4. Data Extraction and Synthesis
2.5. Statistical Analysis
3. Results
3.1. Quality Assessment
3.2. Diagnostic Performance Evaluation
3.3. Comparative Performance of Imaging Modalities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sedeta, E.T.; Jobre, B.; Avezbakiyev, B. Breast cancer: Global patterns of incidence, mortality, and trends. J. Clin. Oncol. 2023, 41 (Suppl. S16), 10528. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.W.; Tabár, L.; Yen, A.M.; Dean, P.B.; Smith, R.A.; Jonsson, H.; Törnberg, S.; Chen, S.L.; Chiu, S.Y.; Fann, J.C.; et al. Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women. Cancer 2020, 126, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Tabár, L.; Dean, P.B.; Chen, T.H.-H.; Yen, A.M.-F.; Chen, S.L.-S.; Fann, J.C.-Y.; Chiu, S.Y.-H.; Ku, M.M.-S.; Wu, W.Y.-Y.; Hsu, C.-Y.; et al. The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer 2019, 125, 515–523. [Google Scholar] [CrossRef]
- Brennan, P.C.; Ganesan, A.; Eckstein, M.P.; Ekpo, E.U.; Tapia, K.; Mello-Thoms, C.; Lewis, S.; Juni, M.Z. Benefits of Independent Double Reading in Digital Mammography: A Theoretical Evaluation of All Possible Pairing Methodologies. Acad. Radiol. 2019, 26, 717–723. [Google Scholar] [CrossRef]
- Duijm, L.E.; Groenewoud, J.H.; Fracheboud, J.; van Ineveld, B.M.; Roumen, R.M.; de Koning, H.J. Introduction of additional double reading of mammograms by radiographers: Effects on a biennial screening programme outcome. Eur. J. Cancer 2008, 44, 1223–1228. [Google Scholar] [CrossRef]
- Grabler, P.; Sighoko, D.; Wang, L.; Allgood, K.; Ansell, D. Recall and Cancer Detection Rates for Screening Mammography: Finding the Sweet Spot. Am. J. Roentgenol. 2017, 208, 208–213. [Google Scholar] [CrossRef]
- Rauscher, G.H.; Murphy, A.M.; Qiu, Q.; Dolecek, T.A.; Tossas, K.; Liu, Y.; Alsheik, N.H. The “Sweet Spot” Revisited: Optimal Recall Rates for Cancer Detection with 2D and 3D Digital Screening Mammography in the Metro Chicago Breast Cancer Registry. AJR Am. J. Roentgenol. 2021, 216, 894–902. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. BreastScreen Australia Monitoring Report 2018; AIHW: Canberra, Australia, 2018.
- Cording, J.; Smith, A.; Gribble, A.; Bishop, S. Breast Density: A literature Review to Inform BreastScreen Australia’s Position Statement on Breast Density and Screening; Allen+ Clarke Policy and Regulatory Specialists Limited: Wellington, New Zealand, 2018. [Google Scholar]
- Svahn, T.M.; Houssami, N.; Sechopoulos, I.; Mattsson, S. Review of radiation dose estimates in digital breast tomosynthesis relative to those in two-view full-field digital mammography. Breast 2015, 24, 93–99. [Google Scholar] [CrossRef]
- Wang, Z.L.; Hong, J.; Li, J.L.; Huang, Y.; Tang, J. Comparison of automated breast volume scanning to hand-held ultrasound and mammography. Radiol. Med. 2012, 117, 1287–1293. [Google Scholar] [CrossRef]
- Cornford, E.J.; Turnbull, A.E.; James, J.J.; Tsang, R.; Akram, T.; Burrell, H.C.; Hamilton, L.J.; Tennant, S.L.; Bagnall, M.J.; Puri, S.; et al. Accuracy of GE digital breast tomosynthesis vs. supplementary mammographic views for diagnosis of screen-detected soft-tissue breast lesions. Br. J. Radiol. 2016, 89, 20150735. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.A.A.; Safwat, H.K.; Alaa Eldin, A.M.; Dawoud, H.A.; Hassanin, A.M. The added value of digital breast tomosynthesis in improving diagnostic performance of BI-RADS categorization of mammographically indeterminate breast lesions. Insights Imaging 2020, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Elizalde, A.; Pina, L.; Etxano, J.; Slon, P.; Zalazar, R.; Caballeros, M. Additional US or DBT after digital mammography: Which one is the best combination? Acta Radiol. 2016, 57, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Mall, S.; Noakes, J.; Kossoff, M.; Lee, W.; McKessar, M.; Goy, A.; Duncombe, J.; Roberts, M.; Giuffre, B.; Miller, A.; et al. Can digital breast tomosynthesis perform better than standard digital mammography work-up in breast cancer assessment clinic? Eur. Radiol. 2018, 28, 5182–5194. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.R.; Craig, D.A.; Hoskins, T.L.; Henrichsen, T.L.; Bendel, E.C.; Brandt, S.R.; Mandrekar, J. Can digital breast tomosynthesis replace conventional diagnostic mammography views for screening recalls without calcifications? A comparison study in a simulated clinical setting. AJR Am. J. Roentgenol. 2013, 200, 291–298. [Google Scholar] [CrossRef]
- Tagliafico, A.; Mariscotti, G.; Durando, M.; Stevanin, C.; Tagliafico, G.; Martino, L.; Bignotti, B.; Calabrese, M.; Houssami, N. Characterisation of microcalcification clusters on 2D digital mammography (FFDM) and digital breast tomosynthesis (DBT): Does DBT underestimate microcalcification clusters? Results of a multicentre study. Eur. Radiol. 2015, 25, 9–14. [Google Scholar] [CrossRef]
- Chan, H.P.; Helvie, M.A.; Hadjiiski, L.; Jeffries, D.O.; Klein, K.A.; Neal, C.H.; Noroozian, M.; Paramagul, C.; Roubidoux, M.A. Characterization of Breast Masses in Digital Breast Tomosynthesis and Digital Mammograms: An Observer Performance Study. Acad. Radiol. 2017, 24, 1372–1379. [Google Scholar] [CrossRef]
- Łuczyńska, E.; Heinze-Paluchowska, S.; Hendrick, E.; Dyczek, S.; Ryś, J.; Herman, K.; Blecharz, P.; Jakubowicz, J. Comparison between breast MRI and contrast-enhanced spectral mammography. Med. Sci. Monit. 2015, 21, 1358–1367. [Google Scholar] [CrossRef]
- Raichand, S.; Blaya-Novakova, V.; Berber, S.; Livingstone, A.; Noguchi, N.; Houssami, N. Digital breast tomosynthesis for breast cancer diagnosis in women with dense breasts and additional breast cancer risk factors: A systematic review. Breast 2024, 77, 103767. [Google Scholar] [CrossRef]
- Ko, M.J.; Park, D.A.; Kim, S.H.; Ko, E.S.; Shin, K.H.; Lim, W.; Kwak, B.S.; Chang, J.M. Accuracy of Digital Breast Tomosynthesis for Detecting Breast Cancer in the Diagnostic Setting: A Systematic Review and Meta-Analysis. Korean J. Radiol. 2021, 22, 1240–1252. [Google Scholar] [CrossRef]
- Yang, B.; Mallett, S.; Takwoingi, Y.; Davenport, C.F.; Hyde, C.J.; Whiting, P.F.; Deeks, J.J.; Leeflang, M.M.; QUADAS-C Group. QUADAS-C: A Tool for Assessing Risk of Bias in Comparative Diagnostic Accuracy Studies. Ann. Intern. Med. 2021, 174, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lockie, D.; Clemson, M.; Houssami, N. Assessment of screen-recalled abnormalities for digital breast tomosynthesis versus digital mammography screening in the BreastScreen Maroondah trial. J. Med. Imaging Radiat. Oncol. 2023, 67, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Whelehan, P.; Heywang-Köbrunner, S.H.; Vinnicombe, S.J.; Hacker, A.; Jänsch, A.; Hapca, A.; Gray, R.; Jenkin, M.; Lowry, K.; Oeppen, R.; et al. Clinical performance of Siemens digital breast tomosynthesis versus standard supplementary mammography for the assessment of screen-detected soft-tissue abnormalities: A multi-reader study. Clin. Radiol. 2017, 72, 95.e9–95.e15. [Google Scholar] [CrossRef] [PubMed]
- Michell, M.J.; Iqbal, A.; Wasan, R.K.; Evans, D.R.; Peacock, C.; Lawinski, C.P.; Douiri, A.; Wilson, R.; Whelehan, P. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Clin. Radiol. 2012, 67, 976–981. [Google Scholar] [CrossRef]
- You, C.; Zhang, Y.; Gu, Y.; Xiao, Q.; Liu, G.; Shen, X.; Yang, W.; Peng, W. Comparison of the diagnostic performance of synthesized two-dimensional mammography and full-field digital mammography alone or in combination with digital breast tomosynthesis. Breast Cancer 2020, 27, 47–53. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Jiang, H.; Guo, X.; Zhang, Y.; Qi, D.; Guan, J.; Liu, Z.; Wu, E.; Luo, S. Diagnostic Performance of Digital Breast Tomosynthesis for Breast Suspicious Calcifications From Various Populations: A Comparison With Full-field Digital Mammography. Comput. Struct. Biotechnol. J. 2019, 17, 82–89. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Hassan, R.A.; Makboul, M.; Farghaly, S.; Khalaf, L.M.R. Digital breast tomosynthesis in the diagnostic settings of breast cancer patients treated by conservation therapy. Egypt. J. Radiol. Nucl. Med. 2024, 55, 67. [Google Scholar] [CrossRef]
- Bansal, G.J.; Young, P. Digital breast tomosynthesis within a symptomatic “one-stop breast clinic” for characterization of subtle findings. Br. J. Radiol. 2015, 88, 20140855. [Google Scholar] [CrossRef]
- Poplack, S.P.; Tosteson, T.D.; Kogel, C.A.; Nagy, H.M. Digital breast tomosynthesis: Initial experience in 98 women with abnormal digital screening mammography. AJR Am. J. Roentgenol. 2007, 189, 616–623. [Google Scholar] [CrossRef]
- Hassan, R.M.; Almalki, Y.E.; Basha, M.A.A.; Alduraibi, S.K.; Aboualkheir, M.; Almushayti, Z.A.; Aldhilan, A.S.; Aly, S.A.; Alshamy, A.A. The Impact of Adding Digital Breast Tomosynthesis to BI-RADS Categorization of Mammographically Equivocal Breast Lesions. Diagnostics 2023, 13, 1423. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, L.; Qian, R.; Li, M.; Pu, H.; Chughtai, A.R.; Hu, J.; Kong, W. An investigation of tomosynthesis on the diagnostic efficacy of spot compression mammography. Sci. Rep. 2024, 14, 16344. [Google Scholar] [CrossRef]
- Tagliafico, A.; Astengo, D.; Cavagnetto, F.; Rosasco, R.; Rescinito, G.; Monetti, F.; Calabrese, M. One-to-one comparison between digital spot compression view and digital breast tomosynthesis. Eur. Radiol. 2012, 22, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Taha Ali, T.F.; Magid, A.M.A.; Tawab, M.A.; El-Hariri, M.A.; El-Shiekh, A.-F. Potential impact of tomosynthesis on the detection and diagnosis of breast lesions. Egypt. J. Radiol. Nucl. Med. 2016, 47, 351–361. [Google Scholar] [CrossRef]
- Krammer, J.; Stepniewski, K.; Kaiser, C.G.; Brade, J.; Riffel, P.; Schoenberg, S.O.; Wasser, K. Value of Additional Digital Breast Tomosynthesis for Preoperative Staging of Breast Cancer in Dense Breasts. Anticancer Res. 2017, 37, 5255–5261. [Google Scholar] [CrossRef] [PubMed]
- Heywang-Köbrunner, S.; Jaensch, A.; Hacker, A.; Wulz-Horber, S.; Mertelmeier, T.; Hölzel, D. Value of Digital Breast Tomosynthesis versus Additional Views for the Assessment of Screen-Detected Abnormalities—A First Analysis. Breast Care 2017, 12, 92–97. [Google Scholar] [CrossRef]
- Kamal, R.; Mansour, S.; ElMesidy, D.; Moussa, K.; Hussien, H.; Kamal, R.; Mansour, S.; ElMesidy, D.; Moussa, K. Detection and diagnosis of breast lesions Performance evaluation of digital breast tomosynthesis and magnetic resonance mammography. Egypt. J. Radiol. Nucl. Med. 2016, 47, 1159–1172. [Google Scholar] [CrossRef]
- Neeter, L.M.F.H.; Nelemans, P.J.; Raat, H.P.J.; Frotscher, C.; Duvivier, K.M.; Essers, B.A.B.; Smidt, M.L.; Wildberger, J.E.; Lobbes, M.B.I. Contrast-enhanced mammography versus conventional imaging in women recalled from breast cancer screening (RACER trial): A multicentre, open-label, randomised controlled clinical trial. Lancet Reg. Health Eur. 2024, 44, 100987. [Google Scholar] [CrossRef]
- Lobbes, M.B.; Lalji, U.; Houwers, J.; Nijssen, E.C.; Nelemans, P.J.; van Roozendaal, L.; Smidt, M.L.; Heuts, E.; Wildberger, J.E. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme. Eur. Radiol. 2014, 24, 1668–1676. [Google Scholar] [CrossRef]
- Luczyńska, E.; Heinze-Paluchowska, S.; Dyczek, S.; Blecharz, P.; Rys, J.; Reinfuss, M. Contrast-enhanced spectral mammography: Comparison with conventional mammography and histopathology in 152 women. Korean J. Radiol. 2014, 15, 689–696. [Google Scholar] [CrossRef]
- Hadadi, I.; Clarke, J.; Rae, W.; McEntee, M.; Vincent, W.; Ekpo, E. Diagnostic Efficacy across Dense and Non-Dense Breasts during Digital Breast Tomosynthesis and Ultrasound Assessment for Recalled Women. Diagnostics 2022, 12, 1477. [Google Scholar] [CrossRef] [PubMed]
- Hadadi, I.; Clarke, J.; Rae, W.; McEntee, M.; Vincent, W.; Ekpo, E. Reducing Unnecessary Biopsies Using Digital Breast Tomosynthesis and Ultrasound in Dense and Nondense Breasts. Curr. Oncol. 2022, 29, 5508–5516. [Google Scholar] [CrossRef] [PubMed]
- Heywang-Köbrunner, S.H.; Hacker, A.; Jänsch, A.; Kates, R.; Wulz-Horber, S. Use of single-view digital breast tomosynthesis (DBT) and ultrasound vs. additional views and ultrasound for the assessment of screen-detected abnormalities: German multi-reader study. Acta Radiol. 2018, 59, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Hellgren, R.; Dickman, P.; Leifland, K.; Saracco, A.; Hall, P.; Celebioglu, F. Comparison of handheld ultrasound and automated breast ultrasound in women recalled after mammography screening. Acta Radio 2017, 58, 515–520. [Google Scholar] [CrossRef] [PubMed]
- den Dekker, B.M.; Broeders, M.J.M.; Meeuwis, C.; Setz-Pels, W.; Venmans, A.; van Gils, C.H.; Pijnappel, R.M. Diagnostic accuracy of supplemental three-dimensional breast ultrasound in the work-up of BI-RADS 0 screening recalls. Insights Imaging 2024, 15, 131. [Google Scholar] [CrossRef]
- Wang, H.Y.; Jiang, Y.X.; Zhu, Q.L. Differentiation of benign and malignant breast lesions: A comparison between automatically generated breast volume scans and handheld ultrasound examinations. Eur. J. Radiol. 2012, 81, 3190–3200. [Google Scholar] [CrossRef]
- Porembka, J.H.; Seiler, S.J.; Sharifi, A.; Mootz, A.R.; Knippa, E.; Evans, W.P.; Chen, H.; Xi, Y.; Dogan, B.E. Diagnostic Evaluation of Recalled Noncalcified Lesions Using Ultrasound Alone Versus Ultrasound Plus Additional Mammographic Views: A Prospective Study. AJR Am. J. Roentgenol. 2022, 218, 977–987. [Google Scholar] [CrossRef]
- Zuley, M.L.; Bandos, A.I.; Abrams, G.S.; Ganott, M.A.; Gizienski, T.A.; Hakim, C.M.; Kelly, A.E.; Nair, B.E.; Sumkin, J.H.; Waheed, U.; et al. Contrast Enhanced Digital Mammography (CEDM) Helps to Safely Reduce Benign Breast Biopsies for Low to Moderately Suspicious Soft Tissue Lesions. Acad Radiol. 2020, 27, 969–976. [Google Scholar] [CrossRef]
- Dromain, C.; Thibault, F.; Muller, S. Dual-energy contrast-enhanced digital mammography: Initial clinical results. Eur. Radiol. 2011, 21, 565–574. [Google Scholar] [CrossRef]
- Dromain, C.; Thibault, F.; Diekmann, F. Dual-energy contrast-enhanced digital mammography: Initial clinical results of a multireader, multicase study. Breast Cancer Res. 2012, 14, R94. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Tsai, H.P.; Lo, Y.F.; Ueng, S.H.; Huang, P.C.; Chen, S.C. Clinical utility of dual-energy contrast-enhanced spectral mammography for breast microcalcifications without associated mass: A preliminary analysis. Eur. Radiol. 2016, 26, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, A.; Schiaffino, S.; Fanizza, M.; Magni, V.; Menicagli, L.; Monaco, C.G.; Benedek, A.; Spinelli, D.; Di Leo, G.; Di Giulio, G.; et al. Contrast-enhanced mammography for the assessment of screening recalls: A two-centre study. Eur. Radiol. 2022, 32, 7388–7399. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.A.F.; Zeinhom, A.; Hamed, D.A.A.; Ghaly, G.R.M.; Tadros, S.F.K. Contrast-enhanced mammography versus breast MRI in the assessment of multifocal and multicentric breast cancer: A retrospective study. Acta Radiol. 2023, 64, 2868–2880. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Roth, R.; Germaine, P.; Ren, S.; Lee, M.; Hunter, K.; Tinney, E.; Liao, L. Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): A retrospective comparison in 66 breast lesions. Diagn. Interv. Imaging 2017, 98, 113–123. [Google Scholar] [CrossRef]
- Lalji, U.C.; Houben, I.P.L.; Prevos, R.; Gommers, S.; van Goethem, M.; Vanwetswinkel, S.; Pijnappel, R.; Steeman, R.; Frotscher, C.; Mok, W.; et al. Contrast-enhanced spectral mammography in recalls from the Dutch breast cancer screening program: Validation of results in a large multireader, multicase study. Eur. Radiol. 2016, 26, 4371–4379. [Google Scholar] [CrossRef]
- Soliman, G.A.M.; Mohammad, S.A.; El-Shinawi, M.; Keriakos, N.N. Diagnostic accuracy of contrast-enhanced digital mammography in comparison with sonomammography for characterization of focal asymmetries. Egypt. J. Radiol. Nucl. Med. 2020, 51, 248. [Google Scholar] [CrossRef]
- Travieso-Aja, M.D.M.; Maldonado-Saluzzi, D.; Naranjo-Santana, P.; Fernández-Ruiz, C.; Severino-Rondón, W.; Rodríguez Rodríguez, M.; Vega Benítez, V.; Pérez-Luzardo, O. Diagnostic performance of contrast-enhanced dual-energy spectral mammography (CESM): A retrospective study involving 644 breast lesions. Radiol. Med. 2019, 124, 1006–1017. [Google Scholar] [CrossRef]
- Xing, D.; Lv, Y.; Sun, B.; Xie, H.; Dong, J.; Hao, C.; Chen, Q.; Chi, X. Diagnostic Value of Contrast-Enhanced Spectral Mammography in Comparison to Magnetic Resonance Imaging in Breast Lesions. J. Comput. Assist. Tomogr. 2019, 43, 245–251. [Google Scholar] [CrossRef]
- Clauser, P.; Baltzer, P.A.T.; Kapetas, P.; Hoernig, M.; Weber, M.; Leone, F.; Bernathova, M.; Helbich, T.H. Low-Dose, Contrast-Enhanced Mammography Compared to Contrast-Enhanced Breast MRI: A Feasibility Study. J. Magn. Reson. Imaging 2020, 52, 589–595. [Google Scholar] [CrossRef]
- Nicosia, L.; Bozzini, A.C.; Palma, S.; Montesano, M.; Pesapane, F.; Ferrari, F.; Dominelli, V.; Rotili, A.; Meneghetti, L.; Frassoni, S.; et al. A Score to Predict the Malignancy of a Breast Lesion Based on Different Contrast Enhancement Patterns in Contrast-Enhanced Spectral Mammography. Cancers 2022, 14, 4337. [Google Scholar] [CrossRef]
- Gommers, J.J.J.; Voogd, A.C.; Broeders, M.J.M.; van Breest Smallenburg, V.; Strobbe, L.J.A.; Donkers-van Rossum, A.B.; van Beek, H.C.; Mann, R.M.; Duijm, L.E.M. Breast magnetic resonance imaging as a problem solving tool in women recalled at biennial screening mammography: A population-based study in the Netherlands. Breast 2021, 60, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Spick, C.; Szolar, D.H.M.; Preidler, K.W.; Tillich, M.; Reittner, P.; Baltzer, P.A. Breast MRI used as a problem-solving tool reliably excludes malignancy. Eur. J. Radiol. 2015, 84, 61–64. [Google Scholar] [CrossRef]
- Bazzocchi, M.; Zuiani, C.; Panizza, P.; Del Frate, C.; Soldano, F.; Isola, M.; Sardanelli, F.; Giuseppetti, G.M.; Simonetti, G.; Lattanzio, V.; et al. Contrast-enhanced breast MRI in patients with suspicious microcalcifications on mammography: Results of a multicenter trial. AJR Am. J. Roentgenol. 2006, 186, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Cilotti, A.; Iacconi, C.; Marini, C.; Moretti, M.; Mazzotta, D.; Traino, C.; Naccarato, A.G.; Piagneri, V.; Giaconi, C.; Bevilacqua, G.; et al. Contrast-enhanced MR imaging in patients with BI-RADS 3-5 microcalcifications. Radiol. Med. 2007, 112, 272–286. [Google Scholar] [CrossRef]
- Bluemke, D.A.; Gatsonis, C.A.; Chen, M.H.; DeAngelis, G.A.; DeBruhl, N.; Harms, S.; Heywang-Köbrunner, S.H.; Hylton, N.; Kuhl, C.K.; Lehman, C.; et al. Magnetic resonance imaging of the breast prior to biopsy. JAMA 2004, 292, 2735–2742. [Google Scholar] [CrossRef] [PubMed]
- Moy, L.; Elias, K.; Patel, V.; Lee, J.; Babb, J.S.; Toth, H.K.; Mercado, C.L. Is Breast MRI Helpful in the Evaluation of Inconclusive Mammographic Findings? Am. J. Roentgenol. 2009, 193, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Strobel, K.; Schrading, S.; Hansen, N.L.; Barabasch, A.; Kuhl, C.K. Assessment of BI-RADS category 4 lesions detected with screening mammography and screening US: Utility of MR imaging. Radiology 2015, 274, 343–351. [Google Scholar] [CrossRef]
- Giess, C.S.; Chikarmane, S.A.; Sippo, D.A.; Birdwell, R.L. Clinical Utility of Breast MRI in the Diagnosis of Malignancy After Inconclusive or Equivocal Mammographic Diagnostic Evaluation. Am. J. Roentgenol. 2017, 208, 1378–1385. [Google Scholar] [CrossRef]
- Svensson, W.E.; Pandian, A.J.; Hashimoto, H. The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity. Ultraschall Med. 2010, 31, 466–474. [Google Scholar] [CrossRef]
- Yang, M.L.; Bhimani, C.; Roth, R.; Germaine, P. Contrast enhanced mammography: Focus on frequently encountered benign and malignant diagnoses. Cancer Imaging 2023, 23, 10. [Google Scholar] [CrossRef]
- van Nijnatten, T.J.A.; Lobbes, M.B.I.; Cozzi, A.; Patel, B.K.; Zuley, M.L.; Jochelson, M.S. Barriers to Implementation of Contrast-Enhanced Mammography in Clinical Practice: AJR Expert Panel Narrative Review. Am. J. Roentgenol. 2023, 221, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Murad, M.H.; Lin, L.; Chu, H.; Hasan, B.; Alsibai, R.A.; Abbas, A.S.; Mustafa, R.A.; Wang, Z. The association of sensitivity and specificity with disease prevalence: Analysis of 6909 studies of diagnostic test accuracy. Cmaj 2023, 195, E925–E931. [Google Scholar] [CrossRef] [PubMed]
- Ekpo, E.U.; Alakhras, M.; Brennan, P. Errors in Mammography Cannot be Solved Through Technology Alone. Asian Pac. J. Cancer Prev. 2018, 19, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Ekpo, E.U.; Ujong, U.P.; Mello-Thoms, C.; McEntee, M.F. Assessment of Interradiologist Agreement Regarding Mammographic Breast Density Classification Using the Fifth Edition of the BI-RADS Atlas. AJR Am. J. Roentgenol. 2016, 206, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.J.; Gandomkar, Z.; Lewis, S.; Reed, W.; Suleiman, M.; Siviengphanom, S.; Ekpo, E. Do Reader Characteristics Affect Diagnostic Efficacy in Screening Mammography? A Systematic Review. Clin. Breast Cancer 2023, 23, e56–e67. [Google Scholar] [CrossRef]
- Hadadi, I.; Rae, W.; Clarke, J.; McEntee, M.; Ekpo, E. Breast cancer detection across dense and non-dense breasts: Markers of diagnostic confidence and efficacy. Acta Radiol. Open 2022, 11, 20584601211072279. [Google Scholar] [CrossRef]
- Morrison, A.; Polisena, J.; Husereau, D.; Moulton, K.; Clark, M.; Fiander, M.; Mierzwinski-Urban, M.; Clifford, T.; Hutton, B.; Rabb, D. The effect of English-language restriction on systematic review-based meta-analyses: A systematic review of empirical studies. Int. J. Technol. Assess Health Care 2012, 28, 138–144. [Google Scholar] [CrossRef]
Modality | No. of Studies | Study Design | Mean Age Range | Number of Lesions | Assessment Threshold | Higgin’s I2 | Egger’s Test |
---|---|---|---|---|---|---|---|
DM | 25 | P = 12 R = 12 P/R = 1 | 44.2–61.5 | 7801 Mal = 2833 B/N = 4968 | 0, 3, 4, or 5 | Sen: 92% Spc: 96% | 0.43 |
DBT | 25 | P = 10 R = 14 P/R = 1 | 44.2–61.5 | 7919 Mal = 2387 B/N = 4804 | 0, 3, 4, or 5 | Sen: 92% Spc: 96% | 0.69 |
HHUS | 10 | P = 7 R = 3 P/R = 0 | 43.1–60 | 1972 Mal = 1019 B/N = 953 | 3, 4, or 5 | Sen: 72% Spc: 92% | 0.09 |
CEM | 16 | P = 15 R = 1 P/R = 0 | 48.5–58.4 | 2975 Mal = 1710 B/N = 1265 | 4 or 5 | Sen: 72% Spc: 88% | 0.72 |
MRI | 14 | P = 7 R = 7 P/R = 0 | 48.5–56 | 3629 lesions Mal = 1286; B/N = 2343 | 0, 4, or 5 | Sen: 68% Spc: 95% | 0.01 * |
Imaging Modality | Sensitivity | Specificity |
---|---|---|
DM | 85 (78–90) | 77 (66–85) |
DBT | 91 (87–94) | 85 (75–91) |
HHUS | 90 (86–93) | 65 (46–80) |
CEM | 95 (90–97) | 73 (63–81) |
MRI | 93 (88–96) | 69 (55–81) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akwo, J.; Hadadi, I.; Ekpo, E. Diagnostic Efficacy of Five Different Imaging Modalities in the Assessment of Women Recalled at Breast Screening—A Systematic Review and Meta-Analysis. Cancers 2024, 16, 3505. https://doi.org/10.3390/cancers16203505
Akwo J, Hadadi I, Ekpo E. Diagnostic Efficacy of Five Different Imaging Modalities in the Assessment of Women Recalled at Breast Screening—A Systematic Review and Meta-Analysis. Cancers. 2024; 16(20):3505. https://doi.org/10.3390/cancers16203505
Chicago/Turabian StyleAkwo, Judith, Ibrahim Hadadi, and Ernest Ekpo. 2024. "Diagnostic Efficacy of Five Different Imaging Modalities in the Assessment of Women Recalled at Breast Screening—A Systematic Review and Meta-Analysis" Cancers 16, no. 20: 3505. https://doi.org/10.3390/cancers16203505
APA StyleAkwo, J., Hadadi, I., & Ekpo, E. (2024). Diagnostic Efficacy of Five Different Imaging Modalities in the Assessment of Women Recalled at Breast Screening—A Systematic Review and Meta-Analysis. Cancers, 16(20), 3505. https://doi.org/10.3390/cancers16203505