Dietary Rhythms and MASLD-Related Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and HCC
1.1. From MASLD to MASH to HCC
1.2. NAFLD to HCC without Local Inflammation
1.3. Local vs. Systemic Inflammation in the Pathogenesis of MASLD-Related HCC
1.4. How Does Inflammation Promote HCC?
2. MASLD, Dietary Rhythms, and HCC
2.1. Dietary Rhythms and MASLD
2.2. Dietary Rhythms and HCC
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global Burden of Primary Liver Cancer in 2020 and Predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Valery, P.C.; Laversanne, M.; Clark, P.J.; Petrick, J.L.; McGlynn, K.A.; Bray, F. Projections of Primary Liver Cancer to 2030 in 30 Countries Worldwide. Hepatology 2018, 67, 600–611. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; London, W.T. The Global Epidemiology of Hepatocellular Carcinoma: Present and Future. Clin. Liver Dis. 2011, 15, 223–243, vii–x. [Google Scholar] [CrossRef]
- Hashimoto, E.; Yatsuji, S.; Tobari, M.; Taniai, M.; Torii, N.; Tokushige, K.; Shiratori, K. Hepatocellular Carcinoma in Patients with Nonalcoholic Steatohepatitis. J. Gastroenterol. 2009, 44 (Suppl. 19), 89–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.G.; Nguyen, P.P.; Dang, H.; Kumari, R.; Garcia, G.; Esquivel, C.O.; Nguyen, M.H. Temporal Trends in Disease Presentation and Survival of Patients with Hepatocellular Carcinoma: A Real-World Experience from 1998 to 2015. Cancer 2018, 124, 2588–2598. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E.; Cooksley, W.G.; Hanson, R.; Searle, J.; Halliday, J.W.; Powell, L.W. The Natural History of Nonalcoholic Steatohepatitis: A Follow-up Study of Forty-Two Patients for up to 21 Years. Hepatology 1990, 11, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.J.H.; Ng, C.H.; Lin, S.Y.; Pan, X.H.; Tay, P.; Lim, W.H.; Teng, M.; Syn, N.; Lim, G.; Yong, J.N.; et al. Clinical Characteristics, Surveillance, Treatment Allocation, and Outcomes of Non-Alcoholic Fatty Liver Disease-Related Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Lancet Oncol. 2022, 23, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic Steatohepatitis: A Proposal for Grading and Staging The Histological Lesions. Off. J. Am. Coll. Gastroenterol. ACG 1999, 94, 2467. [Google Scholar] [CrossRef]
- Leamy, A.K.; Egnatchik, R.A.; Young, J.D. Molecular Mechanisms and the Role of Saturated Fatty Acids in the Progression of Non-Alcoholic Fatty Liver Disease. Prog. Lipid Res. 2013, 52, 165–174. [Google Scholar] [CrossRef]
- Peng, K.-Y.; Watt, M.J.; Rensen, S.; Greve, J.W.; Huynh, K.; Jayawardana, K.S.; Meikle, P.J.; Meex, R.C.R. Mitochondrial Dysfunction-Related Lipid Changes Occur in Nonalcoholic Fatty Liver Disease Progression. J. Lipid Res. 2018, 59, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and Nonalcoholic Fatty Liver Disease: From Pathophysiology to Therapeutics. Metabolism 2019, 92, 82–97. [Google Scholar] [CrossRef]
- Kuchay, M.S.; Martínez-Montoro, J.I.; Choudhary, N.S.; Fernández-García, J.C.; Ramos-Molina, B. Non-Alcoholic Fatty Liver Disease in Lean and Non-Obese Individuals: Current and Future Challenges. Biomedicines 2021, 9, 1346. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.A.; Lymp, J.F.; St Sauver, J.; Sanderson, S.O.; Lindor, K.D.; Feldstein, A.; Angulo, P. The Natural History of Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study. Gastroenterology 2005, 129, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Jelenik, T.; Kaul, K.; Séquaris, G.; Flögel, U.; Phielix, E.; Kotzka, J.; Knebel, B.; Fahlbusch, P.; Hörbelt, T.; Lehr, S.; et al. Mechanisms of Insulin Resistance in Primary and Secondary Nonalcoholic Fatty Liver. Diabetes 2017, 66, 2241–2253. [Google Scholar] [CrossRef] [PubMed]
- Finck, B.N. Targeting Metabolism, Insulin Resistance, and Diabetes to Treat Nonalcoholic Steatohepatitis. Diabetes 2018, 67, 2485–2493. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Morgan, M.P.; Robson, T.; Annett, S. Obesity, Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Current Status and Therapeutic Targets. Front. Endocrinol. 2023, 14, 1148934. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chang, Y.; Ryu, S.; Wild, S.H.; Byrne, C.D. NAFLD Improves Risk Prediction of Type 2 Diabetes: With Effect Modification by Sex and Menopausal Status. Hepatology 2022, 76, 1755–1765. [Google Scholar] [CrossRef]
- Mantovani, A.; Targher, G. Type 2 Diabetes Mellitus and Risk of Hepatocellular Carcinoma: Spotlight on Nonalcoholic Fatty Liver Disease. Ann. Transl. Med. 2017, 5, 270. [Google Scholar] [CrossRef]
- Agosti, P.; Sabbà, C.; Mazzocca, A. Emerging Metabolic Risk Factors in Hepatocellular Carcinoma and Their Influence on the Liver Microenvironment. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 607–617. [Google Scholar] [CrossRef]
- Yang, J.D.; Ahmed, F.; Mara, K.C.; Addissie, B.D.; Allen, A.M.; Gores, G.J.; Roberts, L.R. Diabetes Is Associated with Increased Risk of Hepatocellular Carcinoma in Patients with Cirrhosis From Nonalcoholic Fatty Liver Disease. Hepatology 2020, 71, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Matsuoka, S.; Yamazaki, M.; Shibata, T.; Nirei, K.; Takahashi, H.; Kaneko, T.; Fujisawa, M.; Higuchi, T.; Nakamura, H.; et al. Apoptosis and Non-Alcoholic Fatty Liver Diseases. World J. Gastroenterol. 2018, 24, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Marino, L.; Kim, A.; Ni, B.; Celi, F.S. Thyroid Hormone Action and Liver Disease, a Complex Interplay. Hepatology 2023. [Google Scholar] [CrossRef] [PubMed]
- Perra, A.; Kowalik, M.A.; Pibiri, M.; Ledda-Columbano, G.M.; Columbano, A. Thyroid Hormone Receptor Ligands Induce Regression of Rat Preneoplastic Liver Lesions Causing Their Reversion to a Differentiated Phenotype. Hepatology 2009, 49, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Mungamuri, S.K.; Gupta, Y.K.; Rao, P.N.; Ravishankar, B. Evolution of Non-Alcoholic Fatty Liver Disease to Liver Cancer: Insights from Genome-Wide Association Studies. Gene Expr. 2023, 22, 47–61. [Google Scholar] [CrossRef]
- Eslam, M.; Valenti, L.; Romeo, S. Genetics and Epigenetics of NAFLD and NASH: Clinical Impact. J. Hepatol. 2018, 68, 268–279. [Google Scholar] [CrossRef]
- Paradis, V.; Zalinski, S.; Chelbi, E.; Guedj, N.; Degos, F.; Vilgrain, V.; Bedossa, P.; Belghiti, J. Hepatocellular Carcinomas in Patients with Metabolic Syndrome Often Develop without Significant Liver Fibrosis: A Pathological Analysis. Hepatology 2009, 49, 851–859. [Google Scholar] [CrossRef]
- Tokushige, K.; Hashimoto, E.; Horie, Y.; Taniai, M.; Higuchi, S. Hepatocellular Carcinoma in Japanese Patients with Nonalcoholic Fatty Liver Disease, Alcoholic Liver Disease, and Chronic Liver Disease of Unknown Etiology: Report of the Nationwide Survey. J. Gastroenterol. 2011, 46, 1230–1237. [Google Scholar] [CrossRef]
- Mittal, S.; El-Serag, H.B.; Sada, Y.H.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans Is Associated with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 124–131.e1. [Google Scholar] [CrossRef]
- Piscaglia, F.; Svegliati-Baroni, G.; Barchetti, A.; Pecorelli, A.; Marinelli, S.; Tiribelli, C.; Bellentani, S. HCC-NAFLD Italian Study Group Clinical Patterns of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease: A Multicenter Prospective Study. Hepatology 2016, 63, 827–838. [Google Scholar] [CrossRef]
- Bengtsson, B.; Stål, P.; Wahlin, S.; Björkström, N.K.; Hagström, H. Characteristics and Outcome of Hepatocellular Carcinoma in Patients with NAFLD without Cirrhosis. Liver Int. 2019, 39, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Shan, J.; Shen, J.; Wang, Y.; Yan, P.; Liu, L.; Zhao, W.; Xu, Y.; Zhu, W.; Su, L.; et al. Androgen/Androgen Receptor Axis Maintains and Promotes Cancer Cell Stemness through Direct Activation of Nanog Transcription in Hepatocellular Carcinoma. Oncotarget 2016, 7, 36814–36828. [Google Scholar] [CrossRef]
- Zaki, M.Y.W.; Mahdi, A.K.; Patman, G.L.; Whitehead, A.; Maurício, J.P.; McCain, M.V.; Televantou, D.; Abou-Beih, S.; Ramon-Gil, E.; Watson, R.; et al. Key Features of the Environment Promoting Liver Cancer in the Absence of Cirrhosis. Sci. Rep. 2021, 11, 16727. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Rudolph, K.L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology 2007, 132, 2557–2576. [Google Scholar] [CrossRef]
- Park, E.J.; Lee, J.H.; Yu, G.-Y.; He, G.; Ali, S.R.; Holzer, R.G.; Osterreicher, C.H.; Takahashi, H.; Karin, M. Dietary and Genetic Obesity Promote Liver Inflammation and Tumorigenesis by Enhancing IL-6 and TNF Expression. Cell 2010, 140, 197–208. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Bhoori, S.; Castelli, C.; Putignani, L.; Rivoltini, L.; Del Chierico, F.; Sanguinetti, M.; Morelli, D.; Sterbini, F.P.; Petito, V.; et al. Hepatocellular Carcinoma Is Associated with Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease. Hepatology 2019, 69, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Higham, S.M.; Mendham, A.E.; Rosenbaum, S.; Allen, N.G.; Smith, G.; Stadnyk, A.; Duffield, R. Effects of Concurrent Exercise Training on Body Composition, Systemic Inflammation, and Components of Metabolic Syndrome in Inactive Academics: A Randomised Controlled Trial. Eur. J. Appl. Physiol. 2023, 123, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Bisgaard, H.C.; Thorgeirsson, S.S. Hepatic Regeneration: The Role of Regeneration in Pathogenesis of Chronic Liver Diseases. Clin. Lab. Med. 1996, 16, 325–339. [Google Scholar] [CrossRef]
- Sakurai, T.; He, G.; Matsuzawa, A.; Yu, G.-Y.; Maeda, S.; Hardiman, G.; Karin, M. Hepatocyte Necrosis Induced by Oxidative Stress and IL-1α Release Mediate Carcinogen-Induced Compensatory Proliferation and Liver Tumorigenesis. Cancer Cell 2008, 14, 156–165. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kim, S.Y.; Seki, E. Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Semin. Liver Dis. 2019, 39, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhou, Y.; Bu, H.; Lv, T.; Shi, Y.; Yang, J. Deletion of Interleukin-6 in Monocytes/Macrophages Suppresses the Initiation of Hepatocellular Carcinoma in Mice. J. Exp. Clin. Cancer Res. 2016, 35, 131. [Google Scholar] [CrossRef] [PubMed]
- Hyun, J.; Al Abo, M.; Dutta, R.K.; Oh, S.H.; Xiang, K.; Zhou, X.; Maeso-Díaz, R.; Caffrey, R.; Sanyal, A.J.; Freedman, J.A.; et al. Dysregulation of the ESRP2-NF2-YAP/TAZ Axis Promotes Hepatobiliary Carcinogenesis in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2021, 75, 623–633. [Google Scholar] [CrossRef]
- Mohammed, S.; Thadathil, N.; Ohene-Marfo, P.; Tran, A.L.; Van Der Veldt, M.; Georgescu, C.; Oh, S.; Nicklas, E.H.; Wang, D.; Haritha, N.H.; et al. Absence of Either Ripk3 or Mlkl Reduces Incidence of Hepatocellular Carcinoma Independent of Liver Fibrosis. Mol. Cancer Res. 2023, 21, 933–946. [Google Scholar] [CrossRef]
- He, G.; Yu, G.Y.; Temkin, V.; Ogata, H.; Kuntzen, C.; Sakurai, T.; Sieghart, W.; Peck-Radosavljevic, M.; Leffert, H.L.; Karin, M. Hepatocyte IKKβ/NF-κB Inhibits Tumor Promotion and Progression by Preventing Oxidative Stress-Driven STAT3 Activation. Cancer Cell 2010, 17, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.E.; Evers, B.M.; Saito, H. Age-Associated Increase in Cytokine Production During Systemic Inflammation: Adipose Tissue as a Major Source of IL-6. J. Gerontol. Ser. A 2009, 64A, 723–730. [Google Scholar] [CrossRef]
- Qing, H.; Desrouleaux, R.; Israni-Winger, K.; Mineur, Y.S.; Fogelman, N.; Zhang, C.; Rashed, S.; Palm, N.W.; Sinha, R.; Picciotto, M.R.; et al. Origin and Function of Stress-Induced IL-6 in Murine Models. Cell 2020, 182, 372–387.e14. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Torbenson, M.; Wu, T.-T.; Yeh, M.M. Non-Alcoholic Fatty Liver Disease Contributes to Hepatocarcinogenesis in Non-Cirrhotic Liver: A Clinical and Pathological Study. J. Gastroenterol. Hepatol. 2013, 28, 848–854. [Google Scholar] [CrossRef]
- Lin, W.-W.; Karin, M. A Cytokine-Mediated Link between Innate Immunity, Inflammation, and Cancer. J. Clin. Investig. 2007, 117, 1175–1183. [Google Scholar] [CrossRef]
- Bea, S.; Jeong, H.E.; Filion, K.B.; Yu, O.H.; Cho, Y.M.; Lee, B.H.; Chang, Y.; Byrne, C.D.; Shin, J.-Y. Outcomes of SGLT-2i and GLP-1RA Therapy among Patients with Type 2 Diabetes and Varying NAFLD Status. JAMA Netw. Open 2023, 6, e2349856. [Google Scholar] [CrossRef]
- Chettouh, H.; Lequoy, M.; Fartoux, L.; Vigouroux, C.; Desbois-Mouthon, C. Hyperinsulinaemia and Insulin Signalling in the Pathogenesis and the Clinical Course of Hepatocellular Carcinoma. Liver Int. 2015, 35, 2203–2217. [Google Scholar] [CrossRef] [PubMed]
- Celton-Morizur, S.; Merlen, G.; Couton, D.; Margall-Ducos, G.; Desdouets, C. The Insulin/Akt Pathway Controls a Specific Cell Division Program That Leads to Generation of Binucleated Tetraploid Liver Cells in Rodents. J. Clin. Investig. 2009, 119, 1880–1887. [Google Scholar] [CrossRef] [PubMed]
- Minicis, S.D.; Agostinelli, L.; Rychlicki, C.; Sorice, G.P.; Saccomanno, S.; Candelaresi, C.; Giaccari, A.; Trozzi, L.; Pierantonelli, I.; Mingarelli, E.; et al. HCC Development Is Associated to Peripheral Insulin Resistance in a Mouse Model of NASH. PLoS ONE 2014, 9, e97136. [Google Scholar] [CrossRef]
- Dombrowski, F.; Mathieu, C.; Evert, M. Hepatocellular Neoplasms Induced by Low-Number Pancreatic Islet Transplants in Autoimmune Diabetic BB/Pfd Rats. Cancer Res. 2006, 66, 1833–1843. [Google Scholar] [CrossRef]
- VanSaun, M.N.; Mendonsa, A.M.; Gorden, D.L. Hepatocellular Proliferation Correlates with Inflammatory Cell and Cytokine Changes in a Murine Model of Nonalchoholic Fatty Liver Disease. PLoS ONE 2013, 8, e73054. [Google Scholar] [CrossRef]
- Saxena, N.K.; Fu, P.P.; Nagalingam, A.; Wang, J.; Handy, J.; Cohen, C.; Tighiouart, M.; Sharma, D.; Anania, F.A. Adiponectin Modulates C-Jun N-Terminal Kinase and Mammalian Target of Rapamycin and Inhibits Hepatocellular Carcinoma. Gastroenterology 2010, 139, 1762–1773.e5. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Chrysavgis, L.; Vachliotis, I.D.; Chartampilas, E.; Cholongitas, E. Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma:Insights in Epidemiology, Pathogenesis, Imaging, Prevention and Therapy. Semin. Cancer Biol. 2023, 93, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Aydinlik, H.; Nguyen, T.D.; Moennikes, O.; Buchmann, A.; Schwarz, M. Selective Pressure during Tumor Promotion by Phenobarbital Leads to Clonal Outgrowth of Beta-Catenin-Mutated Mouse Liver Tumors. Oncogene 2001, 20, 7812–7816. [Google Scholar] [CrossRef] [PubMed]
- Hormaechea-Agulla, D.; Matatall, K.A.; Le, D.T.; Kain, B.; Long, X.; Kus, P.; Jaksik, R.; Challen, G.A.; Kimmel, M.; King, K.Y. Chronic Infection Drives Dnmt3a-Loss-of-Function Clonal Hematopoiesis via IFNγ Signaling. Cell Stem Cell 2021, 28, 1428–1442.e6. [Google Scholar] [CrossRef]
- Guarnera, L.; Jha, B.K. TET2 Mutation as Prototypic Clonal Hematopoiesis Lesion. Semin. Hematol. 2024, 61, 51–60. [Google Scholar] [CrossRef]
- Stubbins, R.J.; Platzbecker, U.; Karsan, A. Inflammation and Myeloid Malignancy: Quenching the Flame. Blood 2022, 140, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.; Lim, E.L.; Weeden, C.E.; Lee, C.; Augustine, M.; Chen, K.; Kuan, F.-C.; Marongiu, F.; Evans, E.J.; Moore, D.A.; et al. Lung Adenocarcinoma Promotion by Air Pollutants. Nature 2023, 616, 159–167. [Google Scholar] [CrossRef]
- Miyakoshi, M.; Yamamoto, M.; Tanaka, H.; Ogawa, K. Serine 727 Phosphorylation of STAT3: An Early Change in Mouse Hepatocarcinogenesis Induced by Neonatal Treatment with Diethylnitrosamine. Mol. Carcinog. 2014, 53, 67–76. [Google Scholar] [CrossRef]
- Johnston, P.A.; Sen, M.; Hua, Y.; Camarco, D.P.; Shun, T.Y.; Lazo, J.S.; Grandis, J.R. High Content Imaging Assays for IL-6-Induced STAT3 Pathway Activation in Head and Neck Cancer Cell Lines. Methods Mol. Biol. 2018, 1683, 229–244. [Google Scholar] [CrossRef]
- Arévalo, J.; Campoy, I.; Durán, M.; Nemours, S.; Areny, A.; Vall-Palomar, M.; Martínez, C.; Cantero-Recasens, G.; Meseguer, A. STAT3 Phosphorylation at Serine 727 Activates Specific Genetic Programs and Promotes Clear Cell Renal Cell Carcinoma (ccRCC) Aggressiveness. Sci. Rep. 2023, 13, 19552. [Google Scholar] [CrossRef] [PubMed]
- Hiebinger, F.; Kudulyte, A.; Chi, H.; Burbano De Lara, S.; Ilic, D.; Helm, B.; Welsch, H.; Dao Thi, V.L.; Klingmüller, U.; Binder, M. Tumour Cells Can Escape Antiproliferative Pressure by Interferon-β through Immunoediting of Interferon Receptor Expression. Cancer Cell Int. 2023, 23, 315. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jin, P.; Liu, Y.; Zhang, Z.; Wu, X.; Weng, M.; Cao, S.; Wang, Y.; Zeng, C.; Yang, R.; et al. A Comprehensive Approach to Lifestyle Intervention Based on a Calorie-Restricted Diet Ameliorates Liver Fat in Overweight/Obese Patients with NAFLD: A Multicenter Randomized Controlled Trial in China. Nutr. J. 2024, 23, 64. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with Diet, Physical Activity and Exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Semmler, G.; Datz, C.; Reiberger, T.; Trauner, M. Diet and Exercise in NAFLD/NASH: Beyond the Obvious. Liver Int. 2021, 41, 2249–2268. [Google Scholar] [CrossRef]
- Yaskolka Meir, A.; Rinott, E.; Tsaban, G.; Zelicha, H.; Kaplan, A.; Rosen, P.; Shelef, I.; Youngster, I.; Shalev, A.; Blüher, M.; et al. Effect of Green-Mediterranean Diet on Intrahepatic Fat: The DIRECT PLUS Randomised Controlled Trial. Gut 2021, 70, 2085–2095. [Google Scholar] [CrossRef]
- Koutoukidis, D.A.; Astbury, N.M.; Tudor, K.E.; Morris, E.; Henry, J.A.; Noreik, M.; Jebb, S.A.; Aveyard, P. Association of Weight Loss Interventions with Changes in Biomarkers of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2019, 179, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Qin, Y.-L.; Shi, Z.-Y.; Chen, J.-H.; Zeng, M.-J.; Zhou, W.; Chen, R.-Q.; Chen, Z.-Y. Effects of Alternate-Day Fasting on Body Weight and Dyslipidaemia in Patients with Non-Alcoholic Fatty Liver Disease: A Randomised Controlled Trial. BMC Gastroenterol. 2019, 19, 219. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Tomlinson, J.W.; Hodson, L.; Ray, D.W. Timing of Energy Intake and the Therapeutic Potential of Intermittent Fasting and Time-Restricted Eating in NAFLD. Gut 2023, 72, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.J.; et al. Time-Restricted Feeding without Reducing Caloric Intake Prevents Metabolic Diseases in Mice Fed a High-Fat Diet. Cell Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Woodie, L.N.; Luo, Y.; Wayne, M.J.; Graff, E.C.; Ahmed, B.; O’Neill, A.M.; Greene, M.W. Restricted Feeding for 9h in the Active Period Partially Abrogates the Detrimental Metabolic Effects of a Western Diet with Liquid Sugar Consumption in Mice. Metabolism 2018, 82, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Venegas, G.; De Ita-Pérez, D.L.; Díaz-Muñoz, M.; Méndez, I.; García-Gasca, T.; Ahumada-Solórzano, M.; Zambrano-Estrada, X.; Vázquez-Martínez, O.; Guzmán-Maldonado, H.; Luna-Moreno, D. Supplementation with Phaseolus Vulgaris Leaves Improves Metabolic Alterations Induced by High-Fat/Fructose Diet in Rats Under Time-Restricted Feeding. Plant Foods Hum. Nutr. 2021, 76, 297–303. [Google Scholar] [CrossRef]
- Gabel, K.; Hoddy, K.K.; Haggerty, N.; Song, J.; Kroeger, C.M.; Trepanowski, J.F.; Panda, S.; Varady, K.A. Effects of 8-Hour Time Restricted Feeding on Body Weight and Metabolic Disease Risk Factors in Obese Adults: A Pilot Study. Nutr. Healthy Aging 2018, 4, 345–353. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104.e5. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; Huang, C.; Yang, S.; Wei, X.; Zhang, P.; Guo, D.; Lin, J.; Xu, B.; Li, C.; et al. Calorie Restriction with or without Time-Restricted Eating in Weight Loss. N. Engl. J. Med. 2022, 386, 1495–1504. [Google Scholar] [CrossRef]
- Wei, X.; Lin, B.; Huang, Y.; Yang, S.; Huang, C.; Shi, L.; Liu, D.; Zhang, P.; Lin, J.; Xu, B.; et al. Effects of Time-Restricted Eating on Nonalcoholic Fatty Liver Disease: The TREATY-FLD Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e233513. [Google Scholar] [CrossRef]
- Camacho-Cardenosa, A.; Clavero-Jimeno, A.; Martin-Olmedo, J.J.; Amaro-Gahete, F.; Cupeiro, R.; Cejudo, M.T.G.; García Pérez, P.V.; Hernández-Martínez, C.; Sevilla-Lorente, R.; De-la-O, A.; et al. Time-Restricted Eating and Supervised Exercise for Improving Hepatic Steatosis and Cardiometabolic Health in Adults with Obesity: Protocol for the TEMPUS Randomised Controlled Trial. BMJ Open 2024, 14, e078472. [Google Scholar] [CrossRef] [PubMed]
- Sadria, M.; Layton, A.T. Aging Affects Circadian Clock and Metabolism and Modulates Timing of Medication. iScience 2021, 24, 102245. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Guo, W.; Hu, M.; Jin, X.; Zhang, S.; Liu, B.; Qiu, H.; Wang, K.; Zhuge, A.; Li, S.; et al. Resynchronized Rhythmic Oscillations of Gut Microbiota Drive Time-Restricted Feeding Induced Nonalcoholic Steatohepatitis Alleviation. Gut Microbes 2023, 15, 2221450. [Google Scholar] [CrossRef]
- de Cabo, R.; Carmona-Gutierrez, D.; Bernier, M.; Hall, M.N.; Madeo, F. The Search for Antiaging Interventions: From Elixirs to Fasting Regimens. Cell 2014, 157, 1515–1526. [Google Scholar] [CrossRef]
- Bolshette, N.; Ibrahim, H.; Reinke, H.; Asher, G. Circadian Regulation of Liver Function: From Molecular Mechanisms to Disease Pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 695–707. [Google Scholar] [CrossRef]
- Grasl-Kraupp, B.; Bursch, W.; Ruttkay-Nedecky, B.; Wagner, A.; Lauer, B.; Schulte-Hermann, R. Food Restriction Eliminates Preneoplastic Cells through Apoptosis and Antagonizes Carcinogenesis in Rat Liver. Proc. Natl. Acad. Sci. USA 1994, 91, 9995–9999. [Google Scholar] [CrossRef]
- Laconi, E.; Tessitore, L.; Milia, G.; Yusuf, A.; Sarma, D.S.; Todde, P.; Pani, P. The Enhancing Effect of Fasting/Refeeding on the Growth of Nodules Selectable by the Resistant Hepatocyte Model in Rat Liver. Carcinogenesis 1995, 16, 1865–1869. [Google Scholar] [CrossRef] [PubMed]
- Molina-Aguilar, C.; de Guerrero-Carrillo, M.J.; Espinosa-Aguirre, J.J.; Olguin-Reyes, S.; Castro-Belio, T.; Vázquez-Martínez, O.; Rivera-Zavala, J.B.; Díaz-Muñoz, M. Time-Caloric Restriction Inhibits the Neoplastic Transformation of Cirrhotic Liver in Rats Treated with Diethylnitrosamine. Carcinogenesis 2017, 38, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Kumar, D.; Sauceda, C.; Oberg, A.; Ellies, L.G.; Zeng, L.; Jih, L.J.; Newton, I.G.; Webster, N.J.G. Time-Restricted Feeding Attenuates Metabolic Dysfunction-Associated Steatohepatitis and Hepatocellular Carcinoma in Obese Male Mice. Cancers 2024, 16, 1513. [Google Scholar] [CrossRef]
- Serra, M.; Marongiu, F.; Pisu, M.G.; Serra, M.; Laconi, E. Time-Restricted Feeding Delays the Emergence of the Age-Associated, Neoplastic-Prone Tissue Landscape. Aging 2019, 11, 3851–3863. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, F.; Serra, M.P.; Doratiotto, S.; Sini, M.; Fanti, M.; Cadoni, E.; Serra, M.; Laconi, E. Aging Promotes Neoplastic Disease through Effects on the Tissue Microenvironment. Aging 2016, 8, 3390–3399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, H.; Tao, Z.; Jiang, M.; Pu, J. A National Study Exploring the Association between Fasting Duration and Mortality among the Elderly. Nutrients 2024, 16, 2018. [Google Scholar] [CrossRef] [PubMed]
- Bogumil, D.; Park, S.-Y.; Le Marchand, L.; Haiman, C.A.; Wilkens, L.R.; Boushey, C.J.; Setiawan, V.W. High-Quality Diets Are Associated with Reduced Risk of Hepatocellular Carcinoma and Chronic Liver Disease: The Multiethnic Cohort. Hepatol. Commun. 2019, 3, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Fang, G.; Chen, Q.; Li, J.; Ruan, X.; Lian, X. Six-Hour Time-Restricted Feeding Inhibits Lung Cancer Progression and Reshapes Circadian Metabolism. BMC Med. 2023, 21, 417. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S. Dietary Treatment for NAFLD: New Clinical and Epidemiological Evidence and Updated Recommendations. Semin. Liver Dis. 2021, 41, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Ray, D.W.; Tomlinson, J.W. Is It Time for Chronopharmacology in NASH? J. Hepatol. 2022, 76, 1215–1224. [Google Scholar] [CrossRef]
- Sato, T.; Oishi, K. Time-Restricted Feeding Has a Limited Effect on Hepatic Lipid Accumulation, Inflammation and Fibrosis in a Choline-Deficient High-Fat Diet-Induced Murine NASH Model. PLoS ONE 2024, 19, e0296950. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malakmahmoudi, N.; Pisu, R.; Laconi, E.; Marongiu, F. Dietary Rhythms and MASLD-Related Hepatocellular Carcinoma. Cancers 2024, 16, 3481. https://doi.org/10.3390/cancers16203481
Malakmahmoudi N, Pisu R, Laconi E, Marongiu F. Dietary Rhythms and MASLD-Related Hepatocellular Carcinoma. Cancers. 2024; 16(20):3481. https://doi.org/10.3390/cancers16203481
Chicago/Turabian StyleMalakmahmoudi, Nadia, Roberta Pisu, Ezio Laconi, and Fabio Marongiu. 2024. "Dietary Rhythms and MASLD-Related Hepatocellular Carcinoma" Cancers 16, no. 20: 3481. https://doi.org/10.3390/cancers16203481
APA StyleMalakmahmoudi, N., Pisu, R., Laconi, E., & Marongiu, F. (2024). Dietary Rhythms and MASLD-Related Hepatocellular Carcinoma. Cancers, 16(20), 3481. https://doi.org/10.3390/cancers16203481