The Immune Landscape and Immunotherapeutic Strategies in Platinum-Refractory Testicular Germ Cell Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Methodology
3. The Immune Landscape of TGCTs
4. Immune Microenvironment Alternations after Chemotherapy Induction
5. Immunotherapy in TGCTs
5.1. PD-1/PD-L1 Inhibitors
5.2. Anti-CD30 Antibody-Drug Conjugate Therapy
5.3. Emerging Immunotherapeutic Targets
5.4. Prodrug Therapeutics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gilligan, T.; Lin, D.W.; Aggarwal, R.; Chism, D.; Cost, N.; Derweesh, I.H.; Emamekhoo, H.; Feldman, D.R.; Geynisman, D.M.; Hancock, S.L.; et al. Testicular Cancer, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc Netw. 2019, 17, 1529–1554. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Stephenson, A.J. Role of Postchemotherapy Retroperitoneal Lymph Node Dissection in Advanced Germ Cell Tumors. Hematol. Oncol. Clin. N. Am. 2011, 25, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Rajpert-De Meyts, E.; McGlynn, K.A.; Okamoto, K.; Jewett, M.A.S.; Bokemeyer, C. Testicular Germ Cell Tumours. Lancet 2016, 387, 1762–1774. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, U.D.; Demirer, T.; Wandt, H.; Taverna, C.; Siegert, W.; Bornhauser, M.; Kozak, T.; Papiani, G.; Ballardini, M.; Rosti, G. Second-Line High-Dose Chemotherapy in Patients with Mediastinal and Retroperitoneal Primary Non-Seminomatous Germ Cell Tumors: The EBMT Experience. Ann. Oncol. 2005, 16, 146–151. [Google Scholar] [CrossRef]
- De Giorgi, U.; Rosti, G.; Salvioni, R.; Papiani, G.; Ballardini, M.; Pizzocaro, G.; Marangolo, M. Long-Term Outcome of Salvage High-Dose Chemotherapy in Patients with Germ Cell Tumor with Poor Prognostic Features. Urol. Oncol. Semin. Orig. Investig. 2011, 29, 284–290. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, U.; Rosti, G.; Slavin, S.; Yaniv, I.; Harousseau, J.L.; Ladenstein, R.; Demirer, T.; Dini, G. Salvage High-Dose Chemotherapy for Children with Extragonadal Germ-Cell Tumours. Br. J. Cancer 2005, 93, 412–417. [Google Scholar] [CrossRef]
- Feldman, D.R.; Patil, S.; Trinos, M.J.; Carousso, M.; Ginsberg, M.S.; Sheinfeld, J.; Bajorin, D.F.; Bosl, G.J.; Motzer, R.J. Progression-Free and Overall Survival in Patients with Relapsed/Refractory Germ Cell Tumors Treated with Single-Agent Chemotherapy: Endpoints for Clinical Trial Design. Cancer 2012, 118, 981–986. [Google Scholar] [CrossRef]
- Kollmannsberger, C.; Nichols, C.; Bokemeyer, C. Recent Advances in Management of Patients with Platinum-Refractory Testicular Germ Cell Tumors. Cancer 2006, 106, 1217–1226. [Google Scholar] [CrossRef]
- Ostrowski, K.A.; Walsh, T.J. Infertility with Testicular Cancer. Urol. Clin. N. Am. 2015, 42, 409–420. [Google Scholar] [CrossRef]
- Curreri, S.A.; Fung, C.; Beard, C.J. Secondary Malignant Neoplasms in Testicular Cancer Survivors. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Tazzari, V.; Baccini, C.; Pertici, G.; Serino, L.P.; De Giorgi, U. Anticancer Drug Delivery with Nanoparticles. In Vivo 2006, 20, 697–701. [Google Scholar] [PubMed]
- De Giorgi, U.; Rosti, G.; Aieta, M.; Testore, F.; Burattini, L.; Fornarini, G.; Naglieri, E.; Lo Re, G.; Zumaglini, F.; Marangolo, M. Phase II Study of Oxaliplatin and Gemcitabine Salvage Chemotherapy in Patients with Cisplatin-Refractory Nonseminomatous Germ Cell Tumor. Eur. Urol. 2006, 50, 1032–1039. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Fijak, M.; Meinhardt, A. The Testis in Immune Privilege. Immunol. Rev. 2006, 213, 66–81. [Google Scholar] [CrossRef]
- Milia-Argeiti, E.; Mourah, S.; Vallée, B.; Huet, E.; Karamanos, N.K.; Theocharis, A.D.; Menashi, S. EMMPRIN/CD147-Encriched Membrane Vesicles Released from Malignant Human Testicular Germ Cells Increase MMP Production through Tumor–Stroma Interaction. Biochim. Et Biophys. Acta (BBA)-General. Subj. 2014, 1840, 2581–2588. [Google Scholar] [CrossRef]
- Kozlova, N.; Grossman, J.E.; Iwanicki, M.P.; Muranen, T. The Interplay of the Extracellular Matrix and Stromal Cells as a Drug Target in Stroma-Rich Cancers. Trends Pharmacol. Sci. 2020, 41, 183–198. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The Tumor Microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef]
- Müller, M.R.; Skowron, M.A.; Albers, P.; Nettersheim, D. Molecular and Epigenetic Pathogenesis of Germ Cell Tumors. Asian J. Urol. 2021, 8, 144–154. [Google Scholar] [CrossRef]
- Klein, B.; Haggeney, T.; Fietz, D.; Indumathy, S.; Loveland, K.L.; Hedger, M.; Kliesch, S.; Weidner, W.; Bergmann, M.; Schuppe, H.-C. Specific Immune Cell and Cytokine Characteristics of Human Testicular Germ Cell Neoplasia. Human. Reprod. 2016, 31, 2192–2202. [Google Scholar] [CrossRef]
- Skowron, M.A.; Eul, K.; Stephan, A.; Ludwig, G.F.; Wakileh, G.A.; Bister, A.; Söhngen, C.; Raba, K.; Petzsch, P.; Poschmann, G.; et al. Profiling the 3D Interaction between Germ Cell Tumors and Microenvironmental Cells at the Transcriptome and Secretome Level. Mol. Oncol. 2022, 16, 3107–3127. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Powles, T.; Vogelzang, N.J. A Review on the Evolution of PD-1/PD-L1 Immunotherapy for Bladder Cancer: The Future Is Now. Cancer Treat. Rev. 2017, 54, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Fankhauser, C.D.; Curioni-Fontecedro, A.; Allmann, V.; Beyer, J.; Tischler, V.; Sulser, T.; Moch, H.; Bode, P.K. Frequent PD-L1 Expression in Testicular Germ Cell Tumors. Br. J. Cancer 2015, 113, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Cierna, Z.; Mego, M.; Miskovska, V.; Machalekova, K.; Chovanec, M.; Svetlovska, D.; Hainova, K.; Rejlekova, K.; Macak, D.; Spanik, S.; et al. Prognostic Value of Programmed-Death-1 Receptor (PD-1) and Its Ligand 1 (PD-L1) in Testicular Germ Cell Tumors. Ann. Oncol. 2016, 27, 300–305. [Google Scholar] [CrossRef]
- Jennewein, L.; Bartsch, G.; Gust, K.; Kvasnicka, H.-M.; Haferkamp, A.; Blaheta, R.; Mittelbronn, M.; Harter, P.N.; Mani, J. Increased Tumor Vascularization Is Associated with the Amount of Immune Competent PD-1 Positive Cells in Testicular Germ Cell Tumors. Oncol. Lett. 2018, 15, 9852–9860. [Google Scholar] [CrossRef] [PubMed]
- Chovanec, M.; Cierna, Z.; Miskovska, V.; Machalekova, K.; Svetlovska, D.; Kalavska, K.; Rejlekova, K.; Spanik, S.; Kajo, K.; Babal, P.; et al. Prognostic Role of Programmed-Death Ligand 1 (PD-L1) Expressing Tumor Infiltrating Lymphocytes in Testicular Germ Cell Tumors. Oncotarget 2017, 8, 21794–21805. [Google Scholar] [CrossRef]
- Siska, P.J.; Johnpulle, R.A.N.; Zhou, A.; Bordeaux, J.; Kim, J.Y.; Dabbas, B.; Dakappagari, N.; Rathmell, J.C.; Rathmell, W.K.; Morgans, A.K.; et al. Deep Exploration of the Immune Infiltrate and Outcome Prediction in Testicular Cancer by Quantitative Multiplexed Immunohistochemistry and Gene Expression Profiling. OncoImmunology 2017, 6, e1305535. [Google Scholar] [CrossRef] [PubMed]
- Pęksa, R.; Kunc, M.; Popęda, M.; Piątek, M.; Bieńkowski, M.; Żok, J.; Starzyńska, A.; Perdyan, A.; Sowa, M.; Duchnowska, R.; et al. Combined Assessment of Immune Checkpoint Regulator VISTA on Tumor-Associated Immune Cells and Platelet-to-Lymphocyte Ratio Identifies Advanced Germ Cell Tumors with Higher Risk of Unfavorable Outcomes. Cancers 2021, 13, 1750. [Google Scholar] [CrossRef]
- Lobo, J.; Rodrigues, Â.; Guimarães, R.; Cantante, M.; Lopes, P.; Maurício, J.; Oliveira, J.; Jerónimo, C.; Henrique, R. Detailed Characterization of Immune Cell Infiltrate and Expression of Immune Checkpoint Molecules PD-L1/CTLA-4 and MMR Proteins in Testicular Germ Cell Tumors Disclose Novel Disease Biomarkers. Cancers 2019, 11, 1535. [Google Scholar] [CrossRef]
- Sadigh, S.; Farahani, S.J.; Shah, A.; Vaughn, D.; Lal, P. Differences in PD-L1–Expressing Macrophages and Immune Microenvironment in Testicular Germ Cell Tumors. Am. J. Clin. Pathol. 2020, 153, 387–395. [Google Scholar] [CrossRef]
- Imamoglu, G.I.; Eren, T.; Baylan, B.; Karacın, C. May High Levels of Systemic Immune-Inflammation Index and Hematologic Inflammation Markers Suggest a Further Stage in Testicular Tumours? Urol. Int. 2019, 103, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Chovanec, M.; Cierna, Z.; Miskovska, V.; Machalekova, K.; Kalavska, K.; Rejlekova, K.; Svetlovska, D.; Macak, D.; Spanik, S.; Kajo, K.; et al. Systemic Immune-Inflammation Index in Germ-Cell Tumours. Br. J. Cancer 2018, 118, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Fankhauser, C.D.; Sander, S.; Roth, L.; Gross, O.; Eberli, D.; Sulser, T.; Seifert, B.; Beyer, J.; Hermanns, T. Systemic Inflammatory Markers Have Independent Prognostic Value in Patients with Metastatic Testicular Germ Cell Tumours Undergoing First-Line Chemotherapy. Br. J. Cancer 2018, 118, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Ribnikar, D.; Stukalin, I.; Bedard, P.L.; Hamilton, R.J.; Jewett, M.; Warde, P.; Chung, P.; Anson-Cartwright, L.; Templeton, A.J.; Amir, E.; et al. The Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Metastatic Testicular Cancer. Curr. Oncol. 2021, 28, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Cursano, M.C.; Kopf, B.; Scarpi, E.; Menna, C.; Casadei, C.; Schepisi, G.; Lolli, C.; Altavilla, A.; Gallà, V.; Santini, D.; et al. Prognostic Role of Systemic Inflammatory Indexes in Germ Cell Tumors Treated with High-Dose Chemotherapy. Front. Oncol. 2020, 10, 1325. [Google Scholar] [CrossRef]
- Chovanec, M.; Mego, M.; Cholujova, D.; Gronesova, P.; Miskovska, V.; Sycova-Mila, Z.; Usakova, V.; Svetlovska, D.; Bujdak, P.; Spanik, S.; et al. A Cytokine and Angiogenic Factor (CAF) Analysis in Plasma in Testicular Germ Cell Tumor Patients (TGCTs). JCO 2015, 33, e15552. [Google Scholar] [CrossRef]
- Chen, G.; Emens, L.A. Chemoimmunotherapy: Reengineering Tumor Immunity. Cancer Immunol. Immunother. 2013, 62, 203–216. [Google Scholar] [CrossRef]
- Chemnitz, J.M.; Parry, R.V.; Nichols, K.E.; June, C.H.; Riley, J.L. SHP-1 and SHP-2 Associate with Immunoreceptor Tyrosine-Based Switch Motif of Programmed Death 1 upon Primary Human T Cell Stimulation, but Only Receptor Ligation Prevents T Cell Activation. J. Immunol. 2004, 173, 945–954. [Google Scholar] [CrossRef]
- Jackaman, C.; Majewski, D.; Fox, S.A.; Nowak, A.K.; Nelson, D.J. Chemotherapy Broadens the Range of Tumor Antigens Seen by Cytotoxic CD8+ T Cells in Vivo. Cancer Immunol. Immunother. 2012, 61, 2343–2356. [Google Scholar] [CrossRef]
- Wan, S.; Pestka, S.; Jubin, R.G.; Lyu, Y.L.; Tsai, Y.-C.; Liu, L.F. Chemotherapeutics and Radiation Stimulate MHC Class I Expression through Elevated Interferon-Beta Signaling in Breast Cancer Cells. PLoS ONE 2012, 7, e32542. [Google Scholar] [CrossRef]
- Tsavaris, N.; Kosmas, C.; Vadiaka, M.; Kanelopoulos, P.; Boulamatsis, D. Immune Changes in Patients with Advanced Breast Cancer Undergoing Chemotherapy with Taxanes. Br. J. Cancer 2002, 87, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Michels, T.; Shurin, G.V.; Naiditch, H.; Sevko, A.; Umansky, V.; Shurin, M.R. Paclitaxel Promotes Differentiation of Myeloid-Derived Suppressor Cells into Dendritic Cells in Vitro in a TLR4-Independent Manner. J. Immunotoxicol. 2012, 9, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Jaffee, E.M. Regulatory T-Cell Modulation Using Cyclophosphamide in Vaccine Approaches: A Current Perspective. Cancer Res. 2012, 72, 3439–3444. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Wilson, N.S.; Waithman, J.; Villadangos, J.A.; Carbone, F.R.; Heath, W.R.; Belz, G.T. Cognate CD4+ T Cell Licensing of Dendritic Cells in CD8+ T Cell Immunity. Nat. Immunol. 2004, 5, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Al-Hogbani, M.; Duguay, J.; Wagner, D.C.; Haferkamp, A.; Joubert, P.; Frees, S.; Rendon, R.; Power, N.; Périgny, M.; Toren, P. Expression of programmed death ligand-1 (PD-L1) in metastatic and postchemotherapy viable testicular germ cell tumors. Urol. Oncol. 2021, 39, 303.e1–303.e8. [Google Scholar] [CrossRef] [PubMed]
- Kourie, H.R.; Awada, G.; Awada, A.H. Learning from the “Tsunami” of Immune Checkpoint Inhibitors in 2015. Crit. Rev. Oncol./Hematol. 2016, 101, 213–220. [Google Scholar] [CrossRef]
- Zschäbitz, S.; Lasitschka, F.; Hadaschik, B.; Hofheinz, R.-D.; Jentsch-Ullrich, K.; Grüner, M.; Jäger, D.; Grüllich, C. Response to Anti-Programmed Cell Death Protein-1 Antibodies in Men Treated for Platinum Refractory Germ Cell Cancer Relapsed after High-Dose Chemotherapy and Stem Cell Transplantation. Eur. J. Cancer 2017, 76, 1–7. [Google Scholar] [CrossRef]
- Chi, E.A.; Schweizer, M.T. Durable Response to Immune Checkpoint Blockade in a Platinum-Refractory Patient With Nonseminomatous Germ Cell Tumor. Clin. Genitourin. Cancer 2017, 15, e855–e857. [Google Scholar] [CrossRef]
- Loh, K.P.; Fung, C. Novel Therapies in Platinum-Refractory Metastatic Germ Cell Tumor: A Case Report with a Focus on a PD-1 Inhibitor. Rare Tumors 2017, 9, 47–49. [Google Scholar] [CrossRef]
- Adra, N.; Einhorn, L.H.; Althouse, S.K.; Ammakkanavar, N.R.; Musapatika, D.; Albany, C.; Vaughn, D.; Hanna, N.H. Phase II Trial of Pembrolizumab in Patients with Platinum Refractory Germ-Cell Tumors: A Hoosier Cancer Research Network Study GU14-206. Ann. Oncol. 2018, 29, 209–214. [Google Scholar] [CrossRef]
- Tsimberidou, A.-M.; Vo, H.H.; Subbiah, V.; Janku, F.; Piha-Paul, S.; Yilmaz, B.; Gong, J.; Naqvi, M.F.; Tu, S.-M.; Campbell, M.; et al. Pembrolizumab in Patients with Advanced Metastatic Germ Cell Tumors. Oncologist 2021, 26, 558–e1098. [Google Scholar] [CrossRef]
- Mego, M.; Svetlovska, D.; Chovanec, M.; Rečkova, M.; Rejlekova, K.; Obertova, J.; Palacka, P.; Sycova-Mila, Z.; De Giorgi, U.; Mardiak, J. Phase II Study of Avelumab in Multiple Relapsed/Refractory Germ Cell Cancer. Investig. New Drugs 2019, 37, 748–754. [Google Scholar] [CrossRef]
- Necchi, A.; Giannatempo, P.; Raggi, D.; Mariani, L.; Colecchia, M.; Farè, E.; Monopoli, F.; Calareso, G.; Ali, S.M.; Ross, J.S.; et al. An Open-Label Randomized Phase 2 Study of Durvalumab Alone or in Combination with Tremelimumab in Patients with Advanced Germ Cell Tumors (APACHE): Results from the First Planned Interim Analysis. Eur. Urol. 2019, 75, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Albany, C.; Einhorn, L.; Garbo, L.; Boyd, T.; Josephson, N.; Feldman, D.R. Treatment of CD30-Expressing Germ Cell Tumors and Sex Cord Stromal Tumors with Brentuximab Vedotin: Identification and Report of Seven Cases. Oncologist 2018, 23, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Necchi, A.; Magazzu, D.; Anichini, A.; Raggi, D.; Giannatempo, P.; Nicolai, N.; Colecchia, M.; Paolini, B.; Coradeschi, E.; Tassi, E.; et al. An Open-Label, Single-Group, Phase 2 Study of Brentuximab Vedotin as Salvage Therapy for Males with Relapsed Germ-Cell Tumors (GCT): Results at the End of First Stage (FM12GCT01). JCO 2016, 34, 480. [Google Scholar] [CrossRef]
- Ashkar, R.; Feldman, D.R.; Adra, N.; Zaid, M.A.; Funt, S.A.; Althouse, S.K.; Perkins, S.M.; Snow, C.I.; Lazzara, K.M.; Sego, L.M.; et al. Phase II Trial of Brentuximab Vedotin in Relapsed/Refractory Germ Cell Tumors. Investig. New Drugs 2021, 39, 1656–1663. [Google Scholar] [CrossRef]
- Hinsch, A.; Blessin, N.C.; Simon, R.; Kluth, M.; Fischer, K.; Hube-Magg, C.; Li, W.; Makrypidi-Fraune, G.; Wellge, B.; Mandelkow, T.; et al. Expression of the Immune Checkpoint Receptor TIGIT in Seminoma. Oncol. Lett. 2019, 18, 1497–1502. [Google Scholar] [CrossRef]
- Das, M.; Zhu, C.; Kuchroo, V.K. Tim-3 and Its Role in Regulating Anti-Tumor Immunity. Immunol. Rev. 2017, 276, 97–111. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cao, J.; Zhao, C.; Li, X.; Zhou, C.; Hirsch, F.R. TIM-3, a Promising Target for Cancer Immunotherapy. OTT 2018, 11, 7005–7009. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Zhang, X.; Chen, F.; Pan, Q.; Phiphatwatchara, P.; Zeng, Y.; Chen, H. The Promising Immune Checkpoint LAG-3: From Tumor Microenvironment to Cancer Immunotherapy. Genes Cancer 2018, 9, 176–189. [Google Scholar] [CrossRef]
- Tu, L.; Guan, R.; Yang, H.; Zhou, Y.; Hong, W.; Ma, L.; Zhao, G.; Yu, M. Assessment of the Expression of the Immune Checkpoint Molecules PD-1, CTLA4, TIM-3 and LAG-3 across Different Cancers in Relation to Treatment Response, Tumor-Infiltrating Immune Cells and Survival. Int. J. Cancer 2020, 147, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Westin, J. CAR T-Cells. Adv. Exp. Med. Biol. 2020, 1244, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Pantuck, M.; Palaskas, N.; Drakaki, A. Next Generation T-Cell Therapy for Genitourinary Malignancies, Part A: Introduction and Current State of the Art. Cancer Treat. Res. Commun. 2018, 17, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.A.; Reidy, A.; Mirandola, L.; Trotter, K.; Suvorava, N.; Figueroa, A.; Konala, V.; Aulakh, A.; Littlefield, L.; Grizzi, F.; et al. Chimeric Antigen Receptor Engineering: A Right Step in the Evolution of Adoptive Cellular Immunotherapy. Int. Rev. Immunol. 2015, 34, 154–187. [Google Scholar] [CrossRef]
- Katari, U.L.; Keirnan, J.M.; Worth, A.C.; Hodges, S.E.; Leen, A.M.; Fisher, W.E.; Vera, J.F. Engineered T Cells for Pancreatic Cancer Treatment. HPB 2011, 13, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Martino, M.; Naso, V.; Loteta, B.; Canale, F.A.; Pugliese, M.; Alati, C.; Musuraca, G.; Nappi, D.; Gaimari, A.; Nicolini, F.; et al. Chimeric Antigen Receptor T-Cell Therapy: What We Expect Soon. Int. J. Mol. Sci. 2022, 23, 13332. [Google Scholar] [CrossRef]
- Mackensen, A.; Haanen, J.B.a.G.; Koenecke, C.; Alsdorf, W.; Wagner-Drouet, E.; Heudobler, D.; Borchmann, P.; Bokemeyer, C.; Klobuch, S.; Smit, E.; et al. LBA38 BNT211-01: A Phase I Trial to Evaluate Safety and Efficacy of CLDN6 CAR T Cells and CLDN6-Encoding MRNA Vaccine-Mediated in Vivo Expansion in Patients with CLDN6-Positive Advanced Solid Tumours. Ann. Oncol. 2022, 33, S1404–S1405. [Google Scholar] [CrossRef]
- Söhngen, C.; Thomas, D.J.; Skowron, M.A.; Bremmer, F.; Eckstein, M.; Stefanski, A.; Driessen, M.D.; Wakileh, G.A.; Stühler, K.; Altevogt, P.; et al. CD24 targeting with NK-CAR immunotherapy in testis, prostate, renal and (luminal-type) bladder cancer and identification of direct CD24 interaction partners. FEBS J. 2023, 290, 4864–4876. [Google Scholar] [CrossRef]
- Ganguli, N.; Kumari, P.; Dash, S.; Samanta, D. Molecular and structural basis of TIGIT: Nectin-4 interaction, a recently discovered pathway crucial for cancer immunotherapy. Biochem. Biophys. Res. Commun. 2023, 677, 31–37. [Google Scholar] [CrossRef]
- Lazar, V.; Zhang, B.; Magidi, S.; Le Tourneau, C.; Raymond, E.; Ducreux, M.; Bresson, C.; Raynaud, J.; Wunder, F.; Onn, A.; et al. A transcriptomics approach to expand therapeutic options and optimize clinical trials in oncology. Ther. Adv. Med. Oncol. 2023, 15, 17588359231156382. [Google Scholar] [CrossRef]
- Zhao, J.; Qin, L.; He, G.; Xie, T.; Hu, G.; Wang, F.; Zhong, H.; Zhu, J.; Xu, Y. Administration of a glypican-3 peptide increases the infiltration and cytotoxicity of CD8+ T cells against testicular yolk sac tumor, associated with enhancing the intratumoral cGAS/STING signaling. Cancer Med. 2023, 12, 21293–21307. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.A.G.; Qu, C.; Chen, J. Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures. Front. Immunol. 2021, 12, 721030. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, S.; Jiang, L.; Tan, Z.; Wang, J. A Systematic Pan-Cancer Analysis of CASP3 as a Potential Target for Immunotherapy. Front. Mol. Biosci. 2022, 9, 776808. [Google Scholar] [CrossRef]
- Bo, H.; Zhu, F.; Liu, Z.; Deng, Q.; Liu, G.; Li, R.; Zhu, W.; Tan, Y.; Liu, G.; Fan, J.; et al. Integrated analysis of high-throughput sequencing data reveals the key role of LINC00467 in the invasion and metastasis of testicular germ cell tumors. Cell Death Discov. 2021, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, S.; Jiang, Z.; Tang, L.; Liu, Z.; Cao, J.; Hu, Z.; Chen, X.; Luo, Y.; Bo, H. Long Non-Coding RNA RFPL3S Functions as a Biomarker of Prognostic and Immunotherapeutic Prediction in Testicular Germ Cell Tumor. Front. Immunol. 2022, 13, 859730. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Gao, J.; Li, X.; Gao, R.; Lu, X.; Zhou, J.; Yan, F.; Wang, H.; Liu, Y.; Hao, Z.; et al. TIMEAS, a promising method for the stratification of testicular germ cell tumor patients with distinct immune microenvironment, clinical outcome and sensitivity to frontline therapies. Cell Oncol. 2023, 46, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.; Constâncio, V.; Leite-Silva, P.; Guimarães, R.; Cantante, M.; Braga, I.; Maurício, J.; Looijenga, L.H.J.; Henrique, R.; Jerónimo, C. Differential methylation EPIC analysis discloses cisplatin-resistance related hypermethylation and tumor-specific heterogeneity within matched primary and metastatic testicular germ cell tumor patient tissue samples. Clin. Epigenetics 2021, 13, 70. [Google Scholar] [CrossRef]
- Sanborn, R.E.; Hamid, O.; de Vries, E.G.; Ott, P.A.; Garcia-Corbacho, J.; Boni, V.; Bendell, J.; Autio, K.A.; Cho, D.C.; Plummer, R.; et al. CX-072 (pacmilimab), a Probody PD-L1 inhibitor, in combination with ipilimumab in pa-tients with advanced solid tumors (PROCLAIM-CX-072): A first-in-human, dose-finding study. J. Immunother. Cancer 2021, 9, e002446. [Google Scholar] [CrossRef]
- Del Giudice, F.; Kasman, A.M.; De Berardinis, E.; Busetto, G.M.; Belladelli, F.; Eisenberg, M.L. Association between male infertility and male-specific malignancies: Systematic review and meta-analysis of population-based retrospective cohort studies. Fertil. Steril. 2020, 114, 984–996. [Google Scholar] [CrossRef]
Immune Factor | Function | Clinical Relevance | Ref |
---|---|---|---|
Collagen I/IV Fibronectin | extracellular matrix proteins | cisplatin resistance | [21] |
PD-L1 (cancer cells) (TILs) | immune evasion | non-seminoma (choriocarcinoma), advanced stage, elevated serum markers, metastases, short PFS, short OS, higher CPS in metastases and postchemo seminoma low-risk IGCCCG group, better prognosis | [23,24,45] [26] |
T-cell and NK-cell signatures | immune activation | early stage | [27] |
Treg, neutrophil, mast cell, and macrophage signatures | immune evasion | advanced stage | [27] |
VISTA | immune activation | choriocarcinoma, prolonged PFS, prolonged OS | [28] |
CTLA-4 (TILs) | immune evasion | LVI (-) and lower pT and N stages | [29] |
NLR, LMR, SII | systemic inflammation | high-risk IGCCCG, short PFS, short OS | [31,32,33,34,35] |
Immunotherapy | Study Type | Results | Ref. |
---|---|---|---|
Nivolumab, Pembrolizumab | retrospective | 2/7 patients PR | [45] |
Nivolumab | case report | SD × 14 mos | [46] |
Pembrolizumab | case report | POD after 1 cycle | [47] |
Pembrolizumab | phase II | 2/12 patients SD | [48] |
Pembrolizumab | phase II | 3/12 patients SD | [49] |
Avelumab | phase II | 8/8 POD, mPFS 0.9 mos, mOS 2.7 mos | [50] |
Durvalumab + Tremelimumab | phase II | 1/22 patients PR 1/22 patients SD | [51] |
Brentuximab vedotin | phase II | 2/7 patients PR | [52] |
Brentuximab vedotin | phase II | 7/9 STM response, ORR 22.2% (1 CR + 1 PR), 3-month PFS 11.1% 6-month OS 85.7% | [53] |
Brentuximab vedotin | phase II | 6/18 patients SD, 5/18 STM response | [54] |
CLDN6 CAR-T cells | phase I | DCR 85%, ORR 57% including 1 CR | [65] |
CX-072 (pacmilimab) | phase I | 1 PR for >12 months | [76] |
Enfortumab Vedotin +/− Pembrolizumab | phase II | Primary endpoint: ORR (ongoing study) | NCT06041503 |
Ipilimumab + Nivolumab + Cabozantinib | phase II | Primary endpoint: ORR (ongoing study) | NCT03866382 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evmorfopoulos, K.; Marsitopoulos, K.; Karachalios, R.; Karathanasis, A.; Dimitropoulos, K.; Tzortzis, V.; Zachos, I.; Vlachostergios, P.J. The Immune Landscape and Immunotherapeutic Strategies in Platinum-Refractory Testicular Germ Cell Tumors. Cancers 2024, 16, 428. https://doi.org/10.3390/cancers16020428
Evmorfopoulos K, Marsitopoulos K, Karachalios R, Karathanasis A, Dimitropoulos K, Tzortzis V, Zachos I, Vlachostergios PJ. The Immune Landscape and Immunotherapeutic Strategies in Platinum-Refractory Testicular Germ Cell Tumors. Cancers. 2024; 16(2):428. https://doi.org/10.3390/cancers16020428
Chicago/Turabian StyleEvmorfopoulos, Konstantinos, Konstantinos Marsitopoulos, Raphael Karachalios, Athanasios Karathanasis, Konstantinos Dimitropoulos, Vassilios Tzortzis, Ioannis Zachos, and Panagiotis J. Vlachostergios. 2024. "The Immune Landscape and Immunotherapeutic Strategies in Platinum-Refractory Testicular Germ Cell Tumors" Cancers 16, no. 2: 428. https://doi.org/10.3390/cancers16020428
APA StyleEvmorfopoulos, K., Marsitopoulos, K., Karachalios, R., Karathanasis, A., Dimitropoulos, K., Tzortzis, V., Zachos, I., & Vlachostergios, P. J. (2024). The Immune Landscape and Immunotherapeutic Strategies in Platinum-Refractory Testicular Germ Cell Tumors. Cancers, 16(2), 428. https://doi.org/10.3390/cancers16020428