Evaluation of Extra-Prostatic Extension on Deep Learning-Reconstructed High-Resolution Thin-Slice T2-Weighted Images in Patients with Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection Criteria
2.2. Magnetic Resonance Imaging
2.3. Deep Learning Reconstruction of T2WIHR
2.4. Image Analysis
2.5. Image Quality
2.6. Reference Standard
2.7. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Comparison of Detection Rates for the Index Tumor
3.3. Comparison of Diagnostic Performance for EPE
3.4. Comparison of Image Quality
3.4.1. Qualitative Analysis
3.4.2. Quantitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef]
- Esses, S.J.; Taneja, S.S.; Rosenkrantz, A.B. Imaging Facilities’ Adherence to PI-RADS v2 Minimum Technical Standards for the Performance of Prostate MRI. Acad. Radiol. 2018, 25, 188–195. [Google Scholar] [CrossRef]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Caglic, I.; Barrett, T. Optimising prostate mpMRI: Prepare for success. Clin. Radiol. 2019, 74, 831–840. [Google Scholar] [CrossRef]
- Jambor, I. Optimization of prostate MRI acquisition and post-processing protocol: A pictorial review with access to acquisition protocols. Acta Radiol. Open 2017, 6, 2058460117745574. [Google Scholar] [CrossRef]
- Giganti, F.; Kirkham, A.; Kasivisvanathan, V.; Papoutsaki, M.V.; Punwani, S.; Emberton, M.; Moore, C.M.; Allen, C. Understanding PI-QUAL for prostate MRI quality: A practical primer for radiologists. Insights Imaging 2021, 12, 59. [Google Scholar] [CrossRef]
- Gupta, R.T.; Spilseth, B.; Patel, N.; Brown, A.F.; Yu, J. Multiparametric prostate MRI: Focus on T2-weighted imaging and role in staging of prostate cancer. Abdom. Radiol. 2016, 41, 831–843. [Google Scholar] [CrossRef]
- Magi-Galluzzi, C.; Evans, A.J.; Delahunt, B.; Epstein, J.I.; Griffiths, D.F.; van der Kwast, T.H.; Montironi, R.; Wheeler, T.M.; Srigley, J.R.; Egevad, L.L.; et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: Extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod. Pathol. 2011, 24, 26–38. [Google Scholar] [CrossRef]
- McClure, T.D.; Margolis, D.J.; Reiter, R.E.; Sayre, J.W.; Thomas, M.A.; Nagarajan, R.; Gulati, M.; Raman, S.S. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 2012, 262, 874–883. [Google Scholar] [CrossRef]
- Choi, M.H.; Lee, Y.J.; Jung, S.E.; Han, D. High-resolution 3D T2-weighted SPACE sequence with compressed sensing for the prostate gland: Diagnostic performance in comparison with conventional T2-weighted images. Abdom. Radiol. 2023, 48, 1090–1099. [Google Scholar] [CrossRef]
- Rosenkrantz, A.B.; Neil, J.; Kong, X.; Melamed, J.; Babb, J.S.; Taneja, S.S.; Taouli, B. Prostate cancer: Comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. AJR Am. J. Roentgenol. 2010, 194, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Polanec, S.H.; Lazar, M.; Wengert, G.J.; Bickel, H.; Spick, C.; Susani, M.; Shariat, S.; Clauser, P.; Baltzer, P.A.T. 3D T2-weighted imaging to shorten multiparametric prostate MRI protocols. Eur. Radiol. 2018, 28, 1634–1641. [Google Scholar] [CrossRef]
- Lim, K.K.; Noe, G.; Hornsey, E.; Lim, R.P. Clinical applications of 3D T2-weighted MRI in pelvic imaging. Abdom. Imaging 2014, 39, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- van der Velde, N.; Hassing, H.C.; Bakker, B.J.; Wielopolski, P.A.; Lebel, R.M.; Janich, M.A.; Kardys, I.; Budde, R.P.J.; Hirsch, A. Improvement of late gadolinium enhancement image quality using a deep learning-based reconstruction algorithm and its influence on myocardial scar quantification. Eur. Radiol. 2021, 31, 3846–3855. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.; Yi, J.; Lee, H.J.; Lee, Y.; Lim, Y.J.; Bang, J.Y.; Kim, H.; Lee, J. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction. AJR Am. J. Roentgenol. 2022, 218, 506–516. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, J.E.; Nam, Y.K.; Lee, J.; Kim, S.; Kim, Y.H.; Kim, H.S. Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma. Sci. Rep. 2021, 11, 21302. [Google Scholar] [CrossRef]
- Sun, S.; Tan, E.T.; Mintz, D.N.; Sahr, M.; Endo, Y.; Nguyen, J.; Lebel, R.M.; Carrino, J.A.; Sneag, D.B. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI. Eur. Radiol. 2022, 32, 6167–6177. [Google Scholar] [CrossRef]
- Lebel, R.M. Performance characterization of a novel deep learning-based MR image reconstruction pipeline. arXiv 2020, arXiv:2008.06559. [Google Scholar]
- Wang, X.; Ma, J.; Bhosale, P.; Ibarra Rovira, J.J.; Qayyum, A.; Sun, J.; Bayram, E.; Szklaruk, J. Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging. Abdom. Radiol. 2021, 46, 3378–3386. [Google Scholar] [CrossRef]
- Kim, E.H.; Choi, M.H.; Lee, Y.J.; Han, D.; Mostapha, M.; Nickel, D. Deep learning-accelerated T2-weighted imaging of the prostate: Impact of further acceleration with lower spatial resolution on image quality. Eur. J. Radiol. 2021, 145, 110012. [Google Scholar] [CrossRef]
- Gassenmaier, S.; Warm, V.; Nickel, D.; Weiland, E.; Herrmann, J.; Almansour, H.; Wessling, D.; Afat, S. Thin-Slice Prostate MRI Enabled by Deep Learning Image Reconstruction. Cancers 2023, 15, 578. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Park, K.J.; Park, M.Y.; Kim, M.H.; Kim, J.K. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy. J. Magn. Reson. Imaging 2022, 55, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Caglic, I.; Povalej Brzan, P.; Warren, A.Y.; Bratt, O.; Shah, N.; Barrett, T. Defining the incremental value of 3D T2-weighted imaging in the assessment of prostate cancer extracapsular extension. Eur. Radiol. 2019, 29, 5488–5497. [Google Scholar] [CrossRef]
- Gassenmaier, S.; Afat, S.; Nickel, D.; Mostapha, M.; Herrmann, J.; Othman, A.E. Deep learning-accelerated T2-weighted imaging of the prostate: Reduction of acquisition time and improvement of image quality. Eur. J. Radiol. 2021, 137, 109600. [Google Scholar] [CrossRef] [PubMed]
- Gassenmaier, S.; Küstner, T.; Nickel, D.; Herrmann, J.; Hoffmann, R.; Almansour, H.; Afat, S.; Nikolaou, K.; Othman, A.E. Deep Learning Applications in Magnetic Resonance Imaging: Has the Future Become Present? Diagnostics 2021, 11, 2181. [Google Scholar] [CrossRef]
- Kaniewska, M.; Deininger-Czermak, E.; Lohezic, M.; Ensle, F.; Guggenberger, R. Deep Learning Convolutional Neural Network Reconstruction and Radial k-Space Acquisition MR Technique for Enhanced Detection of Retropatellar Cartilage Lesions of the Knee Joint. Diagnostics 2023, 13, 2438. [Google Scholar] [CrossRef]
- Johnson, P.M.; Lin, D.J.; Zbontar, J.; Zitnick, C.L.; Sriram, A.; Muckley, M.; Babb, J.S.; Kline, M.; Ciavarra, G.; Alaia, E.; et al. Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI. Radiology 2023, 307, e220425. [Google Scholar] [CrossRef]
- Hahn, S.; Yi, J.; Lee, H.J.; Lee, Y.; Lee, J.; Wang, X.; Fung, M. Comparison of deep learning-based reconstruction of PROPELLER Shoulder MRI with conventional reconstruction. Skelet. Radiol. 2023, 52, 1545–1555. [Google Scholar] [CrossRef]
- Feuerriegel, G.C.; Weiss, K.; Kronthaler, S.; Leonhardt, Y.; Neumann, J.; Wurm, M.; Lenhart, N.S.; Makowski, M.R.; Schwaiger, B.J.; Woertler, K.; et al. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain. Eur. Radiol. 2023, 33, 4875–4884. [Google Scholar] [CrossRef]
- Virgo, K.S.; Rumble, R.B.; de Wit, R.; Mendelson, D.S.; Smith, T.J.; Taplin, M.E.; Wade, J.L., 3rd; Bennett, C.L.; Scher, H.I.; Nguyen, P.L.; et al. Initial Management of Noncastrate Advanced, Recurrent, or Metastatic Prostate Cancer: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 1274–1305. [Google Scholar] [CrossRef] [PubMed]
Parameter | T2WIconv (Axial, Sagittal, and Coronal) | T2WIHR | DWI (b-values of 0 and 1000 s/mm2) |
---|---|---|---|
TR | 4680–4930 | 3240–3270 | 5170–5240 |
TE | 75–100 | 75–85 | 88–89 |
ETL | 15 | 13 | 2 |
Slice thickness | 3.0 mm | 2.0 mm | 3.0 mm |
Slice gap | 0.3 mm | 0.0 mm | 0.3 mm |
Matrix size (axial) | 400 × 320 | 320 × 320 | 120 × 120 |
NEX | 1 | 1 | b0, 2 b1000, 4 |
FOV (mm) | 220 × 220 | 160 × 160 | 240 × 240 |
Acquisition time | 1 min 28 s–1 min 51 s | 4 min 28 s | 2 min 32 s |
Parameter | Study Population (n = 88) |
---|---|
Mean age, years (range) | 70.86 (52–86) |
Mean PSA, ng/mL (range) | 20.37 (0.85–154) |
Mean interval from MRI to radical prostatectomy, days (range) | 33.53 (1–88) |
Presence of EPE, n (%) | 28 (32%) |
Pathologic T stage-n (%) | |
T2 | 60 (68) |
T3a | 13 (15) |
T3b | 15 (17) |
Gleason score, n (%) | |
6 | 25 (28) |
7 | 55 (63) |
3 + 4 | 37 |
4 + 3 | 18 |
8 | 3 (3) |
9 | 5 (6) |
Tumor location, n (%) | |
Peripheral zone | 53 (60) |
Transitional zone | 28 (32) |
Anterior fibromuscular stroma | 2 (2) |
Image Sets | Reviewer 1 | Reviewer 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Sensitivity | Specificity | PPV | NPV | Accuracy | p Value | AUC | Sensitivity | Specificity | PPV | NPV | Accuracy | p Value | |
T2WIconv | 0.883 | 77 | 96 | 91 | 89 | 89 | 0.0057 * | 0.803 | 63 | 96 | 89 | 82 | 84 | 0.0220 * |
T2WIHR with DLR | 0.806 | 62 | 86 | 70 | 81 | 77 | 0.0006 † | 0.762 | 59 | 90 | 76 | 80 | 79 | 0.0277 † |
T2WIHR without DLR | 0.772 | 46 | 89 | 69 | 76 | 74 | 0.1610 ‡ | 0.745 | 44 | 89 | 69 | 75 | 73 | 0.3175 ‡ |
Image Set | Signal-to-Noise Ratio | p Value | Contrast-to-Noise Ratio | p Value |
---|---|---|---|---|
T2WIconv | 22.17 ± 7.02 | <0.001 * | 6.05 ± 4.16 | <0.001 * |
T2WIHR with DLR | 15.81 ± 4.80 | <0.001 † | 4.41 ± 3.16 | <0.001 † |
T2WIHR without DLR | 8.71 ± 2.24 | <0.001 ‡ | 2.33 ± 1.57 | <0.001 ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, S.H.; Hong, S.; Kim, Y.J.; Kim, H.R.; Kim, J.Y. Evaluation of Extra-Prostatic Extension on Deep Learning-Reconstructed High-Resolution Thin-Slice T2-Weighted Images in Patients with Prostate Cancer. Cancers 2024, 16, 413. https://doi.org/10.3390/cancers16020413
Kim M, Kim SH, Hong S, Kim YJ, Kim HR, Kim JY. Evaluation of Extra-Prostatic Extension on Deep Learning-Reconstructed High-Resolution Thin-Slice T2-Weighted Images in Patients with Prostate Cancer. Cancers. 2024; 16(2):413. https://doi.org/10.3390/cancers16020413
Chicago/Turabian StyleKim, Mingyu, Seung Ho Kim, Sujin Hong, Yeon Jung Kim, Hye Ri Kim, and Joo Yeon Kim. 2024. "Evaluation of Extra-Prostatic Extension on Deep Learning-Reconstructed High-Resolution Thin-Slice T2-Weighted Images in Patients with Prostate Cancer" Cancers 16, no. 2: 413. https://doi.org/10.3390/cancers16020413
APA StyleKim, M., Kim, S. H., Hong, S., Kim, Y. J., Kim, H. R., & Kim, J. Y. (2024). Evaluation of Extra-Prostatic Extension on Deep Learning-Reconstructed High-Resolution Thin-Slice T2-Weighted Images in Patients with Prostate Cancer. Cancers, 16(2), 413. https://doi.org/10.3390/cancers16020413