Embracing Personalized Strategies in Radiotherapy for Nasopharyngeal Carcinoma: Beyond the Conventional Bounds of Fields and Borders
Abstract
:Simple Summary
Abstract
1. Introduction
An Overview of Nasopharyngeal Carcinoma (NPC) in the Modern Era
2. Redefining Target Volumes
2.1. Contrasting the International Consensus Guideline and the Chinese Protocol
2.2. Redefining the Definition of High-Risk Anatomical Subsites
2.2.1. Unilateral NPC
2.2.2. Stepwise Pattern of Spread
2.3. Redefining the Elective Nodal Regions
2.3.1. Upper Neck Irradiation (UNI)
2.3.2. Submandibular (Level Ib) LN-Sparing
2.3.3. Medial RP (Level VIIa) LN-Sparing
2.3.4. Retro-Styloid (VIIb) LN-Sparing
2.4. Redefining the Borders of Nodal Basins
2.4.1. Submandibular (Level Ib) Contouring
2.4.2. Level IIb Contouring
2.4.3. Level III/IV Contouring
2.4.4. Level V Contouring
3. Dose and Volume Tailoring to Post-IC Volumes
- The pre-IC volume of GTVNP was considered high-risk and was encompassed within the intermediate-dose CTV (treated with a dose of at least 60 Gy);
- The pre-IC skull base or bony invasion were included within the post-IC volume and received the full prescription dose;
- GTV of cervical LN was defined using the post-IC volume.
4. Dose and Volume Tailoring to Treatment Response during RT
5. Dose Escalation Tailored to Biological Imaging
5.1. 18F-Fluorodeoxyglucose (18F-FDG) PET-CT
5.2. 18F-Fluoromisonidazole (FMISO) PET-CT
5.3. Diffusion-Weighted MRI (DWI)
6. Dynamic Decision Making Guided by EBVDNA
6.1. Pre-Treatment EBVDNA
6.2. Post-IC EBVDNA
6.3. Post-RT EBVDNA
7. RT in the Era of Immunotherapy
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet 2016, 387, 1012–1024. [Google Scholar] [CrossRef]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C. AJCC Cancer Staging Manual; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Huang, S.H.; Jacinto, J.C.K.; O’Sullivan, B.; Su, J.; Kim, J.; Ringash, J.; Spreafico, A.; Yu, E.; Perez-Ordonez, B.; Weinreb, I.; et al. Clinical presentation and outcome of human papillomavirus-positive nasopharyngeal carcinoma in a North American cohort. Cancer 2022, 128, 2908–2921. [Google Scholar] [CrossRef]
- Huang, W.B.; Chan, J.Y.W.; Liu, D.L. Human papillomavirus and World Health Organization type III nasopharyngeal carcinoma: Multicenter study from an endemic area in Southern China. Cancer 2018, 124, 530–536. [Google Scholar] [CrossRef]
- Tham, T.; Teegala, S.; Bardash, Y.; Herman, S.W.; Costantino, P. Is human papillomavirus and p16 expression associated with survival outcomes in nasopharyngeal cancer?: A systematic review and meta-analysis. Am. J. Otolaryngol. 2018, 39, 764–770. [Google Scholar] [CrossRef]
- Blanchard, P.; Lee, A.; Marguet, S.; Leclercq, J.; Ng, W.T.; Ma, J.; Chan, A.T.; Huang, P.Y.; Benhamou, E.; Zhu, G.; et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: An update of the MAC-NPC meta-analysis. Lancet Oncol. 2015, 16, 645–655. [Google Scholar] [CrossRef]
- Li, W.F.; Chen, N.Y.; Zhang, N.; Hu, G.Q.; Xie, F.Y.; Sun, Y.; Chen, X.Z.; Li, J.G.; Zhu, X.D.; Hu, C.S.; et al. Concurrent chemoradiotherapy with/without induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: Long-term results of phase 3 randomized controlled trial. Int. J. Cancer 2019, 145, 295–305. [Google Scholar] [CrossRef]
- Yang, Q.; Cao, S.M.; Guo, L.; Hua, Y.J.; Huang, P.Y.; Zhang, X.L.; Lin, M.; You, R.; Zou, X.; Liu, Y.P.; et al. Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: Long-term results of a phase III multicentre randomised controlled trial. Eur. J. Cancer 2019, 119, 87–96. [Google Scholar] [CrossRef]
- Sun, Y.; Li, W.F.; Chen, N.Y.; Zhang, N.; Hu, G.Q.; Xie, F.Y.; Sun, Y.; Chen, X.Z.; Li, J.G.; Zhu, X.D.; et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase 3, multicentre, randomised controlled trial. Lancet Oncol. 2016, 17, 1509–1520. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Hu, G.Q.; Zhang, N.; Zhu, X.D.; Yang, K.Y.; Jin, F.; Shi, M.; Chen, Y.P.; Hu, W.H.; et al. Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. N. Engl. J. Med. 2019, 381, 1124–1135. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Hu, G.Q.; Zhang, N.; Zhu, X.D.; Yang, K.Y.; Jin, F.; Shi, M.; Chen, Y.P.; Hu, W.H.; et al. Final Overall Survival Analysis of Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma: A Multicenter, Randomized Phase III Trial. J. Clin. Oncol. 2022, 40, 2420–2425. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Ismaila, N.; Chua, M.L.K.; Colevas, A.D.; Haddad, R.; Huang, S.H.; Wee, J.T.S.; Whitley, A.C.; Yi, J.-L.; Yom, S.S.; et al. Chemotherapy in Combination With Radiotherapy for Definitive-Intent Treatment of Stage II-IVA Nasopharyngeal Carcinoma: CSCO and ASCO Guideline. J. Clin. Oncol. 2021, 39, 840–859. [Google Scholar] [CrossRef]
- Liu, L.T.; Liu, H.; Huang, Y.; Yang, J.H.; Xie, S.Y.; Li, Y.Y.; Guo, S.S.; Qi, B.; Li, X.Y.; Chen, D.P.; et al. Concurrent chemoradiotherapy followed by adjuvant cisplatin-gemcitabine versus cisplatin-fluorouracil chemotherapy for N2-3 nasopharyngeal carcinoma: A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2023, 24, 798–810. [Google Scholar] [CrossRef]
- Chen, Y.P.; Liu, X.; Zhou, Q.; Yang, K.Y.; Jin, F.; Zhu, X.D.; Shi, M.; Hu, G.Q.; Hu, W.H.; Sun, Y.; et al. Metronomic capecitabine as adjuvant therapy in locoregionally advanced nasopharyngeal carcinoma: A multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet 2021, 398, 303–313. [Google Scholar] [CrossRef]
- Miao, J.; Wang, L.; Tan, S.H.; Li, J.G.; Yi, J.; Ong, E.H.W.; Tan, L.L.Y.; Zhang, Y.; Gong, X.; Chen, Q.; et al. Adjuvant Capecitabine Following Concurrent Chemoradiotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: A Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1776–1785. [Google Scholar] [CrossRef]
- Teo, P.; Tsao, S.Y.; Shiu, W.; Leung, W.T.; Tsang, V.; Yu, P.; Lui, C. A clinical study of 407 cases of nasopharyngeal carcinoma in Hong Kong. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 515–530. [Google Scholar] [CrossRef]
- Waldron, J.; Tin, M.M.; Keller, A.; Lum, C.; Japp, B.; Sellmann, S.; van Prooijen, M.; Gitterman, L.; Blend, R.; Payne, D.; et al. Limitation of conventional two dimensional radiation therapy planning in nasopharyngeal carcinoma. Radiother. Oncol. 2003, 68, 153–161. [Google Scholar] [CrossRef]
- Zhang, B.; Mo, Z.; Du, W.; Wang, Y.; Liu, L.; Wei, Y. Intensity-modulated radiation therapy versus 2D-RT or 3D-CRT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis. Oral Oncol. 2015, 51, 1041–1046. [Google Scholar] [CrossRef]
- Du, T.; Xiao, J.; Qiu, Z.; Wu, K. The effectiveness of intensity-modulated radiation therapy versus 2D-RT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0219611. [Google Scholar] [CrossRef]
- Au, K.H.; Ngan, R.K.C.; Ng, A.W.Y.; Poon, D.M.C.; Ng, W.T.; Yuen, K.T.; Lee, V.H.F.; Tung, S.Y.; Chan, A.T.C.; Sze, H.C.K.; et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: A report of 3328 patients (HKNPCSG 1301 study). Oral Oncol. 2018, 77, 16–21. [Google Scholar] [CrossRef]
- Li, W.Z.; Lv, X.; Hu, D.; Lv, S.H.; Liu, G.Y.; Liang, H.; Ye, Y.F.; Yang, W.; Zhang, H.X.; Yuan, T.Z.; et al. Effect of Induction Chemotherapy With Paclitaxel, Cisplatin, and Capecitabine vs Cisplatin and Fluorouracil on Failure-Free Survival for Patients With Stage IVA to IVB Nasopharyngeal Carcinoma: A Multicenter Phase 3 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 706–714. [Google Scholar] [CrossRef]
- Tang, L.L.; Guo, R.; Zhang, N.; Deng, B.; Chen, L.; Cheng, Z.B.; Huang, J.; Hu, W.H.; Huang, S.H.; Luo, W.J.; et al. Effect of Radiotherapy Alone vs Radiotherapy With Concurrent Chemoradiotherapy on Survival Without Disease Relapse in Patients With Low-risk Nasopharyngeal Carcinoma: A Randomized Clinical Trial. JAMA 2022, 328, 728–736. [Google Scholar] [CrossRef]
- Xia, W.X.; Lv, X.; Liang, H.; Liu, G.Y.; Sun, R.; Zeng, Q.; Li, S.W.; Mo, H.Y.; Han, F.; Luo, D.H.; et al. A Randomized Controlled Trial Comparing Two Different Schedules for Cisplatin Treatment in Patients with Locoregionally Advanced Nasopharyngeal Cancer. Clin. Cancer Res. 2021, 27, 4186–4194. [Google Scholar] [CrossRef] [PubMed]
- Bauml, J.M.; Vinnakota, R.; Anna Park, Y.-H.; Bates, S.E.; Fojo, T.; Aggarwal, C.; Limaye, S.; Damjanov, N.; Di Stefano, J.; Ciunci, C.; et al. Cisplatin Every 3 Weeks Versus Weekly With Definitive Concurrent Radiotherapy for Squamous Cell Carcinoma of the Head and Neck. J. Natl. Cancer Inst. 2019, 111, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.Y.; Lin, C.S.; Chao, H.L.; Huang, W.Y.; Su, Y.F.; Lin, K.T.; Tsai, I.J.; Kao, C.H. Risk of hypothyroidism among patients with nasopharyngeal carcinoma treated with radiation therapy: A Population-Based Cohort Study. Radiother. Oncol. 2017, 123, 394–400. [Google Scholar] [CrossRef] [PubMed]
- McDowell, L.; Corry, J.; Ringash, J.; Rischin, D. Quality of Life, Toxicity and Unmet Needs in Nasopharyngeal Cancer Survivors. Front. Oncol. 2020, 10, 930. [Google Scholar] [CrossRef]
- Moore, C.; McLister, C.; Cardwell, C.; O’Neill, C.; Donnelly, M.; McKenna, G. Dental caries following radiotherapy for head and neck cancer: A systematic review. Oral Oncol. 2020, 100, 104484. [Google Scholar] [CrossRef]
- Tan, T.H.; Zheng, H.; Cheo, T.; Tey, J.; Soon, Y.Y. Risk of Stroke in Nasopharyngeal Cancer Survivors: A National Registry-Based Population Cohort Study. Neurology 2022, 98, e115–e124. [Google Scholar] [CrossRef]
- Yip, P.L.; Mok, K.C.J.; Ho, H.S.; Lee, W.Y.V.; Wong, A.C.L.; Lau, C.T.; Wong, F.C.S.; Yeung, K.W.; Lee, S.F. Sensorineural Hearing Loss in Nasopharyngeal Carcinoma Survivors in the Modern Treatment Era — The Early and Late Effects of Radiation and Cisplatin. Clin. Oncol. 2022, 34, e160–e167. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Min, X.; Zhang, Q.; Shen, L.J.; Jiang, Y.; Yan, J. Toxicities of chemoradiotherapy and radiotherapy in nasopharyngeal carcinoma: An updated meta-analysis. J. Int. Med. Res. 2019, 47, 2832–2847. [Google Scholar] [CrossRef]
- Chow, J.C.H.; Cheung, K.M.; Au, K.H.; Zee, B.C.Y.; Lee, J.; Ngan, R.K.C.; Lee, A.W.M.; Yiu, H.H.Y.; Li, K.W.S.; Leung, A.K.C.; et al. Radiation-induced hypoglossal nerve palsy after definitive radiotherapy for nasopharyngeal carcinoma: Clinical predictors and dose-toxicity relationship. Radiother. Oncol. 2019, 138, 93–98. [Google Scholar] [CrossRef]
- King, A.D. MR Imaging of Nasopharyngeal Carcinoma. Magn. Reson. Imaging Clin. 2022, 30, 19–33. [Google Scholar] [CrossRef]
- Liang, S.B.; Sun, Y.; Liu, L.Z.; Chen, Y.; Chen, L.; Mao, Y.P.; Tang, L.L.; Tian, L.; Lin, A.H.; Liu, M.Z.; et al. Extension of local disease in nasopharyngeal carcinoma detected by magnetic resonance imaging: Improvement of clinical target volume delineation. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Hu, C.; He, X. Long-term Patterns of Regional Failure for Nasopharyngeal Carcinoma following Intensity-Modulated Radiation Therapy. J. Cancer 2017, 8, 993–999. [Google Scholar] [CrossRef]
- Chen, S.; Yang, D.; Liao, X.; Lu, Y.; Yu, B.; Xu, M.; Bin, Y.; Zhou, P.; Yang, Z.; Liu, K.; et al. Failure Patterns of Recurrence and Metastasis After Intensity-Modulated Radiotherapy in Patients With Nasopharyngeal Carcinoma: Results of a Multicentric Clinical Study. Front. Oncol. 2021, 11, 693199. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Jiang, F.; Jin, Q.; Jin, T.; Huang, S.; Hu, Q.; Chen, Y.; Piao, Y.; Hua, Y.; Feng, X.; et al. Locoregional extension and patterns of failure for nasopharyngeal carcinoma with intracranial extension. Oral Oncol. 2018, 79, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, B.; Huang, J.; Qin, Y.; Zhang, Z.; Shi, L.; Hong, X.; Ding, Q.; Peng, G.; Yang, K. Tumor factors associated with in-field failure for nasopharyngeal carcinoma after intensity-modulated radiotherapy. Head Neck 2022, 44, 876–888. [Google Scholar] [CrossRef]
- Lee, A.W.; Ng, W.T.; Pan, J.J.; Poh, S.S.; Ahn, Y.C.; AlHussain, H.; Corry, J.; Grau, C.; Grégoire, V.; Harrington, K.J.; et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother. Oncol. 2018, 126, 25–36. [Google Scholar] [CrossRef]
- Grégoire, V.; Evans, M.; Le, Q.T.; Bourhis, J.; Budach, V.; Chen, A.; Eisbruch, A.; Feng, M.; Giralt, J.; Gupta, T.; et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother. Oncol. 2018, 126, 3–24. [Google Scholar] [CrossRef]
- 2010 Nasopharyngeal Carcinoma Intensity Modulated Radiotherapy Target and Dose Design Guidelines. Expert consensus. Chin. J. Radiat. Oncol. 2011, 20, 267–269.
- Qiu, Z.; Lin, F.; Wu, Z.; Wu, T.; Wang, M.; Hu, J.; Xie, D.; Lyu, S.; Ma, J.; Tao, Y.; et al. Why subclinical involvement is prescribed the same high dose as gross tumor volume: A study on high-dose clinical target volume in intensity-modulated radiotherapy plan of nasopharyngeal carcinoma. Head Neck 2023, 45, 1206–1214. [Google Scholar] [CrossRef]
- Lin, S.; Pan, J.; Han, L.; Zhang, X.; Liao, X.; Lu, J.J. Nasopharyngeal Carcinoma Treated With Reduced-Volume Intensity-Modulated Radiation Therapy: Report on the 3-Year Outcome of a Prospective Series. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 1071–1078. [Google Scholar] [CrossRef]
- Lin, S.; Pan, J.; Han, L.; Guo, Q.; Hu, C.; Zong, J.; Zhang, X.; Lu, J.J. Update report of nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy and hypothesis of the optimal margin. Radiother. Oncol. 2014, 110, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Miao, J.; Xiao, X.; Hu, J.; Zhang, G.; Peng, Y.; Lu, S.; Liang, Y.; Huang, S.; Han, F.; et al. Impact on xerostomia for nasopharyngeal carcinoma patients treated with superficial parotid lobe-sparing intensity-modulated radiation therapy (SPLS-IMRT): A prospective phase II randomized controlled study. Radiother. Oncol. 2022, 175, 1–9. [Google Scholar] [CrossRef]
- Mao, Y.P.; Wang, S.X.; Gao, T.S.; Zhang, N.; Liang, X.Y.; Xie, F.Y.; Zhang, Y.; Zhou, G.Q.; Guo, R.; Luo, W.J.; et al. Medial retropharyngeal nodal region sparing radiotherapy versus standard radiotherapy in patients with nasopharyngeal carcinoma: Open label, non-inferiority, multicentre, randomised, phase 3 trial. BMJ 2023, 380, e072133. [Google Scholar] [CrossRef]
- Tang, L.L.; Huang, C.L.; Zhang, N.; Jiang, W.; Wu, Y.S.; Huang, S.H.; Mao, Y.P.; Liu, Q.; Li, J.B.; Liang, S.Q.; et al. Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma: An open-label, non-inferiority, multicentre, randomised phase 3 trial. Lancet Oncol. 2022, 23, 479–490. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; He, S.; Bai, L.; Kong, F.; Wang, S.; Cui, L.; Qin, Q.; Yang, Y.; Xiao, W.; et al. Induction chemotherapy regimen of docetaxel plus cisplatin versus docetaxel, cisplatin plus fluorouracil followed by concurrent chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma: Preliminary results of an open-label, noninferiority, multicentre, randomised, controlled phase 3 trial. EClinicalMedicine 2022, 53, 101625. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, S.; Xu, P.; Xu, Y.; Zhou, G.; Ou, X.; Wu, R.; Lan, M.; Fontanarosa, D.; Dowling, J.; et al. Variations of Clinical Target Volume Delineation for Primary Site of Nasopharyngeal Cancer Among Five Centers in China. Front. Oncol. 2020, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yu, X.L.; Zhang, G.S.; Liu, Y.M.; Tao, C.J.; Guo, R.; Tang, L.L.; Zhang, R.; Guo, Y.; Ma, J. Reduction of clinical target volume in patients with lateralized cancer of the nasopharynx and without contralateral lymph node metastasis receiving intensity-modulated radiotherapy. Head Neck 2016, 38 (Suppl. 1), E468–E472. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, L.; He, Q.; Li, F.; Ma, H.; Zhou, Y.; Wang, H.; Han, Y. Characteristics of locoregional extension of unilateral nasopharyngeal carcinoma and suggestions for clinical target volume delineation. Radiat. Oncol. 2022, 17, 52. [Google Scholar] [CrossRef]
- Wu, Z.; Qi, B.; Lin, F.F.; Zhang, L.; He, Q.; Li, F.P.; Wang, H.; Han, Y.Q.; Yin, W.J. Characteristics of local extension based on tumor distribution in nasopharyngeal carcinoma and proposed clinical target volume delineation. Radiother. Oncol. 2023, 183, 109595. [Google Scholar] [CrossRef]
- Lin, L.; Yao, J.J.; Zhou, G.Q.; Guo, R.; Zhang, F.; Zhang, Y.; Xu, L.; Zhang, L.L.; Lin, A.H.; Ma, J.; et al. The efficacy and toxicity of individualized intensity-modulated radiotherapy based on the tumor extension patterns of nasopharyngeal carcinoma. Oncotarget 2016, 7, 20680–20690. [Google Scholar] [CrossRef] [PubMed]
- Sanford, N.N.; Lau, J.; Lam, M.B.; Juliano, A.F.; Adams, J.A.; Goldberg, S.I.; Lu, H.M.; Lu, Y.C.; Liebsch, N.J.; Curtin, H.D.; et al. Individualization of Clinical Target Volume Delineation Based on Stepwise Spread of Nasopharyngeal Carcinoma: Outcome of More Than a Decade of Clinical Experience. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 654–668. [Google Scholar] [CrossRef]
- Miao, J.; Di, M.; Chen, B.; Wang, L.; Cao, Y.; Xiao, W.; Wong, K.H.; Huang, L.; Zhu, M.; Huang, H.; et al. A Prospective 10-Year Observational Study of Reduction of Radiation Therapy Clinical Target Volume and Dose in Early-Stage Nasopharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.H.; Wu, Z.; Li, W.Z.; Cheng, W.Q.; Tao, Y.L.; Wang, L.; Lv, S.W.; Lin, F.F.; Cui, N.J.; Zhao, C.; et al. Individualized clinical target volume delineation and efficacy analysis in unilateral nasopharyngeal carcinoma treated with intensity-modulated radiotherapy (IMRT): 10-year summary. J. Cancer Res. Clin. Oncol. 2022, 148, 1931–1942. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-l.; Chen, L.; Shen, G.-z.; Li, Y.-n.; Yao, J.-j.; Xiao, W.-w.; Yang, L.; Zhou, S.; Li, J.-x.; Cheng, W.-q.; et al. Interobserver variations in the delineation of target volumes and organs at risk and their impact on dose distribution in intensity-modulated radiation therapy for nasopharyngeal carcinoma. Oral Oncol. 2018, 82, 1–7. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H.; Zhu, C.; Gan, Q.; Jiang, H.; Liu, P.; Qi, X.; Fan, F.; Xiao, J.; Pang, Q.; et al. Interobserver Variations in Target Delineation in Intensity-Modulated Radiation Therapy for Nasopharyngeal Carcinoma and its Impact on Target Dose Coverage. Technol. Cancer Res. Treat. 2023, 22, 15330338231169592. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Mao, Y.; Liu, L.; Liang, S.; Chen, Y.; Sun, Y.; Liao, X.; Lin, A.; Liu, M.; Li, L.; et al. The volume to be irradiated during selective neck irradiation in nasopharyngeal carcinoma: Analysis of the spread patterns in lymph nodes by magnetic resonance imaging. Cancer 2009, 115, 680–688. [Google Scholar] [CrossRef]
- Wang, X.S.; Yan, C.; Hu, C.S.; Ying, H.M.; He, X.Y.; Zhou, Z.R.; Ding, J.H. Study of the medial group retropharyngeal node metastasis from nasopharyngeal carcinoma based on 3100 newly diagnosed cases. Oral Oncol. 2014, 50, 1109–1113. [Google Scholar] [CrossRef]
- Tang, L.L.; Huang, C.L.; Ma, J. Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma—Authors’ reply. Lancet Oncol. 2022, 23, e241. [Google Scholar] [CrossRef]
- Wang, G.; Huang, C.; Yang, K.; Guo, R.; Qiu, Y.; Li, W.; Mao, Y.; Tang, L.; Ma, J. Neck level Ib-sparing versus level Ib-irradiation in intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma with high-risk factors: A propensity score-matched cohort study. Radiother. Oncol. 2022, 177, 205–213. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.G.; Yang, Z.N.; Lu, J.Y.; Zhan, Y.Z.; Xie, W.J.; Zhou, D.J.; Wang, L.; Zhu, D.X.; Lin, Z.X. Effects of omitting elective neck irradiation to nodal Level IB in nasopharyngeal carcinoma patients with negative Level IB lymph nodes treated by intensity-modulated radiotherapy: A Phase 2 study. Br. J. Radiol. 2016, 89, 20150621. [Google Scholar] [CrossRef]
- Guo, Q.; Xiao, N.; Xu, H.; Zong, J.; Xiao, Y.; Lu, T.; Xu, Y.; Wang, B.; Chen, B.; Pan, J.; et al. Level Ib sparing intensity-modulated radiation therapy in selected nasopharyngeal carcinoma patients based on the International Guideline. Radiother. Oncol. 2022, 167, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Grégoire, V.; Ang, K.; Budach, W.; Grau, C.; Hamoir, M.; Langendijk, J.A.; Lee, A.; Le, Q.T.; Maingon, P.; Nutting, C.; et al. Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother. Oncol. 2014, 110, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lu, Y.; Wang, X.J.; Chen, H.; Yu, S.; Tian, J.; Zhou, G.Q.; Zhang, L.L.; Qi, Z.Y.; Hu, J.; et al. Delineation of Neck Clinical Target Volume Specific to Nasopharyngeal Carcinoma Based on Lymph Node Distribution and the International Consensus Guidelines. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, C.; Ying, H.; He, X.; Zhu, G.; Kong, L.; Ding, J. Patterns of lymph node metastasis from nasopharyngeal carcinoma based on the 2013 updated consensus guidelines for neck node levels. Radiother. Oncol. 2015, 115, 41–45. [Google Scholar] [CrossRef]
- Grégoire, V.; Levendag, P.; Ang, K.K.; Bernier, J.; Braaksma, M.; Budach, V.; Chao, C.; Coche, E.; Cooper, J.S.; Cosnard, G.; et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother. Oncol. 2003, 69, 227–236. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, X.; Wang, Y.; Lan, W.; Ren, J.; Yang, N.; Li, C.; Lang, J.; Zhang, S. Level Ib CTV delineation in nasopharyngeal carcinoma based on lymph node distribution and topographic anatomy. Radiother. Oncol. 2022, 172, 10–17. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Hu, C.; Zhou, Z.; Ying, H.; Ding, J.; Feng, Y. Patterns of level II node metastasis in nasopharyngeal carcinoma. Radiother. Oncol. 2008, 89, 28–32. [Google Scholar] [CrossRef]
- Jiang, C.; Gao, H.; Zhang, L.; Li, H.; Zhang, T.; Ma, J.; Liu, B. Distribution pattern and prognosis of metastatic lymph nodes in cervical posterior to level V in nasopharyngeal carcinoma patients. BMC Cancer 2020, 20, 667. [Google Scholar] [CrossRef]
- Jiang, C.; Gong, B.; Gao, H.; Zhang, T.; Li, Z.; Wang, J.; Zhang, L. Correlation analysis of neck node levels in 960 cases of Nasopharyngeal carcinoma (NPC). Radiother. Oncol. 2021, 161, 23–28. [Google Scholar] [CrossRef]
- NCCN. NCCN Guidelines Head and Neck Cancers; Version 2.2023; NCCN: Plymouth Meeting, PA, USA, 2023. [Google Scholar]
- Bossi, P.; Chan, A.T.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.P.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up(†). Ann. Oncol. 2021, 32, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bi, J.; Pi, G.; He, H.; Li, Y.; Zheng, D.; Wei, Z.; Han, G. Optimizing induction chemotherapy regimens for radiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Cancer Med. 2023, 12, 9449–9457. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Rong, J.-F.; Xin, C.; Li, X.-Y.; Zheng, Y.; Ren, P.-R.; Lin, S.; Wen, Q.-L.; He, L.-J.; Zhang, J.-W.; et al. Reducing Target Volumes of Intensity Modulated Radiation Therapy After Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: Long-Term Results of a Prospective, Multicenter, Randomized Trial. Int. J. Radiat. Oncol. Biol. Physics. 2023, 117, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Miao, J.J.; Hua, Y.J.; Wang, L.; Han, F.; Lu, L.X.; Xiao, W.W.; Wu, H.J.; Zhu, M.Y.; Huang, S.M.; et al. Locoregional Control and Mild Late Toxicity After Reducing Target Volumes and Radiation Doses in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy (IC) Followed by Concurrent Chemoradiotherapy: 10-Year Results of a Phase 2 Study. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-L.; Sun, Z.-Q.; Guo, R.; Liu, X.; Mao, Y.-P.; Peng, H.; Tian, L.; Lin, A.-H.; Li, L.; Shao, J.-Y.; et al. Plasma Epstein-Barr Virus DNA Load After Induction Chemotherapy Predicts Outcome in Locoregionally Advanced Nasopharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 355–361. [Google Scholar] [CrossRef]
- Jiang, Y.-T.; Chen, K.-H.; Yang, J.; Liang, Z.-G.; Qu, S.; Li, L.; Zhu, X.-D. Establishment of a Prognostic Nomogram for Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Incorporating TNM Stage, Post-Induction Chemotherapy Tumor Volume and Epstein-Barr Virus DNA Load. Front. Oncol. 2021, 11, 683475. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.Z.; He, T.; Zeng, Y.Y.; Liu, F.; Shao, B.F.; Yang, T.; Ma, J.C.; Wang, X.R.; Yu, S.T.; Liu, L. Epstein-Barr virus DNA change level combined with tumor volume reduction ratio after inductive chemotherapy as a better prognostic predictor in locally advanced nasopharyngeal carcinoma. Cancer Med. 2023, 12, 1102–1113. [Google Scholar] [CrossRef]
- Luo, W.J.; Zou, W.Q.; Liang, S.B.; Chen, L.; Zhou, G.Q.; Peng, H.; Li, W.F.; Liu, X.; Sun, Y.; Lin, A.H.; et al. Combining tumor response and personalized risk assessment: Potential for adaptation of concurrent chemotherapy in locoregionally advanced nasopharyngeal carcinoma in the intensity-modulated radiotherapy era. Radiother. Oncol. 2021, 155, 56–64. [Google Scholar] [CrossRef]
- Mai, H.-Q.; Yang, J.-H.; Guo, S.-S.; Sun, X.-S.; Liu, L.-Z.; Yang, Z.-C.; Liu, L.; Liu, S.-L.; Li, X.Y.; Luo, D.-H.; et al. Reduced-dose radiotherapy for pretreatment EBV DNA selected low-risk stage III nasopharyngeal carcinoma: A single-arm, phase II trial. J. Clin. Oncol. 2022, 40, 6002. [Google Scholar] [CrossRef]
- Gai, X.; Wei, Y.; Tao, H.; Zhu, J.; Li, B. Clinical study of the time of repeated computed tomography and replanning for patients with nasopharyngeal carcinoma. Oncotarget 2017, 8, 27529–27540. [Google Scholar] [CrossRef]
- Brouwer, C.L.; Steenbakkers, R.J.H.M.; Langendijk, J.A.; Sijtsema, N.M. Identifying patients who may benefit from adaptive radiotherapy: Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help? Radiother. Oncol. 2015, 115, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.C.; Wu, V.W.; Ngan, R.K.; Tang, K.W.; Chan, C.C.; Wong, K.H.; Au, S.K.; Kwong, D.L. A prospective study on volumetric and dosimetric changes during intensity-modulated radiotherapy for nasopharyngeal carcinoma patients. Radiother. Oncol. 2012, 104, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, Z.; Liu, Z.; Teng, J.; Chang, Y.; Xie, Q.; Zhang, L.; Shi, J.; Chen, L. Quantifying the dosimetric effects of neck contour changes and setup errors on the spinal cord in patients with nasopharyngeal carcinoma: Establishing a rapid estimation method. J. Radiat. Res. 2022, 63, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wan, Q.; Zhou, Y.; Deng, X.; Xie, C.; Wu, S. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiother. Oncol. 2011, 98, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, W.; Zhou, C.; Zhu, J.; Ding, W.; Chen, M.; Chen, K.; Shi, Y.; Chen, X.; Kong, F.M.; et al. Long-term outcomes of replanning during intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: An updated and expanded retrospective analysis. Radiother. Oncol. 2022, 170, 136–142. [Google Scholar] [CrossRef]
- Castelli, J.; Thariat, J.; Benezery, K.; Hasbini, A.; Gery, B.; Berger, A.; Liem, X.; Guihard, S.; Chapet, S.; Thureau, S.; et al. Weekly Adaptive Radiotherapy vs Standard Intensity-Modulated Radiotherapy for Improving Salivary Function in Patients With Head and Neck Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1056–1064. [Google Scholar] [CrossRef]
- Huang, H.; Lu, H.; Feng, G.; Jiang, H.; Chen, J.; Cheng, J.; Pang, Q.; Lu, Z.; Gu, J.; Peng, L.; et al. Determining appropriate timing of adaptive radiation therapy for nasopharyngeal carcinoma during intensity-modulated radiation therapy. Radiat. Oncol. 2015, 10, 192. [Google Scholar] [CrossRef]
- Xie, D.; Cheng, W.; Lv, S.; Zhong, R.; Wang, L.; Hu, J.; Wang, M.; Huang, S.; Su, Y.; Xia, Y. Target delineation and dose prescription of adaptive replanning intensity-modulated radiotherapy for nasopharyngeal carcinoma. Cancer Commun. 2019, 39, 18. [Google Scholar] [CrossRef]
- Alterio, D.; D’Ippolito, E.; Vischioni, B.; Fossati, P.; Gandini, S.; Bonora, M.; Ronchi, S.; Vitolo, V.; Mastella, E.; Magro, G.; et al. Mixed-beam approach in locally advanced nasopharyngeal carcinoma: IMRT followed by proton therapy boost versus IMRT-only. Evaluation of toxicity and efficacy. Acta Oncol. 2020, 59, 541–548. [Google Scholar] [CrossRef]
- Nishimura, Y.; Ishikura, S.; Shibata, T.; Kodaira, T.; Ito, Y.; Tsuchiya, K.; Murakami, Y.; Saitoh, J.I.; Akimoto, T.; Nakata, K.; et al. A phase II study of adaptive two-step intensity-modulated radiation therapy (IMRT) with chemotherapy for loco-regionally advanced nasopharyngeal cancer (JCOG1015). Int. J. Clin. Oncol. 2020, 25, 1250–1259. [Google Scholar] [CrossRef]
- Glide-Hurst, C.K.; Lee, P.; Yock, A.D.; Olsen, J.R.; Cao, M.; Siddiqui, F.; Parker, W.; Doemer, A.; Rong, Y.; Kishan, A.U.; et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1054–1075. [Google Scholar] [CrossRef] [PubMed]
- Bertholet, J.; Anastasi, G.; Noble, D.; Bel, A.; van Leeuwen, R.; Roggen, T.; Duchateau, M.; Pilskog, S.; Garibaldi, C.; Tilly, N.; et al. Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part II: Offline and online plan adaption for interfractional changes. Radiother. Oncol. 2020, 153, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Dou, Q.; Jin, Y.M.; Zhou, G.Q.; Tang, Y.Q.; Chen, W.L.; Su, B.A.; Liu, F.; Tao, C.J.; Jiang, N.; et al. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology 2019, 291, 677–686. [Google Scholar] [CrossRef]
- Costea, M.; Zlate, A.; Serre, A.A.; Racadot, S.; Baudier, T.; Chabaud, S.; Grégoire, V.; Sarrut, D.; Biston, M.C. Evaluation of different algorithms for automatic segmentation of head-and-neck lymph nodes on CT images. Radiother. Oncol. 2023, 188, 109870. [Google Scholar] [CrossRef] [PubMed]
- Teo, P.M.; Leung, S.F.; Tung, S.Y.; Zee, B.; Sham, J.S.; Lee, A.W.; Lau, W.H.; Kwan, W.H.; Leung, T.W.; Chua, D.; et al. Dose-response relationship of nasopharyngeal carcinoma above conventional tumoricidal level: A study by the Hong Kong nasopharyngeal carcinoma study group (HKNPCSG). Radiother. Oncol. 2006, 79, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.C.; Humm, J.; Larson, S.; Amols, H.; Fuks, Z.; Leibel, S.; Koutcher, J.A. Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Yan, O.; Wang, H.; Han, Y.; Fu, S.; Chen, Y.; Liu, F. Prognostic Relevance of 18F-FDG-PET/CT-Guided Target Volume Delineation in Loco-Regionally Advanced Nasopharyngeal Carcinomas: A Comparative Study. Front. Oncol. 2021, 11, 709622. [Google Scholar] [CrossRef]
- Liu, F.; Xi, X.P.; Wang, H.; Han, Y.Q.; Xiao, F.; Hu, Y.; He, Q.; Zhang, L.; Xiao, Q.; Liu, L.; et al. PET/CT-guided dose-painting versus CT-based intensity modulated radiation therapy in locoregional advanced nasopharyngeal carcinoma. Radiat. Oncol. 2017, 12, 15. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Tang, T.; Zhu, F.; Yao, Y.; Xu, J.; Wang, A.Z.; Zhang, L. A Randomized Pilot Trial Comparing Position Emission Tomography (PET)-Guided Dose Escalation Radiotherapy to Conventional Radiotherapy in Chemoradiotherapy Treatment of Locally Advanced Nasopharyngeal Carcinoma. PLoS ONE 2015, 10, e0124018. [Google Scholar] [CrossRef]
- Lee, S.T.; Scott, A.M. Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin. Nucl. Med. 2007, 37, 451–461. [Google Scholar] [CrossRef]
- Qiu, J.; Lv, B.; Fu, M.; Wang, X.; Zheng, X.; Zhuo, W. (18) F-Fluoromisonidazole positron emission tomography/CT-guided volumetric-modulated arc therapy-based dose escalation for hypoxic subvolume in nasopharyngeal carcinomas: A feasibility study. Head Neck 2017, 39, 2519–2527. [Google Scholar] [CrossRef] [PubMed]
- Sommat, K.; Tong, A.K.T.; Ong, A.L.K.; Hu, J.; Sin, S.Y.; Lam, W.W.C.; Xie, W.; Khor, Y.M.; Lim, C.; Lim, T.W.; et al. 18F-FMISO PET-guided dose escalation with multifield optimization intensity-modulated proton therapy in nasopharyngeal carcinoma. Asia Pac. J. Clin. Oncol. 2023. early view. [Google Scholar] [CrossRef] [PubMed]
- Razek, A.A.K.A.; Megahed, A.S.; Denewer, A.; Motamed, A.; Tawfik, A.; Nada, N. Role of diffusion-weighted magnetic resonance imaging in differentiation between the viable and necrotic parts of head and neck tumors. Acta Radiol. 2008, 49, 364–370. [Google Scholar] [CrossRef]
- Fu, S.; Li, Y.; Han, Y.; Wang, H.; Chen, Y.; Yan, O.; He, Q.; Ma, H.; Liu, L.; Liu, F. Diffusion-Weighted Magnetic Resonance Imaging-Guided Dose Painting in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy Plus Concurrent Chemoradiotherapy: A Randomized, Controlled Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Yang, P.; Xu, Y.; Niu, T.; Hu, Q.; Chen, X. Feasibility of multiparametric imaging with PET/MR in nasopharyngeal carcinoma: A pilot study. Oral Oncol. 2019, 93, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Berwouts, D.; Madani, I.; Duprez, F.; Olteanu, A.L.; Vercauteren, T.; Boterberg, T.; Deron, P.; Bonte, K.; Huvenne, W.; De Neve, W.; et al. Long-term outcome of (18) F-fluorodeoxyglucose-positron emission tomography-guided dose painting for head and neck cancer: Matched case-control study. Head Neck 2017, 39, 2264–2275. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, L.A.M.; Duprez, F.; De Neve, W.; Berwouts, D.; Vercauteren, T.; Bauters, W.; Deron, P.; Huvenne, W.; Bonte, K.; Goethals, I.; et al. Late mucosal ulcers in dose-escalated adaptive dose-painting treatments for head-and-neck cancer. Acta Oncol. 2018, 57, 262–268. [Google Scholar] [CrossRef]
- Li, S.; Wang, K.; Hou, Z.; Yang, J.; Ren, W.; Gao, S.; Meng, F.; Wu, P.; Liu, B.; Liu, J.; et al. Use of Radiomics Combined With Machine Learning Method in the Recurrence Patterns After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Preliminary Study. Front. Oncol. 2018, 8, 648. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Wang, J.; Wang, J.; Liu, X.; Huang, R.; Chen, C.; Deng, M.; Wang, H.; Han, F. Key radioresistance regulation models and marker genes identified by integrated transcriptome analysis in nasopharyngeal carcinoma. Cancer Med. 2021, 10, 7404–7417. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhu, X.; Li, L.; Ning, R.; Liang, Z.; Zeng, F.; Su, F.; Huang, S.; Yang, X.; Qu, S. Identification of non-invasive biomarkers for predicting the radiosensitivity of nasopharyngeal carcinoma from serum microRNAs. Sci. Rep. 2020, 10, 5161. [Google Scholar] [CrossRef]
- Niedobitek, G.; Young, L.S.; Sam, C.K.; Brooks, L.; Prasad, U.; Rickinson, A.B. Expression of Epstein-Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas. Am. J. Pathol. 1992, 140, 879–887. [Google Scholar]
- Lee, A.W.M.; Lee, V.H.F.; Ng, W.T.; Strojan, P.; Saba, N.F.; Rinaldo, A.; Willems, S.M.; Rodrigo, J.P.; Forastiere, A.A.; Ferlito, A. A systematic review and recommendations on the use of plasma EBV DNA for nasopharyngeal carcinoma. Eur. J. Cancer 2021, 153, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.A.; Woo, J.K.S.; King, A.; Zee, B.C.Y.; Lam, W.K.J.; Chan, S.L.; Chu, S.W.I.; Mak, C.; Tse, I.O.L.; Leung, S.Y.M.; et al. Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. N. Engl. J. Med. 2017, 377, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.Q.; Chen, L.; Li, W.F.; Chan, A.T.C.; Huang, S.H.; Chua, M.L.K.; O’Sullivan, B.; Lee, A.W.M.; Lee, N.Y.; Zhang, Y.; et al. Identifying optimal clinical trial candidates for locoregionally advanced nasopharyngeal carcinoma: Analysis of 9468 real-world cases and validation by two phase 3 multicentre, randomised controlled trial. Radiother. Oncol. 2022, 167, 179–186. [Google Scholar] [CrossRef]
- Lee, V.H.; Adham, M.; Ben Kridis, W.; Bossi, P.; Chen, M.Y.; Chitapanarux, I.; Gregoire, V.; Hao, S.P.; Ho, C.; Ho, G.F.; et al. International recommendations for plasma Epstein-Barr virus DNA measurement in nasopharyngeal carcinoma in resource-constrained settings: Lessons from the COVID-19 pandemic. Lancet Oncol. 2022, 23, e544–e551. [Google Scholar] [CrossRef]
- Wu, C.F.; Lin, L.; Mao, Y.P.; Deng, B.; Lv, J.W.; Zheng, W.H.; Wen, D.W.; Kou, J.; Chen, F.P.; Yang, X.L.; et al. Liquid biopsy posttreatment surveillance in endemic nasopharyngeal carcinoma: A cost-effective strategy to integrate circulating cell-free Epstein-Barr virus DNA. BMC Med. 2021, 19, 193. [Google Scholar] [CrossRef]
- Kim, K.Y.; Le, Q.T.; Yom, S.S.; Pinsky, B.A.; Bratman, S.V.; Ng, R.H.; El Mubarak, H.S.; Chan, K.C.; Sander, M.; Conley, B.A. Current State of PCR-Based Epstein-Barr Virus DNA Testing for Nasopharyngeal Cancer. J. Natl. Cancer Inst. 2017, 109, djx007. [Google Scholar] [CrossRef]
- Zhang, J.; Shu, C.; Song, Y.; Li, Q.; Huang, J.; Ma, X. Epstein-Barr virus DNA level as a novel prognostic factor in nasopharyngeal carcinoma: A meta-analysis. Medicine 2016, 95, e5130. [Google Scholar] [CrossRef]
- Li, X.Y.; Luo, D.H.; Guo, L.; Mo, H.Y.; Sun, R.; Guo, S.S.; Liu, L.T.; Yang, Z.C.; Yang, J.H.; Qiu, F.; et al. Deintensified Chemoradiotherapy for Pretreatment Epstein-Barr Virus DNA-Selected Low-Risk Locoregionally Advanced Nasopharyngeal Carcinoma: A Phase II Randomized Noninferiority Trial. J. Clin. Oncol. 2022, 40, 1163–1173. [Google Scholar] [CrossRef]
- Chan, A.T.C.; Hui, E.P.; Ngan, R.K.C.; Tung, S.Y.; Cheng, A.C.K.; Ng, W.T.; Lee, V.H.F.; Ma, B.B.Y.; Cheng, H.C.; Wong, F.C.S.; et al. Analysis of Plasma Epstein-Barr Virus DNA in Nasopharyngeal Cancer After Chemoradiation to Identify High-Risk Patients for Adjuvant Chemotherapy: A Randomized Controlled Trial. J. Clin. Oncol. 2018, 36, 3091–3100. [Google Scholar] [CrossRef]
- Mai, H.-Q.; Chen, Q.-Y.; Chen, D.; Hu, C.; Yang, K.; Wen, J.; Li, J.; Shi, Y.-R.; Jin, F.; Xu, R.; et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: A multicenter randomized phase 3 trial. Nat. Med. 2021, 27, 1536–1543. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, J.; Wang, H.; Zhao, Y.; Qu, S.; Chen, N.; Chen, X.; Sun, Y.; He, X.; Hu, C.; et al. Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: A multicenter phase 3 trial (RATIONALE-309). Cancer Cell 2023, 41, 1061–1072.e1064. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, S.; Li, J.; Hu, C.; Xu, M.; Li, W.; Zhou, T.; Shen, L.; Wu, H.; Lang, J.; et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2021, 22, 1162–1174. [Google Scholar] [CrossRef]
- Lim, D.W.-T.; Kao, H.-F.; Suteja, L.; Li, C.H.; Quah, H.S.; Tan, D.S.-W.; Tan, S.-H.; Tan, E.-H.; Tan, W.-L.; Lee, J.N.; et al. Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma. Nat. Commun. 2023, 14, 2781. [Google Scholar] [CrossRef]
- Hui, E.P.; Ma, B.; Lim, D.W.-T.; Lam, W.K.J.; Soong, Y.L.; Li, L.; Wong, K.C.W.; Lam, D.; Mok, F.; Tong, M.; et al. NEOSPACE trial: Neoadjuvant pembrolizumab-gemcitabine-cisplatin followed by concurrent pembrolizumab-chemoradiation and maintenance pembrolizumab for stage IVA nasopharyngeal cancer (NPC). J. Clin. Oncol. 2023, 41, 6010. [Google Scholar] [CrossRef]
- Chen, Q.-Y.; Mai, H.-Q.; Tang, L.-Q.; Luo, M.; Zhao, C.; Mo, H.-Y.; Sun, R.; Luo, D.-H.; Wang, L.; Guo, S.-S.; et al. Neoadjuvant chemotherapy plus tislelizumab followed by concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: A single-arm, phase II trial. J. Clin. Oncol. 2022, 40, 6068. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Liu, X.; Yang, K.-Y.; Zhang, N.; Jin, F.; Zou, G.; Zhu, X.; Xie, F.; He, Z.; et al. PD-1 blockade with sintilimab plus induction chemotherapy and concurrent chemoradiotherapy (IC-CCRT) versus IC-CCRT in locoregionally-advanced nasopharyngeal carcinoma (LANPC): A multicenter, phase 3, randomized controlled trial (CONTINUUM). J. Clin. Oncol. 2023, 41, LBA6002. [Google Scholar] [CrossRef]
- Xu, C.; Ma, J. TIRA study: A phase III, multicenter, randomized controlled study of toripalimab plus radical chemoradiotherapy with or without concurrent cisplatin in patients with high-risk locoregionally advanced nasopharyngeal carcinoma. J. Clin. Oncol. 2022, 40, TPS6101. [Google Scholar] [CrossRef]
- Qian, X.; Chen, H.; Tao, Y. Biomarkers predicting clinical outcomes in nasopharyngeal cancer patients receiving immune checkpoint inhibitors: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1146898. [Google Scholar] [CrossRef]
- Sautès-Fridman, C.; Petitprez, F.; Calderaro, J.; Fridman, W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 2019, 19, 307–325. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Lv, J.-W.; Mao, Y.-P.; Li, X.-M.; Li, J.-Y.; Wang, Y.-Q.; Xu, C.; Li, Y.-Q.; He, Q.-M.; Yang, X.-J.; et al. Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses. Mol. Cancer 2021, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Yeo, E.L.L.; Li, Y.Q.; Soo, K.-C.; Wee, J.T.S.; Chua, M.L.K. Combinatorial strategies of radiotherapy and immunotherapy in nasopharyngeal carcinoma. Chin. Clin. Oncol. 2018, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Aryankalayil, M.J.; Coleman, C.N.; Formenti, S.C. Emerging evidence for adapting radiotherapy to immunotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Ferris, R.L.; Psyrri, A.; Haddad, R.I.; Tahara, M.; Bourhis, J.; Harrington, K.; Chang, P.M.; Lin, J.C.; Razaq, M.A.; et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: A randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 2021, 22, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, Z.; Chen, D.; Verma, V.; Yuan, C.; Wang, M.; Wang, F.; Fan, Q.; Wang, X.; Li, Y.; et al. Pivotal roles of tumor-draining lymph nodes in the abscopal effects from combined immunotherapy and radiotherapy. Cancer Commun. 2022, 42, 971–986. [Google Scholar] [CrossRef] [PubMed]
- Darragh, L.B.; Gadwa, J.; Pham, T.T.; Van Court, B.; Neupert, B.; Olimpo, N.A.; Nguyen, K.; Nguyen, D.; Knitz, M.W.; Hoen, M.; et al. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat. Commun. 2022, 13, 7015. [Google Scholar] [CrossRef]
Areas of Interest | |
---|---|
Tools for risk stratification | Clinicopathologic features |
Biological imaging, e.g., 18F-fluorodeoxyglucose PET-CT, 18F-fluoromisonidazole PET-CT, and diffusion-weighted MRI | |
Biomarkers, e.g., EBV DNA | |
Other multi-omics, e.g., radiomics and genomics | |
Timing of treatment adaptation | Pre-treatment |
Post-induction chemotherapy | |
During RT | |
Post-RT | |
Systemic therapy | Induction, concurrent and adjuvant chemotherapy – Selection criteria, dose, and regimen |
Immune checkpoint inhibitors – Selection criteria, induction, concurrent and maintenance regimen | |
Radiotherapy | Volume reduction 1. Redefining dose and margins of CTVprimary 2. Redefining high-risk anatomical subsites – Omission, unilateral NPC, stepwise pattern of spread 3. Redefining elective nodal regions – Upper neck irradiation, submandibular lymph node sparing, medial retropharyngeal lymph node sparing, retro-styloid lymph node sparing 4. Refining the borders of nodal basins 5. Dose and volume tailoring to post-induction chemotherapy volumes |
Dose adaptation 1. Risk-adapted dose de-escalation tailoring to the response of induction chemotherapy 2. Dose-painting or dose escalation with biological imaging | |
Adaptive RT – Dose and volume tailoring to treatment response during RT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yip, P.L.; You, R.; Chen, M.-Y.; Chua, M.L.K. Embracing Personalized Strategies in Radiotherapy for Nasopharyngeal Carcinoma: Beyond the Conventional Bounds of Fields and Borders. Cancers 2024, 16, 383. https://doi.org/10.3390/cancers16020383
Yip PL, You R, Chen M-Y, Chua MLK. Embracing Personalized Strategies in Radiotherapy for Nasopharyngeal Carcinoma: Beyond the Conventional Bounds of Fields and Borders. Cancers. 2024; 16(2):383. https://doi.org/10.3390/cancers16020383
Chicago/Turabian StyleYip, Pui Lam, Rui You, Ming-Yuan Chen, and Melvin L. K. Chua. 2024. "Embracing Personalized Strategies in Radiotherapy for Nasopharyngeal Carcinoma: Beyond the Conventional Bounds of Fields and Borders" Cancers 16, no. 2: 383. https://doi.org/10.3390/cancers16020383
APA StyleYip, P. L., You, R., Chen, M. -Y., & Chua, M. L. K. (2024). Embracing Personalized Strategies in Radiotherapy for Nasopharyngeal Carcinoma: Beyond the Conventional Bounds of Fields and Borders. Cancers, 16(2), 383. https://doi.org/10.3390/cancers16020383