HLA-A01 and HLA-B27 Supertypes, but Not HLA Homozygocity, Correlate with Clinical Outcome among Patients with Non-Small Cell Lung Cancer Treated with Pembrolizumab in Combination with Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Correlation between HLA-I/II Homozygosity and Clinical Outcome
3.2. Correlation between HLA-I Supertypes and Clinical Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Aggarwal, C.; Abreu, D.R.; Felip, E.; Carcereny, E.; Gottfried, M.; Wehler, T.; Ahn, M.J.; Dolled-Filhart, M.; Zhang, J.; Shentu, Y.; et al. Prevalence of PD-L1 expression in patients with non-small cell lung cancer screened for enrollment in KEYNOTE-001, -010, and -024. Ann. Oncol. 2016, 27, vi363. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Alvaro-Benito, M.; Stolzenberg, S.; Noe, F.; Freund, C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front. Immunol. 2017, 8, 292. [Google Scholar] [CrossRef]
- Arasanz, H.; Gato-Cañas, M.; Zuazo, M.; Ibañez-Vea, M.; Breckpot, K.; Kochan, G.; Escors, D. PD1 signal transduction pathways in T cells. Oncotarget 2017, 8, 51936–51945. [Google Scholar] [CrossRef] [PubMed]
- Perea, F.; Sánchez-Palencia, A.; Gómez-Morales, M.; Bernal, M.; Concha, Á.; García, M.M.; González-Ramírez, A.R.; Kerick, M.; Martin, J.; Garrido, F.; et al. HLA class I loss and PD-L1 expression in lung cancer: Impact on T-cell infiltration and immune escape. Oncotarget 2018, 9, 4120–4133. [Google Scholar] [CrossRef]
- Cai, W.; Zhou, D.; Wu, W.; Tan, W.L.; Wang, J.; Zhou, C.; Lou, Y. MHC class II restricted neoantigen peptides predicted by clonal mutation analysis in lung adenocarcinoma patients: Implications on prognostic immunological biomarker and vaccine design. BMC Genom. 2018, 19, 582. [Google Scholar] [CrossRef]
- Abed, A.; Calapre, L.; Lo, J.; Correia, S.; Bowyer, S.; Chopra, A.; Watson, M.; Khattak, M.A.; Millward, M.; Gray, E.S. Prognostic value of HLA-I homozygosity in patients with non-small cell lung cancer treated with single agent immunotherapy. J ImmunoTher. Cancer 2020, 8, e001620. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Abed, A.; Law, N.; Calapre, L.; Lo, J.; Bhat, V.; Bowyer, S.; Millward, M.; Gray, E.S. Human leucocyte antigen genotype association with the development of immune-related adverse events in patients with non-small cell lung cancer treated with single agent immunotherapy. Eur. J. Cancer 2022, 172, 98–106. [Google Scholar] [CrossRef]
- Hasan Ali, O.; Berner, F.; Bomze, D.; Fässler, M.; Diem, S.; Cozzio, A.; Jörger, M.; Früh, M.; Driessen, C.; Lenz, T.L.; et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur. J. Cancer 2019, 107, 8–14. [Google Scholar] [CrossRef]
- Sidney, J.; Peters, B.; Frahm, N.; Brander, C.; Sette, A. HLA class I supertypes: A revised and updated classification. BMC Immunol. 2008, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Naranbhai, V.; Viard, M.; Dean, M.; Groha, S.; Braun, D.A.; Labaki, C.; Shukla, S.A.; Yuki, Y.; Shah, P.; Chin, K.; et al. HLA-A*03 and response to immune checkpoint blockade in cancer: An epidemiological biomarker study. Lancet Oncol. 2022, 23, 172–184. [Google Scholar] [CrossRef]
- Currenti, J.; Chopra, A.; John, M.; Leary, S.; McKinnon, E.; Alves, E.; Pilkinton, M.; Smith, R.; Barnett, L.; McDonnell, W.J.; et al. Deep sequence analysis of HIV adaptation following vertical transmission reveals the impact of immune pressure on the evolution of HIV. PLoS Pathog. 2019, 15, e1008177. [Google Scholar] [CrossRef] [PubMed]
- Chhibber, A.; Huang, L.; Zhang, H.; Xu, J.; Cristescu, R.; Liu, X.; Mehrotra, D.V.; Shen, J.; Shaw, P.M.; Hellmann, M.D.; et al. Germline HLA landscape does not predict efficacy of pembrolizumab monotherapy across solid tumor types. Immunity 2022, 55, 56–64.e4. [Google Scholar] [CrossRef]
- Negrao, M.V.; Lam, V.K.; Reuben, A.; Rubin, M.L.; Landry, L.L.; Roarty, E.B.; Rinsurongkawong, W.; Lewis, J.; Roth, J.A.; Swisher, S.G.; et al. PD-L1 Expression, Tumor Mutational Burden, and Cancer Gene Mutations Are Stronger Predictors of Benefit from Immune Checkpoint Blockade than HLA Class I Genotype in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2019, 14, 1021–1031. [Google Scholar] [CrossRef]
- Neefjes, J.; Jongsma, M.L.M.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Principe, D.R.; Kamath, S.D.; Korc, M.; Munshi, H.G. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol. Ther. 2022, 236, 108111. [Google Scholar] [CrossRef]
- Hassel, J.C.; Piperno-Neumann, S.; Rutkowski, P.; Baurain, J.-F.; Schlaak, M.; Butler, M.O.; Sullivan, R.J.; Dummer, R.; Kirkwood, J.M.; Orloff, M.; et al. Three-Year Overall Survival with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2023, 389, 2256–2266. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, L.; Charrier, M.; Lahmar, J.; Remon, J.; Bluthgen, M.V.; Facchinetti, F.; Planchard, D.; Gazzah, A.; Dupraz, L.; Adam, J.; et al. HLA-A2 and immune checkpoints inhibitors in advanced non-small cell lung cancer (NSCLC) patients. Ann. Oncol. 2016, 27, vi423. [Google Scholar] [CrossRef]
- Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Gonzalez-Rodriguez, A.P.; Martínez-Pérez, A.; Rodrigo, J.P.; García-Pedrero, J.M.; Gonzalez, S. Chemo-Immunotherapy: A New Trend in Cancer Treatment. Cancers 2023, 15, 2912. [Google Scholar] [CrossRef] [PubMed]
- Thibodeau, J.; Bourgeois-Daigneault, M.C.; Lapointe, R. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 2012, 1, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Wolf, N.K.; Kissiov, D.U.; Raulet, D.H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol. 2023, 23, 90–105. [Google Scholar] [CrossRef]
- Salas-Benito, D.; Pérez-Gracia, J.L.; Ponz-Sarvisé, M.; Rodriguez-Ruiz, M.E.; Martínez-Forero, I.; Castañón, E.; López-Picazo, J.M.; Sanmamed, M.F.; Melero, I. Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discov. 2021, 11, 1353–1367. [Google Scholar] [CrossRef]
Characteristic | N (%) |
---|---|
Age | |
≥65 | 39 (70) |
<65 | 14 (30) |
Sex | |
M | 34 (64) |
F | 18 (34) |
ECOG | |
≤1 | 47 (89) |
>1 | 6 (11) |
Smoking | |
Yes | 47 (89) |
No | 4 (7) |
Unknown | 2 (4) |
Stage | |
II | 0 |
III | 8 (15) |
IV | 45 (85) |
Histopathology | |
Adenocarcinoma | 38 (72) |
SCC | 13 (24) |
Others | 2 (4) |
Molecular status # | |
KRAS mutant | 14 (35) |
KRAS wild type | 22 (55) |
KRAS unknown | 3 (7) |
EGFR, ALK or ROS-1 mutant | 1 (3) |
PDL1 expression | |
≥50% | 10 (19) |
1–49% | 18 (34) |
0% | 22 (42) |
Unknown | 3 (6) |
Genomic HLA-I zygosity | |
Homozygous at ≥1 loci | 15 (28) |
Heterozygous at all loci | 38 (72) |
Genomic HLA-II zygosity | |
Homozygous at ≥1 loci | 18 (34) |
Heterozygous at all loci | 35 (66) |
Total | 53 |
Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Variable | p-Value | HR | 95.0% CI | p-Value | HR | 95.0% CI | ||
Lower | Upper | Lower | Upper | |||||
HLA-I (Hetero vs. Homo) | 0.817 | 1.125 | 0.415 | 3.054 | 0.486 | 0.679 | 0.228 | 2.018 |
PD-L1 (≥50 vs. <50) | 0.364 | 1.275 | 0.754 | 2.154 | 0.487 | 1.261 | 0.656 | 2.423 |
Sex (F vs. M) | 0.359 | 0.766 | 0.434 | 1.353 | 0.202 | 0.668 | 0.359 | 1.242 |
Age (≥65 vs. <65) | 0.004 | 2.023 | 1.245 | 3.287 | 0.008 | 2.045 | 1.208 | 3.462 |
Smoking (N vs. Y) | 0.417 | 4.842 | 0.107 | 218.575 | 0.986 | 500.561 | 0.000 | INF |
ECOG (≤1 vs ≥2) | 0.283 | 0.706 | 0.374 | 1.333 | 0.357 | 0.712 | 0.345 | 1.468 |
NLR (<5 vs. ≥5) | 0.189 | 0.722 | 0.444 | 1.174 | 0.118 | 0.628 | 0.350 | 1.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abed, A.; Reid, A.; Law, N.; Millward, M.; Gray, E.S. HLA-A01 and HLA-B27 Supertypes, but Not HLA Homozygocity, Correlate with Clinical Outcome among Patients with Non-Small Cell Lung Cancer Treated with Pembrolizumab in Combination with Chemotherapy. Cancers 2024, 16, 3102. https://doi.org/10.3390/cancers16173102
Abed A, Reid A, Law N, Millward M, Gray ES. HLA-A01 and HLA-B27 Supertypes, but Not HLA Homozygocity, Correlate with Clinical Outcome among Patients with Non-Small Cell Lung Cancer Treated with Pembrolizumab in Combination with Chemotherapy. Cancers. 2024; 16(17):3102. https://doi.org/10.3390/cancers16173102
Chicago/Turabian StyleAbed, Afaf, Anna Reid, Ngie Law, Michael Millward, and Elin S. Gray. 2024. "HLA-A01 and HLA-B27 Supertypes, but Not HLA Homozygocity, Correlate with Clinical Outcome among Patients with Non-Small Cell Lung Cancer Treated with Pembrolizumab in Combination with Chemotherapy" Cancers 16, no. 17: 3102. https://doi.org/10.3390/cancers16173102
APA StyleAbed, A., Reid, A., Law, N., Millward, M., & Gray, E. S. (2024). HLA-A01 and HLA-B27 Supertypes, but Not HLA Homozygocity, Correlate with Clinical Outcome among Patients with Non-Small Cell Lung Cancer Treated with Pembrolizumab in Combination with Chemotherapy. Cancers, 16(17), 3102. https://doi.org/10.3390/cancers16173102