A Monocentric Analysis of Implantable Ports in Cancer Treatment: Five-Year Efficacy and Safety Evaluation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Management and Surgical Technique
2.3. Ethical Considerations and Patient Consent
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Device Characteristics
3.3. TIVAD Placement
3.4. Procedural Success
3.5. Catheter Removal throughout the Follow-Up Period
3.6. Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sousa, B.; Furlanetto, J.; Hutka, M.; Gouveia, P.; Wuerstlein, R.; Mariz, J.M.; Pinto, T.; Cardoso, F. Central Venous Access in Oncology: ESMO Clinical Practice Guidelines. Ann. Oncol. 2015, 26, 152–168. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, P.C.; Kumar, S.; Kakaria, A.; Al-Sukaiti, R.; Al-Baimani, K.; Hamid, R.S.; Mittal, A.K.; Al-Balushi, M.; Burney, I.A.; Al-Moundhri, M.S. Complications and Management of Totally Implantable Central Venous Access Ports in Cancer Patients at a University Hospital in Oman. Sultan. Qaboos. Univ. Med. J. 2021, 21, e103–e109. [Google Scholar] [CrossRef]
- Kulkarni, S.; Wu, O.; Kasthuri, R.; Moss, J.G. Centrally Inserted External Catheters and Totally Implantable Ports for the Delivery of Chemotherapy: A Systematic Review and Meta-Analysis of Device-Related Complications. Cardiovasc. Interv. Radiol 2014, 37, 990–1008. [Google Scholar] [CrossRef] [PubMed]
- Kakkos, A.; Bresson, L.; Hudry, D.; Cousin, S.; Lervat, C.; Bogart, E.; Meurant, J.P.; Bedoui, S.E.; Decanter, G.; Hannebicque, K.; et al. Complication-Related Removal of Totally Implantable Venous Access Port Systems: Does the Interval between Placement and First Use and the Neutropenia-Inducing Potential of Chemotherapy Regimens Influence Their Incidence? A Four-Year Prospective Study of 4045 Patients. Eur. J. Surg. Oncol. (EJSO) 2017, 43, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.-Y.; Fu, C.-H.; Cheng, Y.-C.; Chen, J.-L.; Cheng, Y.-C.; Chen, C.C.-C.; Chai, J.-W. Outcome Analysis in 270 Radiologically Guided Implantations of Totally Implantable Venous Access Ports via Basilic Vein. J. Chin. Med. Assoc. 2020, 83, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Böll, B.; Schalk, E.; Buchheidt, D.; Hasenkamp, J.; Kiehl, M.; Kiderlen, T.R.; Kochanek, M.; Koldehoff, M.; Kostrewa, P.; Claßen, A.Y.; et al. Central Venous Catheter–Related Infections in Hematology and Oncology: 2020 Updated Guidelines on Diagnosis, Management, and Prevention by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann. Hematol. 2021, 100, 239–259. [Google Scholar] [CrossRef]
- Yun, W.-S.; Yang, S.-S. Comparison of Peripherally Inserted Central Catheters and Totally Implanted Venous Access Devices as Chemotherapy Delivery Routes in Oncology Patients: A Retrospective Cohort Study. Sci. Prog. 2021, 104. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, F.; Cecero, E.; Degl’Innocenti, D.; Selmi, V.; Giua, R.; Villa, G.; Chelazzi, C.; Romagnoli, S.; Pittiruti, M. Infection of Totally Implantable Venous Access Devices: A Review of the Literature. J. Vasc. Access 2018, 19, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Özkaçmaz, S.; Alpaslan, M.; Dadalı, Y.; Yavuz, A. Assessement of the Complications of Ultrasound and Fluoroscopy-Guided Placement of Totally Implantable Venous Access Ports. East. J. Med. 2019, 24, 15–22. [Google Scholar] [CrossRef]
- Milford, K.; Von, D.D.; Majola, N.; Cox, S. Long-Term Vascular Access in Differently Resourced Settings: A Review of Indications, Devices, Techniques, and Complications. Pediatr. Surg. Int. 2020, 36, 551–562. [Google Scholar] [CrossRef]
- Capozzi, V.A.; Monfardini, L.; Sozzi, G.; Armano, G.; Butera, D.; Scarpelli, E. others Peripherally Inserted Central Venous Catheters (PICC) versus Totally Implantable Venous Access Device (PORT) for Chemotherapy Administration: A Meta-Analysis on Gynecological Cancer Patients. Acta Biomed. 2021, 92, e2021257. [Google Scholar] [CrossRef]
- Song, X.; Chen, S.; Dai, Y.; Sun, Y.; Lin, X.; He, J.; Xu, R. A Novel Incision Technique of a Totally Implanted Venous Access Port in the Upper Arm for Patients with Breast Cancer. World J. Surg. Onc. 2023, 21, 162. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, W.; Chen, C.; Wei, A.; Liu, Y. Peripherally Inserted Central Catheters versus Implantable Port Catheters for Cancer Patients: A Meta-Analysis. Front. Oncol. 2023, 13, 1228092. [Google Scholar] [CrossRef] [PubMed]
- Narducci, F.; Jean-Laurent, M.; Boulanger, L.; El Bédoui, S.; Mallet, Y.; Houpeau, J.L.; Hamdani, A.; Penel, N.; Fournier, C. Totally Implantable Venous Access Port Systems and Risk Factors for Complications: A One-Year Prospective Study in a Cancer Centre. Eur. J. Surg. Oncol. (EJSO) 2011, 37, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, C.; Pan, C.; Yu, L. The Risk of Bloodstream Infection Associated with Totally Implantable Venous Access Ports in Cancer Patient: A Systematic Review and Meta-Analysis. Support Care Cancer 2020, 28, 361–372. [Google Scholar] [CrossRef]
- Jiang, M.; Li, C.; Pan, C.; Cui, X.; Dietrich, C.F. Risk of Venous Thromboembolism Associated with Totally Implantable Venous Access Ports in Cancer Patients: A Systematic Review and Meta-Analysis. J. Thromb. Haemost. 2020, 18, 2253–2273. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bosch, C.H.; Van Woensel, J.; Van De Wetering, M.D. Prophylactic Antibiotics for Preventing Gram-Positive Infections Associated with Long-Term Central Venous Catheters in Adults and Children Receiving Treatment for Cancer. Cochrane Database Syst. Rev. 2021, 10, CD003295. [Google Scholar] [CrossRef]
- ISO 14155:2020; Clinical Investigation of Medical Devices for Human Subjects—Good Clinical Practice. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/71690.html (accessed on 30 July 2024).
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A.G. Power, 3 A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Wildgruber, M.; Lueg, C.; Borgmeyer, S.; Karimov, I.; Braun, U.; Kiechle, M. others Polyurethane versus Silicone Catheters for Central Venous Port Devices Implanted at the Forearm. Eur. J. Cancer 2016, 59, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Busch, J.D.; Vens, M.; Mahler, C.; Herrmann, J.; Adam, G.; Ittrich, H. Complication Rates Observed in Silicone and Polyurethane Catheters of Totally Implanted Central Venous Access Devices Implanted in the Upper Arm. J. Vasc. Interv. Radiol. 2017, 28, 1177–1183. [Google Scholar] [CrossRef]
- Alzahrani, K.; Lejeune, J.; Lakhal, W.; Morel, B.; Cook, A.-R.; Braïk, K.; Lardy, H.; Binet, A. Polyurethane versus Silicone Port a Cath: What’s Going on at Removal? J. Pediatr. Surg. 2018, 53, 1417–1419. [Google Scholar] [CrossRef] [PubMed]
- Toro, A.; Schembari, E.; Fontana, E.G.; Di Saverio, S.; Di Carlo, I. Forty Years after the First Totally Implantable Venous Access Device (TIVAD) Implant: The Pure Surgical Cut-down Technique Only Avoids Immediate Complications That Can Be Fatal. Langenbeck’s Arch. Surg. 2021, 406, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Isom, C.; Bream, P.; Gallagher, K.; Walia, S.; Ahmed, R.; Kauffmann, R. Placement of Subcutaneous Central Venous Ports in Breast Cancer Patients: Does Side Matter? J. Surg. Res. 2019, 244, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Thiel, K.; Kalmbach, S.; Maier, G.; Wichmann, D.; Schenk, M.; Königsrainer, A.; Thiel, C. Standardized Procedure Prevents Perioperative and Early Complications in Totally Implantable Venous-Access Ports—A Complication Analysis of More than 1000 TIVAP Implantations. Langenbeck’s Arch. Surg. 2022, 407, 3755. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Wang, J.; Chang, Y.; Yu, L.; Geng, C. Totally Implantable Venous Access Port Systems and Associated Complications: A Single-Institution Retrospective Analysis of 2996 Breast Cancer Patients. Mol. Clin. Oncol. 2016, 4, 456–460. [Google Scholar] [CrossRef]
- Teichgräber, U.K.M.; Kausche, S.; Nagel, S.N.; Gebauer, B. Outcome Analysis in 3,160 Implantations of Radiologically Guided Placements of Totally Implantable Central Venous Port Systems. Eur. Radiol. 2011, 21, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Wolosker, N.; Yazbek, G.; Nishinari, K.; Caetano, M.L.; Munia, M.A.; Langer, M.; Zerati, A.E. Totally Implantable Venous Catheters for Chemotheraphy: Experience in 500 Patients. Sao Paulo Med. J. 2004, 122, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Zerati, A.E.; Figueredo, T.R.; De Moraes, R.D.; Da Cruz, A.M.; Da Motta-Leal, F.J.M.; Freire, M.P.; Wolosker, N.; De Luccia, N. Risk Factors for Infectious and Noninfectious Complications of Totally Implantable Venous Catheters in Cancer Patients. J. Vasc. Surg. Venous Lymphat. Disord 2016, 4, 200–205. [Google Scholar] [CrossRef]
- Viana, T.M.R.; Lima, L.S.; de Araújo, C.C.; de Mello, M.J.G. Risk Factors for Central Line–Associated Bloodstream Infection in Pediatric Oncology Patients with a Totally Implantable Venous Access Port: A Cohort Study. Pediatr. Blood Cancer 2017, 64, 336–342. [Google Scholar] [CrossRef]
- Örs Yıldırım, N. Totally Implantable Venous Access Devices: Study of 1,613 Patients and Complication Management Journal of The Cardiovascular Thoracic Anaesthesia and Intensive Care Society The Cardiovascular Thoracic Anaesthesia and Intensive. GKDA Derg. 2023, 29, 211–217. [Google Scholar] [CrossRef]
- Qiu, X.; Jin, G.; Zhang, X.; Xu, L.; Ding, J.; Li, W.; Yu, L.; Wang, Y.; Shen, Y.; Wang, H.; et al. Expert Consensus on the Clinical Application of Totally Implantable Venous Access Devices in the Upper Arm (2022 Edition). J. Interv. Med. 2023, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Debourdeau, P.; Farge, D.; Beckers, M.; Baglin, C.; Bauersachs, R.M.; Brenner, B.; Brilhante, D.; Falanga, A.; Gerotzafias, G.T.; Haim, N.; et al. International Clinical Practice Guidelines for the Treatment and Prophylaxis of Thrombosis Associated with Central Venous Catheters in Patients with Cancer. J. Thromb. Haemost. 2013, 11, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jia, L.; Jiang, A. Pathology of Catheter-Related Complications: What We Need to Know and what Should Be Discovered. J. Int. Med. Res. 2022, 50, 3000605221127890. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Soh, K.L.; Ying, Y.; Liu, Y.; Huang, X.; Huang, J. Risk of VTE Associated with PORTs and PICCs in Cancer Patients: A Systematic Review and Meta-Analysis. Thromb Res. 2022, 213, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Chopra, V.; Anand, S.; Hickner, A.; Buist, M.; Rogers, M.A.M.; Saint, S.; Flanders, S.A. Risk of Venous Thromboembolism Associated with Peripherally Inserted Central Catheters: A Systematic Review and Meta-Analysis. Lancet 2013, 382, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Marano, L.; Izzo, G.; Esposito, G.; Petrillo, M.; Cosenza, A.; Marano, M.; Fabozzi, A.; Boccardi, V.; De Vita, F.; Di Martino, N. Peripherally Inserted Central Catheter Tip Position: A Novel Empirical-Ultrasonographical Index in a Modern Surgical Oncology Department. Ann. Surg. Oncol. 2014, 21, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Brescia, F.; Pittiruti, M.; Ostroff, M.; Spencer, T.R.; Dawson, R.B. The SIC Protocol: A Seven-Step Strategy to Minimize Complications Potentially Related to the Insertion of Centrally Inserted Central Catheters. J. Vasc. Access 2023, 24, 185–190. [Google Scholar] [CrossRef]
- Jarab, A.S.; Al-Azzam, S.; Badaineh, R.; Mukattash, T.L.; Bsoul, R. Awareness and Perception of Thromboembolism and Thrombo-Prophylaxis among Hospitalized Patients in Jordan. Curr. Clin. Pharmacol 2020, 15, 72. [Google Scholar] [CrossRef]
Total | Male | Female | ||||
---|---|---|---|---|---|---|
Population Age Groups | n | % | n | % | n | % |
<50 years | 14 | 20.0 | 3 | 13.6% | 11 | 22.9% |
50–70 years | 41 | 58.6 | 13 | 59.1% | 28 | 58.3% |
>70 years | 15 | 21.4 | 6 | 27.3% | 9 | 18.8% |
TOTAL | 70 | 22 | 31.4 | 48 | 68.6 | |
Age (years) | ||||||
Mean (SD) | 62.2 (12.25) | 65.0 (12.55) | 60.9 (12.02) | |||
Min–Max | 28.0; 88.0 | 28.0; 84.0 | 34.0; 88.0 |
Device Range | Implantable Port Features | Catheter Features | Studied Devices | ||||||
---|---|---|---|---|---|---|---|---|---|
Prim. vol. (mL) | Material | Diameter (mm) | Material | French Size | Catheter Length (cm) | Number | % | ||
Outer | Inner | ||||||||
3007 ISP | 0.35 | Titanium–Polyoxymethylene (POM) | 2.16 | 1.02 | Silicone | 6.5 | 60 | 4 | 5.7 |
4008 ECHO | 0.6 | 2.4 | 1.2 | 7.2 | 60 | 3 | 4.3 | ||
4008 ISP | 0.6 | 2.4 | 1.2 | 7.2 | 60 | 63 | 90 | ||
TOTAL | 70 |
Selected Vein | Number of Cases | % |
---|---|---|
Left cephalic | 14 | 20 |
Right cephalic | 36 | 51.4 |
Left subclavian | 2 | 2.9 |
Right subclavian | 12 | 17.1 |
Right jugular | 6 | 8.6 |
TOTAL | 70 |
Port Placement | Number of Cases | % |
---|---|---|
Left pectoral muscle | 16 | 22.9 |
Right Pectoral muscle | 54 | 77.1 |
TOTAL | 70 |
Catheter Status | Follow-Up Period (Days) | Catheter Days (Days upon Removal) | ||||||
---|---|---|---|---|---|---|---|---|
Mean (SD) | Min | Max | Mean (SD) | Min | Max | |||
Removal | ||||||||
Reason | n | % | ||||||
End of therapy | 23 | 32.9 | 1759.9 (115.7) | 1436 | 1890 | 659.5 (449.6) | 211 | 1865 |
Infection | 1 | 1.4 | NA | NA | 1214 | 1198 | ||
TOTAL | 24 | 34.3 | ||||||
No removal | ||||||||
n | % | |||||||
TOTAL | 46 | 65.7 | 973.1 (678) | 28 | 1908 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Mrad, A.; Marano, L.; Oviedo, R.J. A Monocentric Analysis of Implantable Ports in Cancer Treatment: Five-Year Efficacy and Safety Evaluation. Cancers 2024, 16, 2802. https://doi.org/10.3390/cancers16162802
Abou-Mrad A, Marano L, Oviedo RJ. A Monocentric Analysis of Implantable Ports in Cancer Treatment: Five-Year Efficacy and Safety Evaluation. Cancers. 2024; 16(16):2802. https://doi.org/10.3390/cancers16162802
Chicago/Turabian StyleAbou-Mrad, Adel, Luigi Marano, and Rodolfo J. Oviedo. 2024. "A Monocentric Analysis of Implantable Ports in Cancer Treatment: Five-Year Efficacy and Safety Evaluation" Cancers 16, no. 16: 2802. https://doi.org/10.3390/cancers16162802
APA StyleAbou-Mrad, A., Marano, L., & Oviedo, R. J. (2024). A Monocentric Analysis of Implantable Ports in Cancer Treatment: Five-Year Efficacy and Safety Evaluation. Cancers, 16(16), 2802. https://doi.org/10.3390/cancers16162802