Ibero-American Consensus for the Management of Peritoneal Sarcomatosis: Updated Review and Clinical Recommendations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Working Group
2.2. Bibliographic Search
2.3. Consensus Meeting
3. Scientific Evidence of CRS-HIPEC Procedures in Peritoneal Sarcomatosis
3.1. Uterine Peritoneal Sarcomatosis: Evidence for CRS-HIPEC and Systemic Treatment
3.2. Peritoneal Sarcomatosis of Retroperitoneal Origin: Evidence from CRS-HIPEC and Systemic Treatment
3.3. Peritoneal Sarcomatosis Of Origin In GIST Visceral/Peritoneal Sarcomas: Evidence In CRS-HIPEC And Systemic Treatment
3.4. Peritoneal Sarcomatosis Of Origin In Non-GIST Visceral/Peritoneal Sarcomas: Evidence in CRS-HIPEC and Systemic Treatment
3.4.1. Desmoplastic Small Round Cell Tumor (DSRCT)
3.4.2. Rhabdomyosarcoma (RMS)
3.4.3. Epithelial Inflammatory Myofibroblastic Sarcoma (EIMS)
Clinical recommendations and levels of evidence in the systemic treatment of advanced or metastatic soft tissue sarcomas (DSRCT, RMS, and EIMS) according to published Clinical Practice Guidelines [72,73,74,75,83,84,85,95,96,97] |
Desmoplastic small round cell tumor (DSRCT) |
|
Rhabdomyosarcoma (RMS) |
|
Epithelioid inflammatory myofibroblastic sarcoma (EIMS) |
|
3.4.4. Less Common STS-derived Peritoneal Sarcomatosis
4. Clinical Recommendations and Consensus for the Management of Peritoneal Sarcomatosis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gamboa, A.C.; Gronchi, A.; Cardona, K. Soft-tissue sarcoma in adults: An update on the current state of histiotype-specific management in an era of personalized medicine. CA Cancer J. Clin. 2020, 70, 200–229. [Google Scholar] [CrossRef] [PubMed]
- Klingler, F.; Ashmawy, H.; Häberle, L.; Esposito, I.; Schimmöller, L.; Knoefel, W.T.; Krieg, A. Treatment pathways and prognosis in advanced sarcoma with peritoneal sarcomatosis. Cancers 2023, 15, 1340. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H. Sarcomatosis and imatinib-resistant GISTosis: Diagnosis and therapeutic options. In Cytoreductive Surgery and Perioperative Chemotherapy for Peritoneal Surface Malignancy: Textbook and Video Atlas, 1st ed.; Sugarbaker, P.H., Ed.; Ciné-Med Publishing, Inc.: Woodbury, BC, Canada, 2013; Chapter 7; pp. 127–135. [Google Scholar]
- Rossi, C.R.; Casali, P.; Kusamura, S.; Baratti, D.; Deraco, M. The consensus statement on the locoregional treatment of abdominal sarcomatosis. J. Surg. Oncol. 2008, 98, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H. Peritonectomy procedures. Ann. Surg. 1995, 221, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H. Intraperitoneal chemotherapy and cytoreductive surgery for the prevention and treatment of peritoneal carcinomatosis and sarcomatosis. Semin. Surg. Oncol. 1998, 14, 254–261. [Google Scholar] [CrossRef]
- Dykewicz, C.A.; Centers for Disease Control and Prevention (U.S.); Infectious Diseases Society of America; American Society of Blood and Marrow Transplantation. Summary of the Guidelines for Preventing Opportunistic Infections among Hematopoietic Stem Cell Transplant Recipients. Clin. Infect. Dis. 2001, 33, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H. Review of a personal experience in the management of carcinomatosis and sarcomatosis. Jpn. J. Clin. Oncol. 2001, 31, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Berthet, B.; Sugarbaker, T.A.; Chang, D.; Sugarbaker, P.H. Quantitative methodologies for selection of patients with recurrent abdominopelvic sarcoma for treatment. Eur. J. Cancer 1999, 35, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Bonvalot, S.; Cavalcanti, A.; Le Péchoux, C.; Terrier, P.; Vanel, D.; Blay, J.Y.; Le Cesne, A.; Elias, D. Randomized trial of cytoreduction followed by intraperitoneal chemotherapy versus cytoreduction alone in patients with peritoneal sarcomatosis. Eur. J. Surg. Oncol. 2005, 31, 917–923. [Google Scholar] [CrossRef]
- Cascales, P.A.; González, A.; Gil, E.; González, R.; Martinez, J.; Alonso, J.L.; Nieto, A.; Barceló, F.; Gómez, A.J.; Ramirez, P.; et al. Cytoreductive Surgery With or Without HIPEC After Neoadjuvant Chemotherapy in Ovarian Cancer: A Phase 3 Clinical Trial. Ann. Surg. Oncol. 2022, 29, 2617–2625. [Google Scholar] [CrossRef]
- van Driel, W.J.; Koole, S.N.; Sikorska, K.; Schagen van Leeuwen, J.H.; Schreuder, H.W.R.; Hermans, R.H.M.; de Hingh, I.H.J.; van der Velden, J.; Arts, H.J.; Massuger, L.F.A.G.; et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N. Engl. J. Med. 2018, 378, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.C.; Chang, S.J.; Park, B.; Yoo, H.J.; Yoo, C.W.; Nam, B.H.; Park, S.Y.; HIPEC for Ovarian Cancer Collaborators. Survival After Hyperthermic Intraperitoneal Chemotherapy and Primary or Interval Cytoreductive Surgery in Ovarian Cancer: A Randomized Clinical Trial. JAMA Surg. 2022, 157, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.R.; Deraco, M.; De Simone, M.; Mocellin, S.; Pilati, P.; Foletto, M.; Cavaliere, F.; Kusamura, S.; Gronchi, A.; Lise, M. Hyperthermic intraperitoneal intraoperative chemotherapy after cytoreductive surgery for the treatment of abdominal sarcomatosis: Clinical outcome and prognostic factors in 60 consecutive patients. Cancer 2004, 100, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.J.; Cormier, J.N.; Feig, B.W.; Mansfield, P.F.; Benjamin, R.S.; Griffin, J.R.; Chase, J.L.; Pisters, P.W.; Pollock, R.E.; Hunt, K.K. Toxicity and outcomes associated with surgical cytoreduction and hyperthermic intraperitoneal chemotherapy (HIPEC) for patients with sarcomatosis. Ann. Surg. Oncol. 2007, 14, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
- Baratti, D.; Pennacchioli, E.; Kusamura, S.; Fiore, M.; Balestra, M.R.; Colombo, C.; Mingrone, E.; Gronchi, A.; Deraco, M. Peritoneal sarcomatosis: Is there a subset of patients who may benefit from cytoreductive surgery and hyperthermic intraperitoneal chemotherapy? Ann. Surg. Oncol. 2010, 17, 3220–3228. [Google Scholar] [CrossRef] [PubMed]
- Hayes-Jordan, A.; Green, H.; Lin, H.; Owusu-Agyemang, P.; Mejia, R.; Okhuysen-Cawley, R.; Cortes, J.; Fitzgerald, N.; McAleer, M.F.; Herzog, C.; et al. Cytosurgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for children, adolescents, and young adults: The first 50 cases. Ann. Surg. Oncol. 2015, 22, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Sardi, A.; Sipok, A.; Baratti, D.; Deraco, M.; Sugarbaker, P.; Salti, G.; Yonemura, Y.; Sammartino, P.; Glehen, O.; Bakrin, N.; et al. Multi-institutional study of peritoneal sarcomatosis from uterine sarcoma treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Eur. J. Surg. Oncol. 2017, 43, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Spiliotis, J.; Kopanakis, N.; Prodromidou, A.; Raptis, A.; Farmakis, D.; Efstathiou, E. Peritoneal sarcomatosis: Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Surg. Innov. 2021, 28, 394–395. [Google Scholar] [CrossRef] [PubMed]
- Almasri, M.S.; Hakeam, H.A.; Alnajashi, N.S.; Alzamil, L.A.; Azzam, A.Z.; Amin, T.M. Cytoreductive Surgery with Bidirectional Intraoperative Chemotherapy (BDIC) Using Intravenous Ifosfamide Plus Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Patients with Peritoneal Sarcomatosis: A Retrospective Cohort Study. Ann. Surg. Oncol. 2024, 31, 2368–2377. [Google Scholar] [CrossRef]
- Muñoz-Casares, F.C.; Padillo Ruiz, F.J.; González de Pedro, C.; Gómez Barbadillo, J.; Martín Broto, J.; Almoguera González, F.; Díaz Gómez, D.; Fernández-Hernández, J.A.; González López, J.; Asencio Pascual, J.M. Radical cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the treatment of peritoneal sarcomatosis: Results from a reference center and considerations based on current evidence. Cir. Esp. (Engl. Ed) 2024, in press. [Google Scholar] [CrossRef]
- Munene, G.; Mack, L.A.; Temple, W.J. Systematic review on the efficacy of multimodal treatment of sarcomatosis with cytoreduction and intraperitoneal chemotherapy. Ann. Surg. Oncol. 2011, 18, 207–213. [Google Scholar] [CrossRef]
- Wong, L.C.K.; Li, Z.; Fan, Q.; Tan, J.W.; Tan, Q.X.; Wong, J.S.M.; Ong, C.J.; Chia, C.S. Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) in peritoneal sarcomatosis-A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2022, 48, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Desar, I.M.E.; Ottevanger, P.B.; Benson, C.; van der Graaf, W.T.A. Systemic treatment in adult uterine sarcomas. Crit. Rev. Oncol. Hematol. 2018, 122, 10–20. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. Female Genital Tumours: WHO Classification of Tumours, 5th ed.; IARC WHO Classification of Tumors, Volume 4; WHO: Lyon, France, 2020; ISBN 13 978-92-832-4504-9. [Google Scholar]
- Pérez-Fidalgo, J.A.; Ortega, E.; Ponce, J.; Redondo, A.; Sevilla, I.; Valverde, C.; Isern Verdum, J.; de Alava, E.; Galera-López, M.; Marquina, G.; et al. Uterine Sarcomas: Clinical practice guidelines for diagnosis, treatment, and follow-up, by Spanish group for research on sarcomas (GEIS). Ther. Adv. Med. Oncol. 2023, 15, 17588359231157645. [Google Scholar] [CrossRef]
- D’Angelo, E.; Prat, J. Uterine sarcomas: A review. Gynecol. Oncol. 2010, 116, 131–139. [Google Scholar] [CrossRef]
- Cui, R.R.; Wright, J.D.; Hou, J.Y. Uterine leiomyosarcoma: A review of recent advances in molecular biology, clinical management and outcome. BJOG 2017, 124, 1028–1037. [Google Scholar] [CrossRef]
- Du, J.; Hu, D.; Xing, Y.; He, R.; Cheng, Y.; Li, H.; Liu, C.; Liang, X.; Yang, Y. Correlation between malignant peritoneal cytology and survival in patients with uterine leiomyosarcoma and endometrial stromal sarcoma. Int. J. Gynecol. Cancer 2024, 34, 58–65. [Google Scholar] [CrossRef]
- Matsuo, K.; Matsuzaki, S.; Nusbaum, D.J.; Ki, S.; Chang, E.J.; Klar, M.; Roman, L.D. Significance of malignant peritoneal cytology on survival of women with uterine sarcoma. Ann. Surg. Oncol. 2021, 28, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Nobre, S.P.; Hensley, M.L.; So, M.; Zhou, Q.C.; Iasonos, A.; Leitao, M.M., Jr.; Ducie, J.; Chiang, S.; Mueller, J.J.; Abu-Rustum, N.R.; et al. The impact of tumor fragmentation in patients with stage I uterine leiomyosarcoma on patterns of recurrence and oncologic outcome. Gynecol. Oncol. 2021, 160, 99–105. [Google Scholar] [CrossRef]
- Seagle, B.L.; Shilpi, A.; Buchanan, S.; Goodman, C.; Shahabi, S. Low-grade and high-grade endometrial stromal sarcoma: A National Cancer Database study. Gynecol. Oncol. 2017, 146, 254–262. [Google Scholar] [CrossRef]
- Chiang, S.; Ali, R.; Melnyk, N.; McAlpine, J.N.; Huntsman, D.G.; Gilks, C.B.; Lee, C.H.; Oliva, E. Frequency of known gene rearrangements in endometrial stromal tumors. Am. J. Surg. Pathol. 2011, 35, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Tse, K.Y.; Crawford, R.; Ngan, H.Y. Staging of uterine sarcomas. Best. Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 733–734. [Google Scholar] [CrossRef]
- Kusamura, S.; Raspagliesi, F.; Baratti, D.; Gronchi, A.; Casali, P.; Deraco, M. Uterine sarcoma treated by cytoreductive surgery and intraperitoneal hyperthermic perfusion: A feasiblity study. J. Chemother. 2004, 16, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Montes, T.P.; El-Sharkawy, F.; Lynam, S.; Harper, A.; Sittig, M.; MacDonald, R.; Gushchin, V.; Sardi, A. Efficacy of hyperthermic intraperitoneal chemotherapy and cytoreductive surgery in the treatment of recurrent uterine sarcoma. Int. J. Gynecol. Cancer 2018, 28, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Düzgün, Ö.; Kalin, M. Is There a Role for Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy in Peritoneal Carcinomatosis Due to Uterine Cancer? J. Pers. Med. 2022, 12, 1790. [Google Scholar] [CrossRef] [PubMed]
- Asencio Pascual, J.M.; Fernandez Hernandez, J.A.; Blanco Fernandez, G.; Muñoz Casares, C.; Álvarez Álvarez, R.; Fox Anzorena, B.; Lozano Borbalas, A.; Rodriguez Blanco, M.; Cantin Blázquez, S.; Artigas Raventós, V. Update in pelvic and retroperitoneal sarcoma management: The role of compartment surgery. Cir. Esp. (Engl. Ed.) 2019, 97, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, M.K.; Cardona, K. Retroperitoneal Sarcomas: Histology Is Everything. Surg. Clin. N. Am. 2022, 102, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Dingley, B.; Fiore, M.; Gronchi, A. Personalizing surgical margins in retroperitoneal sarcomas: An update. Expert. Rev. Anticancer Ther. 2019, 19, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, A.; Strauss, D.C.; Miceli, R.; Bonvalot, S.; Swallow, C.J.; Hohenberger, P.; Van Coevorden, F.; Rutkowski, P.; Callegaro, D.; Hayes, A.J.; et al. Variability in Patterns of Recurrence after Resection of Primary Retroperitoneal Sarcoma (RPS): A Report on 1007 Patients from the Multi-institutional Collaborative RPS Working Group. Ann. Surg. 2016, 263, 1002–1009. [Google Scholar] [CrossRef]
- Trans-Atlantic Retroperitoneal Sarcoma Working Group (TARPSWG). Management of metastatic retroperitoneal sarcoma: A consensus approach from the Trans-Atlantic Retroperitoneal Sarcoma Working Group (TARPSWG). Ann. Oncol. 2018, 29, 857–871. [Google Scholar] [CrossRef]
- Randle, R.W.; Swett, K.R.; Shen, P.; Stewart, J.H.; Levine, E.A.; Votanopoulos, K.I. Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in peritoneal sarcomatosis. Am. Surg. 2013, 79, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Sommariva, A.; Pasquali, S.; Del Fiore, P.; Montesco, M.C.; Pilati, P.L.; Rastrelli, M.; Niba, J.; Nitti, D.; Rossi, C.R. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in patients with peritoneal sarcomatosis: Long-term outcome from a single institution experience. Anticancer Res. 2013, 33, 3989–3994. [Google Scholar] [PubMed]
- Abu-Zaid, A.; Azzam, A.; Abuzaid, M.; Elhassan, T.; Albadawi, N.; Alkhatib, L.; AlOmar, O.; Alsuhaibani, A.; Amin, T.; Al-Badawi, I.A. Cytoreductive Surgery plus Hyperthermic Intraperitoneal Chemotherapy for Management of Peritoneal Sarcomatosis: A Preliminary Single-Center Experience from Saudi Arabia. Gastroenterol. Res. Pract. 2016, 2016, 6567473. [Google Scholar] [CrossRef] [PubMed]
- Karamveri, C.; Pallas, N.; Kyziridis, D.; Hristakis, C.; Kyriakopoulos, V.; Kalakonas, A.; Vaikos, D.; Tentes, A.K. Cytoreductive Surgery in Combination with HIPEC in the Treatment of Peritoneal Sarcomatosis. Indian J. Surg. Oncol. 2019, 10, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Álvarez, R.; Manzano, A.; Agra Pujol, C.; Artigas Raventós, V.; Correa, R.; Cruz Jurado, J.; Fernandez, J.A.; Garcia Del Muro, X.; Gonzalez, J.A.; Hindi, N. Updated Review and Clinical Recommendations for the Diagnosis and Treatment of Patients with Retroperitoneal Sarcoma by the Spanish Sarcoma Research Group (GEIS). Cancers 2023, 15, 3194. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, A.; Miah, A.B.; Dei Tos, A.P.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagin, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; et al. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 1348–1365. [Google Scholar] [CrossRef]
- Tseng, W.W.; Swallow, C.J.; Strauss, D.C.; Bonvalot, S.; Rutkowski, P.; Ford, S.J.; Gonzalez, R.J.; Gladdy, R.A.; Gyorki, D.E.; Fairweather, M.; et al. Management of Locally Recurrent Retroperitoneal Sarcoma in the Adult: An Updated Consensus Approach from the Transatlantic Australasian Retroperitoneal Sarcoma Working Group. Ann. Surg. Oncol. 2022, 29, 7335–7348. [Google Scholar] [CrossRef]
- Medina Fernández, F.J.; Muñoz-Casares, F.C.; Arjona-Sánchez, A.; Casado-Adam, A.; Rufián Peña, S. Peritoneal gistosis: Role of cytoreductive surgery and perioperative intraperitoneal chemotherapy. Cir. Esp. 2014, 92, 289–290. [Google Scholar] [CrossRef]
- Søreide, K.; Sandvik, O.M.; Søreide, J.A.; Giljaca, V.; Jureckova, A.; Bulusu, V.R. Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol. 2016, 40, 39–46. [Google Scholar] [CrossRef]
- Serrano, C.; George, S. Gastrointestinal stromal tumor: Challenges and opportunities for a new decade. Clin. Cancer Res. 2020, 26, 5078–5085. [Google Scholar] [CrossRef]
- Serrano, C.; Martín-Broto, J.; Asencio-Pascual, J.M.; López-Guerrero, J.A.; Rubió-Casadevall, J.; Bagué, S.; García-Del-Muro, X.; Fernández-Hernández, J.Á.; Herrero, L.; López-Pousa, A.; et al. 2023 GEIS Guidelines for gastrointestinal stromal tumors. Ther. Adv. Med. Oncol. 2023, 15, 17588359231192388. [Google Scholar] [CrossRef] [PubMed]
- Keung, E.Z.; Fairweather, M.; Raut, C.P. The Role of Surgery in Metastatic Gastrointestinal Stromal Tumors. Curr. Treat. Options Oncol. 2016, 17, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Eftimie, M.A.; Potlog, G.; Alexandrescu, S.T. Surgical Options for Peritoneal Surface Metastases from Digestive Malignancies-A Comprehensive Review. Medicina 2023, 59, 255. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, M.; Balachandran, V.P.; Li, G.Z.; Bertagnolli, M.M.; Antonescu, C.; Tap, W.; Singer, S.; DeMatteo, R.P.; Raut, C.P. Cytoreductive Surgery for Metastatic Gastrointestinal Stromal Tumors Treated With Tyrosine Kinase Inhibitors: A 2-institutional Analysis. Ann. Surg. 2018, 268, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Hiramatsu, Y.; Kamiya, K.; Morita, Y.; Sakaguchi, T.; Konno, H.; Takeuchi, H. Surgery for metastatic gastrointestinal stromal tumor: To whom and how to? Transl. Gastroenterol. Hepatol. 2018, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Rubió-Casadevall, J.; Martinez-Trufero, J.; Garcia-Albeniz, X.; Calabuig, S.; Lopez-Pousa, A.; Del Muro, J.G.; Fra, J.; Redondo, A.; Lainez, N.; Poveda, A.; et al. Role of surgery in patients with recurrent, metastatic, or unresectable locally advanced gastrointestinal stromal tumors sensitive to imatinib: A retrospective analysis of the Spanish Group for Research on Sarcoma (GEIS). Ann. Surg. Oncol. 2015, 22, 2948–2957. [Google Scholar] [CrossRef] [PubMed]
- Yonkus, J.A.; Alva-Ruiz, R.; Grotz, T.E. Surgical Management of Metastatic Gastrointestinal Stromal Tumors. Curr. Treat. Options Oncol. 2021, 22, 37. [Google Scholar] [CrossRef] [PubMed]
- Du, C.Y.; Zhou, Y.; Song, C.; Wang, Y.P.; Jie, Z.G.; He, Y.L.; Liang, X.B.; Cao, H.; Yan, Z.S.; Shi, Y.Q. Is there a role of surgery in patients with recurrent or metastatic gastrointestinal stromal tumours responding to imatinib: A prospective randomised trial in China. Eur. J. Cancer 2014, 50, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Hohenberger, P.; Bonvalot, S.; van Coevorden, F.; Rutkowski, P.; Stoeckle, E.; Olungu, C.; Litiere, S.; Wardelmann, E.; Gronchi, A.; Casali, P. Quality of surgery and surgical reporting for patients with primary gastrointestinal stromal tumours participating in the EORTC STBSG 62024 adjuvant imatinib study. Eur. J. Cancer 2019, 120, 47–53. [Google Scholar] [CrossRef]
- Baumgartner, J.M.; Ahrendt, S.A.; Pingpank, J.F.; Holtzman, M.P.; Ramalingam, L.; Jones, H.L.; Zureikat, A.H.; Zeh, H.J., III; Bartlett, D.L.; Choudry, H.A. Aggressive locoregional management of recurrent peritoneal sarcomatosis. J. Surg. Oncol. 2013, 107, 329–334. [Google Scholar] [CrossRef]
- Bryan, M.L.; Fitzgerald, N.C.; Levine, E.A.; Shen, P.; Stewart, J.H.; Votanopoulos, K.I. Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in sarcomatosis from gastrointestinal stromal tumor. Am. Surg. 2014, 80, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Rutkowski, P.; Hohenberger, P.; Miceli, R.; Fumagalli, E.; Siedlecki, J.A.; Nguyen, B.P.; Kerst, M.; Fiore, M.; Nyckowski, P. Long-term follow-up of patients with GIST undergoing metastasectomy in the era of imatinib—Analysis of prognostic factors (EORTC-STBSG collaborative study). Eur. J. Surg. Oncol. 2014, 40, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xue, A.; Fang, Y.; Shu, P.; Ling, J.; Qin, J.; Hou, Y.; Shen, K.; Sun, Y.; Qin, X. Role of surgery in patients with focally progressive gastrointestinal stromal tumors resistant to imatinib. Sci. Rep. 2016, 6, 22840. [Google Scholar] [CrossRef] [PubMed]
- Casali, P.G.; Blay, J.Y.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G. Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Miguez González, J.; Calaf Forn, F.; Pelegrí Martínez, L.; Lozano Arranz, P.; Oliveira Caiafa, R.; Català Forteza, J.; Palacio Arteaga, L.M.; Losa Gaspà, F.; Ramos Bernadó, I.; Barrios Sánchez, P.; et al. Primary and secondary tumors of the peritoneum: Key imaging features and differential diagnosis with surgical and pathological correlation. Insights Imaging 2023, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Oei, T.N.; Jagannathan, J.P.; Ramaiya, N.; Ros, P.R. Peritoneal sarcomatosis versus peritoneal carcinomatosis: Imaging findings at MDCT. AJR Am. J. Roentgenol. 2010, 195, W229–W235. [Google Scholar] [CrossRef] [PubMed]
- Pickhardt, P.J.; Bhalla, S. Primary neoplasms of peritoneal and sub-peritoneal origin: CT findings. Radiographics 2005, 25, 983–995. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, C.K.; Garcia-Filion, P.; Hingorani, P. Incidence and outcomes of desmoplastic small round cell tumor: Results from the surveillance, epidemiology, and end results database. J. Cancer Epidemiol. 2014, 2014, 680126. [Google Scholar] [CrossRef] [PubMed]
- Honoré, C.; Mir, O.; Adam, J. Desmoplastic small roud cell tumors. In Rare Sarcomas; Chevreau, C., Italiano, A., Eds.; Springer Nature AG: Cham, Switzerland, 2020; pp. 69–82. [Google Scholar]
- Hovsepyan, S.; Giani, C.; Pasquali, S.; Di Giannatale, A.; Chiaravalli, S.; Colombo, C.; Orbach, D.; Bergamaschi, L.; Vennarini, S.; Gatz, S.A.; et al. Desmoplastic small round cell tumor: From state of the art to future clinical prospects. Expert Rev. Anticancer Ther. 2023, 23, 471–484. [Google Scholar] [CrossRef]
- Subbiah, V.; Lamhamedi-Cherradi, S.E.; Cuglievan, B.; Menegaz, B.A.; Camacho, P.; Huh, W.; Ramamoorthy, V.; Anderson, P.M.; Pollock, R.E.; Lev, D.C.; et al. Multimodality Treatment of Desmoplastic Small Round Cell Tumor: Chemotherapy and Complete Cytoreductive Surgery Improve Patient Survival. Clin. Cancer Res. 2018, 24, 4865–4873. [Google Scholar] [CrossRef]
- Reijers, S.J.M.; Siew, C.C.H.; Kok, N.F.M.; Honoré, C.; van Houdt, W.J. Intra-Abdominal Desmoplastic Small Round Cell Tumor (DSRCT) and the Role of Hyperthermic Intraperitoneal Chemotherapy (HIPEC): A Review. Curr. Oncol. 2023, 30, 3951–3963. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Trufero, J.; Cruz Jurado, J.; Hernández-León, C.N.; Correa, R.; Asencio, J.M.; Bernabeu, D.; Alvarez, R.; Hindi, N.; Mata, C.; Marquina, G.; et al. Uncommon and peculiar soft tissue sarcomas: Multidisciplinary review and practical recommendations. Spanish Group for Sarcoma research (GEIS-GROUP). Part II. Cancer Treat. Rev. 2021, 99, 102260. [Google Scholar] [CrossRef] [PubMed]
- Honoré, C.; Delhorme, J.B.; Nassif, E.; Faron, M.; Ferron, G.; Bompas, E.; Glehen, O.; Italiano, A.; Bertucci, F.; Orbach, D.; et al. French Network for Rare Peritoneal Malignancies (RENAPE), French Sarcoma Clinical Network (NETSARC). Can we cure patients with abdominal Desmoplastic Small Round Cell Tumor? Results of a retrospective multicentric study on 100 patients. Surg. Oncol. 2019, 29, 107–112. [Google Scholar] [CrossRef]
- Hayes-Jordan, A.A.; Coakley, B.A.; Green, H.L.; Xiao, L.; Fournier, K.F.; Herzog, C.E.; Ludwig, J.A.; McAleer, M.F.; Anderson, P.M.; Huh, W.W. Desmoplastic Small Round Cell Tumor Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy: Results of a Phase 2 Trial. Ann. Surg. Oncol. 2018, 25, 872–877. [Google Scholar] [CrossRef]
- Honoré, C.; Atallah, V.; Mir, O.; Orbach, D.; Ferron, G.; LePéchoux, C.; Delhorme, J.B.; Philippe-Chomette, P.; Sarnacki, S.; Msika, S.; et al. French Network for Rare Peritoneal Malignancies (RENAPE), French Pediatric Cancer Society (SFCE), French Reference Network in Sarcoma Pathology (RRePS) French Sarcoma Clinical Network (NETSARC). Abdominal desmoplastic small round cell tumor without extraperitoneal metastases: Is there a benefit for HIPEC after macroscopically complete cytoreductive surgery? PLoS ONE 2017, 12, e0171639. [Google Scholar] [CrossRef]
- Scalabre, A.; Philippe-Chomette, P.; Passot, G.; Orbach, D.; Elias, D.; Corradini, N.; Brugières, L.; Msika, S.; Leclair, M.D.; Joseph, S.; et al. Cytoreductive surgery and hyperthermic intraperitoneal perfusion with chemotherapy in children with peritoneal tumor spread: A French nationwide study over 14 years. Pediatr. Blood Cancer 2018, 65, e26934. [Google Scholar] [CrossRef]
- Gesche, J.; Beckert, S.; Neunhoeffer, F.; Kachanov, D.; Königsrainer, A.; Seitz, G.; Fuchs, J. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: A safe treatment option for intraperitoneal rhabdomyosarcoma in children below 5 years of age. Pediatr. Blood Cancer 2019, 66, e27517. [Google Scholar] [CrossRef] [PubMed]
- Stiles, Z.E.; Murphy, A.; Anghelescu, D.L.; Brown, C.L.; Davidoff, A.M.; Dickson, P.V.; Glazer, E.S.; Bishop, M.W.; Furman, W.L.; Pappo, A.S. Desmoplastic Small Round Cell Tumor: Long-Term Complications After Cytoreduction and Hyperthermic Intraperitoneal Chemotherapy. Ann. Surg. Oncol. 2020, 27, 171–178. [Google Scholar] [CrossRef]
- Zhu, Z.; Chang, X.; Wang, J.; Yang, S.; Qin, H.; Yang, W.; Cheng, H.; Meng, D.; Wang, H. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal malignant tumors in children: Initial experience in a single institution. Front. Surg. 2023, 9, 1078039. [Google Scholar] [CrossRef]
- Mocellin, S. (Ed.) Rhabdomyosarcoma. In Soft Tissue Tumors: A Practical and Comprehensive Guide to Sarcomas and Benign Neoplasms; Springer: Cham, Switzerland, 2021; pp. 705–710. [Google Scholar]
- Tian, Z.; Yao, W. Chemotherapeutic drugs for soft tissue sarcomas: A review. Front. Pharmacol. 2023, 14, 1199292. [Google Scholar] [CrossRef]
- Bisogno, G.; Minard-Colin, V.; Jenney, M.; Ferrari, A.; Chisholm, J.; Di Carlo, D.; Hjalgrim, L.L.; Orbach, D.; Merks, J.H.M.; Casanova, M. Maintenance Chemotherapy for Patients with Rhabdomyosarcoma. Cancers 2023, 15, 4012. [Google Scholar] [CrossRef]
- Mocellin, S. (Ed.) Inflammatory Myofibroblastic Tumor. In Soft Tissue Tumors: A Practical and Comprehensive Guide to Sarcomas and Benign Neoplasms; Springer: Cham, Switzerland, 2021; pp. 439–441. [Google Scholar]
- Liu, X.; Gong, C.; Zhang, J.; Feng, W.; Guo, Y.; Sang, Y.; Wang, C.; Chen, Y.; Wang, J.; Yu, L.; et al. Clinicopathological Analysis and Treatment of Adult Patients with Inflammatory Myofibroblastic Tumor: A 15-Year Single-Center Study. Cancer Res. Treat. 2023, 55, 1001–1010. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours: WHO Classification of Tumours, 5th ed.; IARC WHO Classification of Tumors, Volume 3; WHO: Lyon, France, 2020; ISBN 13 978-92-832-4502-5. [Google Scholar]
- Mariño-Enríquez, A.; Wang, W.L.; Roy, A.; Lopez-Terrada, D.; Lazar, A.J.; Fletcher, C.D.; Coffin, C.M.; Hornick, J.L. Epithelioid inflammatory myofibroblastic sarcoma: An aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am. J. Surg. Pathol. 2011, 35, 135–144. [Google Scholar] [CrossRef]
- Gros, L.; Dei Tos, A.P.; Jones, R.L.; Digklia, A. Inflammatory Myofibroblastic Tumour: State of the Art. Cancers 2022, 14, 3662. [Google Scholar] [CrossRef]
- Cheng, H.; Lin, Y.; Zhu, J.; Qin, H.; Yang, W.; Chang, X.; Feng, J.; Yang, S.; Fu, L.; Zhang, N.; et al. Clinical features, treatment strategies, and prognosis of epithelioid inflammatory myofibroblastic sarcoma in children: A multicenter experience. Transl. Pediatr. 2024, 13, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.A.; Park, C.M.; Lee, J.; Cha, S.; Park, S.W.; Hong, S.J.; Seol, H.Y.; Cha, I.H.; Mok, Y.J.; Kim, Y.S. Inflammatory myofibroblastic tumor of the stomach with peritoneal dissemination in a young adult: Imaging findings. Abdom. Imaging 2004, 29, 9–11. [Google Scholar] [CrossRef]
- Lorenzi, L.; Cigognetti, M.; Medicina, D.; Pellegrini, V.; Balzarini, P.; Cestari, R.; Facchetti, F. ALK-positive inflammatory myofibroblastic tumor of the abdomen with widespread microscopic multifocality. Int. J. Surg. Pathol. 2014, 22, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Garnier, H.; Murawski, M.; Jastrzebski, T.; Pawinska-Wasikowska, K.; Balwierz, W.; Sinacka, K.; Gorecki, W.; Izycka-Swieszewska, E.; Czauderna, P. Case Report: Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy Application in Intraperitoneally Disseminated Inflammatory Myofibroblastic Tumor and in the Youngest Patient in the World: New Indication and Modification of Technique. Front. Surg. 2021, 8, 746700. [Google Scholar] [CrossRef]
- Martínez-Trufero, J.; Cruz Jurado, J.; Gómez-Mateo, M.C.; Bernabeu, D.; Floría, L.J.; Lavernia, J.; Sebio, A.; García Del Muro, X.; Álvarez, R.; Correa, R.; et al. Uncommon and peculiar soft tissue sarcomas: Multidisciplinary review and practical recommendations for diagnosis and treatment. Spanish group for Sarcoma research (GEIS—GROUP). Part I. Cancer Treat. Rev. 2021, 99, 102259. [Google Scholar] [CrossRef] [PubMed]
- Schöffski, P.; Sufliarsky, J.; Gelderblom, H.; Blay, J.Y.; Strauss, S.J.; Stacchiotti, S.; Rutkowski, P.; Lindner, L.H.; Leahy, M.G.; Italiano, A.; et al. Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations (European Organisation for Research and Treatment of Cancer 90101 CREATE): A multicentre, single-drug, prospective, non-randomised phase 2 trial. Lancet Respir. Med. 2018, 6, 431–441. [Google Scholar] [CrossRef]
- Baldi, G.G.; Brahmi, M.; Lo Vullo, S.; Cojocaru, E.; Mir, O.; Casanova, M.; Vincenzi, B.; De Pas, T.M.; Grignani, G.; Pantaleo, M.A.; et al. The Activity of Chemotherapy in Inflammatory Myofibroblastic Tumors: A Multicenter, European Retrospective Case Series Analysis. Oncologist 2020, 25, e1777–e1784. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.F.; Wen, C.Y.; Liao, C.I.; Lin, J.C.; Tsai, C.C. Leiomyomatosis peritonealis disseminata mimicking peritoneal carcinomatosis 13 years after laparoscopic uterine myomectomy: A case report. Int. J. Surg. Case Rep. 2021, 81, 105745. [Google Scholar] [CrossRef] [PubMed]
- Khibri, H.; Bousseaden, A.; Alami, B.; Boujraf, S.; Rabhi, S. Diffuse peritoneal leiomyomatosis: An exceptional entity in a male patient. J. Cancer Res. Ther. 2020, 16 (Suppl. 1), S217–S222. [Google Scholar] [CrossRef] [PubMed]
- Lausen, I.; Jensen, O.J.; Andersen, E.; Lindahl, F. Disseminated peritoneal leiomyomatosis with malignant change, in a male. Virchows Arch. A Pathol. Anat. Histopathol. 1990, 417, 173–175. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Imamura, Y.; Yamamoto, T.; Fukuda, M. Leiomyomatosis peritonealis disseminata with malignant change in a man. Pathol. Int. 2003, 53, 179–185. [Google Scholar] [CrossRef]
- Halama, N.; Grauling-Halama, S.A.; Daboul, I. Familial clustering of Leiomyomatosis peritonealis disseminata: An unknown genetic syndrome? BMC Gastroenterol. 2005, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Qian, J. Leiomyomatosis Peritonealis Disseminata with Sarcomatous Transformation: A Rare Case Report and Literature Review. Case Rep. Obstet. Gynecol. 2019, 2019, 3684282, eCollection 2019. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, C.; Zhang, Y.; Li, F.; Zhang, H.; Ma, R. Combination therapy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for recurrent leiomyomatosis peritonealis disseminata with endometriosis: A case report. Heliyon. 2023, 9, e19794. [Google Scholar] [CrossRef] [PubMed]
- Presacco, S.; Agnes, A.L.; Magalini, S.; Carbone, A.; Martini, M.; Agnes, A. Bleeding “sarcomatosis” as a rare presentation of vascular graft-related angiosarcoma: Case report and review of the literature. BMC Surg. 2020, 20, 291. [Google Scholar] [CrossRef]
- Mocellin, S. (Ed.) Synovial Sarcoma. In Soft Tissue Tumors: A Practical and Comprehensive Guide to Sarcomas and Benign Neoplasms; Springer: Cham, Switzerland, 2021; pp. 765–769. [Google Scholar]
- Ohba, Y.; Suzuki, H.; Hiraga, H.; Ito, T.; Sawa, H.; Nagai, M.; Satoh, S.I.; Iwaki, H.; Nagashima, K. Melanotic peritoneal sarcomatosis originating from clear cell sarcoma. Pathol. Int. 1999, 49, 653–657. [Google Scholar] [CrossRef]
- Sabaté, J.M.; Fernández, A.; Torrubia, S.; Villanueva, A.; Monill, J.M. Clear cell sarcoma of the abdominal wall with peritoneal sarcomatosis: CT features. Eur. Radiol. 1999, 9, 1550–1552. [Google Scholar] [CrossRef] [PubMed]
Levels of Evidence | |
I | Evidence from at least one large, randomized, controlled trial of good methodological quality (low potential for bias), or meta-analyses of well-conducted randomized trials without heterogeneity |
II | Small randomized trials or large randomized trials with a suspicion of bias (lower methodological quality), or meta-analyses of such trials or of trials with demonstrated heterogeneity |
III | Prospective cohort studies |
IV | Retrospective cohort studies or case-control studies |
V | Studies without a control group, case reports, and experts’ opinions |
Grades of Recommendation | |
A | Strong evidence for efficacy with a substantial clinical benefit, strongly recommended |
B | Strong or moderate evidence for efficacy but with a limited clinical benefit, generally recommended |
C | Insufficient evidence for efficacy or benefit does not outweigh the risk or the disadvantages (adverse events, costs…), optional |
AUTHOR | Berthet [9] | Rossi [14] | Lim [15] | Baratti [16] | Hayes-Jordan [17] | Sardi [18] | Spiliotis [19] | Almasri [20] | Muñoz-Casares [21] |
---|---|---|---|---|---|---|---|---|---|
YEAR | 1999 | 2004 | 2007 | 2010 | 2015 | 2017 | 2021 | 2024 | 2024 |
PATIENTS | 43 | 60 | 28 | 37 | 34 | 36 | 21 | 29 | 23 |
TIME FRAME | 1989–1996 | 1997–2002 | 1998–2003 | 1996–2006 | NR | 2005–2014 | 2005–2019 | 2017–2021 | 2016–2022 |
STUDY DESIGN | Retrospective single-center | Prospective multicenter | Prospective Phase 1. Non-randomized | Retrospective single-center | Retrospective single-center | Retrospective multicenter | Retrospective multicenter | Retrospective single-center | Retrospective single-center |
PRIMARY TUMOR HISTOLOGY | 22 LMS, 9 LPS, 4 FS, 4 DSRCT, 1 MPNST | 14 GIST, 12 uterines (8 uLMS, 4 EES), 34 RPS (20 LPS, 6 UPS) | 17 LMS/GIST, 5 DSRCT, 2 LPS, 4 others | 13 LPS, 11 uLMS, 8 GIST pre-Imatinib, 5 others | 21 DSRCT, 7 RMS, 2 LPS, 4 other sarcomas, 12 other tumors | 9 uLMS, 3 EES, 3 AS | 7 LPS, 6 LMS, 4 RMS, 4 FS | 12 LPS, 7 LMS, 3 FS | 10 uterines (5 EES, 3 uLMS, 2 UUS), 6 GIST, 5 visceral non-GIST, 2 LPS |
CCS | CC0-1: 63% | CC0: 68% CC0-1: 100% | CC0-1: 95% | CC0: 76% CC0-1: 84% | CC0: 95% CC0-1: 100% | CC0-1: 94% | CC0: 52% CC0-1: 90% | CC0: 52% CC0-1: 69% | CC0: 87% CC0-1: 96% |
HIPEC | HIPEC with cisplatin (3 HIPEC, 13 HIPEC + EPIC), 14 EPIC, 13 No | doxorubicin + cisplatin | 19 HIPEC: cisplatin 9 HIPEC: cisplatin + mitoxantrone | doxorubicin + MMC or cisplatin | cisplatin | 22 doxorubicin + cisplatin, 10 melphalan, 4 others: cisplatin/MMC | 11 MMC, 7 doxorubicin, 3 cisplatin | ifosfamide iv + HIPEC (24 doxorubicin + cisplatin, 5 doxorubicin + MMC) | 16 doxorubicin + cisplatin, 4 doxorubicin, 3 paclitaxel |
Author and Year |
Design Study |
Patients (n) |
Primary Tumor Histology | HIPEC | PCI |
CCS (%) |
Morbidity G 3,4 (%) |
Mortality 30 d (%) |
DFS-5y (%) |
OS-5y (%) |
OS Median (months) |
---|---|---|---|---|---|---|---|---|---|---|---|
Rossi 2004 [14] | Prospective (multicenter) | 12 of 60 | 8 uLMS, 4 EES | doxo + cisplatin | mean 7.7 (2–21) | Overall CC0: 68 CC0-1: 100 | Overall 23 | 0 | ND | Overall 38 | ND Overall 34 |
Kusamura 2004 [35] | Retrospective (single-center) | 10 | 8 uLMS, 1 EES, 1 ADNS | 80% doxo + cisplatin, 20% doxo + MMC | ND | CC0: 90 CC2: 10 | 0 | 0 | 30 | 65 | ND |
Baratti 2010 [16] | Retrospective (single-center) | 11 of 37 | 11 uLMS | doxo + MMC or cisplatin | mean 14.7 (2–34) | Overall CC0: 76 CC0-1: 84 | Overall 21.6 | Overall 27 | ND median uLMS 15 months | uLMS 40 (best results) | uLSM 29.5 |
Sardi 2017 [18] | Retrospective (multicenter) | 36 | 29 uLMS, 3 EES, 3 ADNS, 1 other | 22 doxo + cisplatin, 10 melphalanand 4 others: cisplatin/MMC | median 16 (2–39) | CC0-1: 94 | 21 | 2.8 | LMS 39 (<20 at 2 years in others) | Overall 32 (LMS 41, Others < 29) | LMS 37 |
Díaz-Montes 2018 [36] | Retrospective (single-center) | 26 (7 CRS + HIPEC, 5 no CRS; 14 CRS) | 22 uLMS, 2EES, 2 ADNS | melphalan | ND | CRS: 79 CC0; Group CRS + HIPEC: 100 CC0 | 1 patient (20% Group CRS + HIPEC) | 0 | ND median group HIPEC 11.3 m; CRS 5.3 m | ND | CRS + HIPEC: 43.8; CRS: 35.9 |
Düzgün 2022 [37] | Retrospective (single-center) | 8 of 22 | 5 uLMS, 3 EES | doxo + cisplatin | mean 12.8 (3–15) | Overall CC0: 73 CC0-1: 86 | Overall 31.8 | 0 | Overall 36 | Overall 57 | Overall 45.3 |
Muñoz-Casares 2024 [21] | Retrospective (single-center) | 10 of 23 | 5 EES, 3 uLMS, 2 UUS | 70% doxo + cisplatin, cisplatin, paclitaxel | median 17 (3–36) | Overall CC0: 87, CC0-1: 96 | Overall 13 | 0 | Overall 34.5 (US 34) (LG-EES 67) | Overall 64.6 (US 56) (LG-EES 100) | ND |
Clinical recommendations and levels of evidence in systemic treatment for advanced uterine sarcomas according to published Clinical Practice Guidelines [26] |
High-grade uterine sarcoma |
|
Low-grade uterine sarcoma |
|
Author and Year |
Design Study |
Patients (n) | Primary Tumor Histology | HIPEC | PCI |
CCS (%) |
Morbidity G 3,4 (%) |
Mortality 30 d (%) | DFS-5y (%) |
OS-5y (%) |
OS Median (months) |
---|---|---|---|---|---|---|---|---|---|---|---|
Berthet 1999 [9] | Retrospective (single-center) | 16 of 43 (30 PS) | 22 LMS, 9 LPS, 4 FS, 4 DSRCT, 1 MPNST, 1 SFT | HIPEC with cisplatin (3 HIPEC, 13 HIPEC+ EPIC); 14 EPIC, 13 No PS | 9 with <1334 with >13 | CC0-1: 63 | 19 | 7 | ND | Overall 39 (CC0-1) | Overall 20 |
Rossi 2004 [14] | Prospective (multicenter) | 34 of 60 | 34 RPS (20 LPS, 6 UPS, 4 MPNST, 2 FS, 2 DSRCT); others | Doxo + cisplatin | mean 7.7 (2–21) | CC0: 68 CC0-1: 100 | 23 | 0 | ND | Overall 38 | Overall 36 |
Baratti 2010 [16] | Retrospective (single-center) | 13 of 37 | 13 LPS; others | doxo + MMC or cisplatin | mean 14.7 (2–34) | CC0: 76 CC0-1: 84 | 21.6 | 2.7 | 17.8 | Overall 24 | Overall 26 (LPS 34) |
Randle 2013 [43] | Retrospective (single-center) | 7 | 2 SFT, 2 SCS, 1 LMS, 1 FS, 1 DSRCT | MMC ± MTX ± cisplatin | ND | CC0-1: 60 | 50 | 0 | ND | 43 | 21.6 |
Sommariva 2013 [44] | Retrospective (single-center) | 8 of 15 | 3 LPS, 1 LMS, 1 UPS, 1 MPNST, 1 DSRCT, 1 SS; others | doxo + MMC or doxo + cisplatin | median 5.5 (2–15) | CC0: 93 | ND | ND | 17.4 | 29 | 27 |
Abu-Zaid 2016 [45] | Retrospective (single-center) | 11 | 11 RPS (7 LPS, 4 no LPS) | 6 doxo + cisplatin, 4 melphalan, 1 MMC | median 14 (3–29) | CC0: 64 CC0-1: 100 | 9 | 0 | ND | ND | 28.3 |
Karamveri 2019 [46] | Retrospective (single-center) | 16 of 20 | 5 LPSDD, 5 RMS, 4 LMS, 2 LPSWD; others | doxo + cisplatin | mean 6 (2–24) | CC0: 86 | 20.7 | 0 | ND | 43 | 55 |
Spiliotis 2021 [19] | Retrospective (multicenter) | 21 | 7 LPS, 6 LMS, 4 RMS, 4 FS | 11 MMC, 7 doxo, 3 cisplatin | median 10 (3–20) | CC0: 52 CC0-1: 90 | 14.3 | 4.7 | ND | ND | 20.5 |
Almasri 2024 [20] | Retrospective (single-center) | 29 (ND % RPS) | 12 LPS, 7 LMS, 3 FS, 2 UPS, 5 others | ifosfamide iv + HIPEC (24 doxo + cisplatin, 5 doxo + MMC) | median 6 (3–12) | CC0: 52 CC0-1: 69 | 31 | 0 | ND (35 at 2 years) | ND (73 at 2 years) | ND |
Clinical recommendations and levels of evidence in systemic treatment for advanced retroperitoneal sarcomas according to published Clinical Practice Guidelines [42,47,48,49] |
|
Author and Year |
Design Study |
Patients (n) |
Primary Tumor Histology | HIPEC | PCI |
CCS (%) |
Morbidity G 3,4 (%) |
Mortality 30 d (%) |
DFS-5y (%) |
OS-5y (%) |
OS Median (months) |
Rossi 2004 [14] | Prospective (multicenter) | 14 of 60 | 14 GIST pre-TKI, 46 others | doxo + CDDP | mean 7.7 (2–21) | Overall CC0: 68 CC0-1: 100 | Overall 23 | 0 | ND | Overall 38 | Overall 34 |
Lim 2007 [15] | Prospective Comparative Phase 1. Non-randomized | 17 of 28 | 17 LMS/GIST pre-TKI, 11 others | 19 HIPEC: CDDP 9 HIPEC: CDDP + MTX | ND | Overall CC0-1:95 (group CDDP) vs. 100 (CDDP + MTX) | 16 (CDDP) vs. 44 (CDDP + MTX) | 0 | ND | ND | Overall 16.9 CDDP vs. 5.5 CDDP + MMC group |
Baratti 2010 [16] | Retrospective (single-center) | 8 of 37 | 8 GIST pre-TKI, 29 others | doxo + MMC or CDDP | mean 14.7 (2–34) | Overall CC0: 76 CC0-1: 84 | Overall 21.6 | Overall 2.7 | Overall 17.8 | Overall 24.3 | Overall 26 (GIST 18) |
Baumgartner 2013 [62] | Retrospective (single-center) | 2 of 15 | 2 GIST, 13 others | NSD (Overall MMC 82%, CDDP 12%, doxo 6%) | ND | Overall CC0: 82 CC0-1: 100 | Overall 24 | 0 | ND | Overall >35 | Overall 22.6 (GIST 23.9) |
Bryan 2014 [63] | Retrospective (single-center) | 16 (50% pre-TKI) | 62.5% GIST small intestine, 31.3% GIST stomach | MMC ± MTX | ND | CC0-1: 72 | Overall 33.3 | 5.6 | ND | ND (at 3-years: 56) | 41 (94 with TKI, 12 no TKI) |
Muñoz-Casares 2024 [21] | Retrospective (single-center) | 6 of 23 | 6 GIST, 17 others | doxo + CDDP | median17 (3-36) | Overall CC0: 87 CC0-1: 96 | Overall 13 | 0 | Overall 34.5 (GIST 33) | Overall 64.6 (GIST 80) | ND |
Clinical recommendations and levels of evidence in systemic treatment for advanced or metastatic GIST according to published Clinical Practice Guidelines [53,66] |
Imatinib for metastatic disease |
|
Imatinib-resistant disease: |
|
Author
and Year |
Design
Study |
Patients
(n) |
Primary
Tumor Histology | HIPEC | PCI |
CCS
(%) |
Morbidity
G 3,4 (%) |
Mortality
30 d (%) |
DFS-5y
(%) |
OS-5y
(%) |
OS
Median (months) |
Hayes-Jordan 2015 [17] | Retrospective (single-center) | 28 of 50 | 21 DSRCT and 7 RMS; 22 others | CDDP | median 16 | CC0: 95 CC0-1: 100 | 28 | 0 | ND | DSRCT 30 | DSRCT 31.4 (better results than RMS) |
Honoré 2017 [78] | Retrospective (multicenter) | 9 of 48 (only these 9 with HIPEC; 2 with EPIC) | 9 DSRCT | CDDP + MMC or CDDP or oxaliplatin or CPT-11 + oxaliplatin | 9 (2–27) | CC0-1: 100 | HIPEC/EPIC Group 40 vs. Rest of groups 10 | 0 | HIPEC/EPIC Group 0 vs. Rest of groups 14 | HIPEC/EPIC Group 0 vs. Rest of groups 22 | ND |
Hayes-Jordan 2018 [77] | Prospective Phase 2. Non-randomized | 16 of 20 | 14 DSRCT and 2 RMS; 4 others | CDDP | median 15 | CC0-1: 100 | 40 | 0 | ND median DSRCT 14.8; others 13.9) | ND (83 at 3 years) | DSRCT 44.3 (better results than others 12.5) |
Scalabre 2018 [79] | Retrospective (multicenter) | 7 of 22 | 7 DSRCT; 15 others | ND | 16 (4–26) | CC0: 73 CC0-1: 91 | 64 | 0 | Mesoth > 60; rest of tumors 30 | Mesoth 100; rest of tumors 50 | Overall 57.5 (DSRCT 16.5) |
Gesche 2019 [80] | Cases report | 6 | 6 RMS (Embryonic RMS) | 4 doxo + CDDP; 2 CDDP | median 5.5 (4-21) | CC0: 100 | 0 | 0 | ND | ND | median follow-up 12 months (7–41): all alive |
Stiles 2020 [81] | Retrospective (single-center) | 9 | 9 DSRCT (6 with PS) | 80% CDDP; melphalan or MMC | 16 (5–20) | CC0: 50 CC0-1: 90 | 40 | 50 | ND (at 3-years: 13) | ND (at 3-years: 55) | 36 (CC0 45) (PCI < 16 best OS) |
Klingler 2023 [2] | Retrospective (single-center) | 4 DSRCT of 19 (only these 4 with HIPEC) | 4 DSRCT; 15 others | CDDP | ND | CC0: 47 | 31.6 | 0 | ND | 40.2 in radical surgery vs. 13 in non-optimal | 30 (DSRCT 17) |
Zhu 2023 [82] | Cases report | 8 of 19 | 7 RMS and 1 EIMS; 11 others | 11 doxo + ifosfamide 5 doxo + CDDP; 3 CDDP | median 5 (2-21) | CC0-1: 100 | 10 | 0 | ND median 12 months (1–31) | ND | 14 patients alive with median follow-up of 12.5 months (1.5–31) |
Recommendations and Levels of Evidence | Voters (n) | Answer Yes (n) | Answer No (n) | Consensus |
---|---|---|---|---|
1. GENERAL PATIENT MANAGEMENT | ||||
(1.1) It should be performed in a high-volume sarcoma center that has a committee made up of a multidisciplinary team and experienced peritoneal and retroperitoneal oncological surgeons (III, A) | 46 | 46 | 0 | 100% unanimous |
2. DIAGNOSTIC EVALUATION | ||||
(2.1) CT thorax–abdomen–pelvis c/c will help us evaluate disease, extension, and biopsy options. Given its contribution and greater availability, it should be the initial imaging test (IV, A) | 46 | 45 | 1 | 98% strong |
(2.2) MRI allows obtaining multiphasic images with contrast, enhanced in diffusion, which facilitates the detection of disease in difficult sites such as the mesentery, serosa of the small intestine and pelvis. It should be considered a complementary option to CT (IV, A) | 47 | 45 | 2 | 96% strong |
(2.3) PET/CT will be useful to confirm doubtful disease or rule out lymph node disease and distant metastases. It should be considered complementary to CT and MRI (IV, A) | 48 | 44 | 4 | 92% strong |
(2.4) It is recommended that the biopsy be performed using Core Needle Biopsy (IV, A) | 44 | 42 | 2 | 95% strong |
(2.5) We must know the histological subtype assessed by an expert pathologist and, prior to the initial therapeutic decision, by an experienced multidisciplinary team (IV, A) | 47 | 47 | 0 | 100% unanimous |
3. INDUCTION TREATMENT/INITIAL TREATMENT | ||||
(3.1) In patients with metastatic sarcoma, especially with sensitive and high-grade histologies, systemic treatment is the first choice (IV, B). Its response and non-progression will allow evaluation of the options for radical cytoreductive surgery (CRS) in peritoneal sarcomatosis (V, B) | 44 | 42 | 2 | 95% strong |
(3.2) In peritoneal gistosis, it is mandatory to know the genotype to adapt the induction treatment (II, A). Imatinib will be the standard first-line treatment, except GIST without KIT/PDGFRA mutations or with PDGFRA exon 18 D842V mutation (I, A) | 44 | 44 | 0 | 100% unanimous |
(3.3) In peritoneal gistosis with failure of first-line TKI (Imatinib), it should be treated with successive lines (sunitinib, regorafenib, ripretinib) until response is achieved, as a prior step to assessing possible CRS (I, A) | 45 | 39 | 6 | 87% weak |
(3.4) In high-grade uterine peritoneal sarcomatosis type LMS, doxorubicin plus trabectedin (I, A) or doxorubicin plus dacarbazine (III, B) are currently the preferred first-line induction treatments. In potentially chemosensitive non-LMS histologies, anthracyclines and ifosfamide are the treatment choice to try to achieve surgical rescue (II, A) | 43 | 41 | 2 | 95% strong |
(3.5) In low-grade uterine peritoneal sarcomatosis, induction treatment using hormonal therapy with aromatase inhibitors is recommended as the first line (III, A) | 43 | 40 | 3 | 93% strong |
(3.6) In peritoneal sarcomatosis originating from high-grade retroperitoneal sarcomas, anthracycline-based combinations represent the induction treatment when the objective is surgical rescue (II, A). In the second line, there are other options to achieve a response, condition prior to CRS: trabectedin and eribulin in LPS (I, A), pazopanib in non-LPS (II, A), combinations of gemcitabine with dacarbazine in LMS (II, B) | 42 | 38 | 4 | 90% strong |
(3.7) In peritoneal sarcomatosis originating from low-grade retroperitoneal sarcomas, such as well-differentiated LPS, we do not have an effective induction treatment, so we should consider CRS with the aim of achieving complete cytoreduction (IV, B) | 44 | 44 | 0 | 100% unanimous |
(3.8) In peritoneal sarcomatosis due to desmoplastic small round cell tumor, induction chemotherapy based on combinations of alkylating agents, similar to Ewing sarcomas, followed by aggressive cytoreductive surgery, represents the standard treatment (IV, B) | 44 | 43 | 1 | 98% strong |
(3.9) In peritoneal sarcomatosis due to epithelioid inflammatory myofibroblastic sarcoma with ALK mutations, targeted therapy with ALK inhibitors (crizotinib) will be the standard first-line treatment (II, A) and its possible combination with complete cytoreductive surgery, after confirming response, would represent the choice strategy (IV, A) | 44 | 44 | 0 | 100% unanimous |
(3.10) In peritoneal sarcomatosis due to rhabdomyosarcoma, the initial chemotherapy regimens of choice for its most common variants, embryonal and alveolar, include ifosfamide, vincristine, actinomycin D, doxorubicin, cyclophosphamide, and vinorelbine (IV, A). Subsequent CRS with complete cytoreduction is the best option (IV, B) | 42 | 41 | 1 | 98% strong |
4. RADICAL CYTOREDUCTIVE SURGERY (CRS) | ||||
(4.1) CRS with peritonectomy procedures, following the Sugarbaker principles, represents the best surgical approach to try to achieve complete macroscopic cytoreduction in peritoneal sarcomatosis (II, B) | 42 | 40 | 2 | 95% strong |
(4.2) Incomplete cytoreduction confers no survival benefit and may lead to significant morbidity (IV, B) | 46 | 39 | 7 | 85% Weak |
(4.3) In peritoneal GISTosis, CRS can be considered with the aim of achieving complete cytoreduction in selected patients, after 6–12 months of induction treatment, with response to imatinib (IV, B) or even to other lines of TKI (IV, C) | 44 | 42 | 2 | 95% Strong |
(4.4) In peritoneal GISTosis, CRS can be considered with the objective of achieving complete cytoreduction, in selected patients with partial clinical response and oligoprogression (limited unifocal progression) to TKI treatment (IV, C) | 43 | 39 | 4 | 91% Strong |
(4.5) In peritoneal GISTosis with progression to different TKI lines, radical cytoreductive surgery should be avoided (IV, C) | 43 | 35 | 8 | 81% Weak |
(4.6) In non-GIST peritoneal sarcomatosis, with response to induction treatment, they will be candidates for CRS if there are complete cytoreduction options (IV, B) | 43 | 42 | 1 | 98% Strong |
(4.7) Patients with high-grade peritoneal sarcomatosis and very high PCI with involvement of all abdominal compartments, despite response to induction treatment, should be evaluated in a Committee with a multidisciplinary team in reference to possible CRS versus other therapeutic options (V, C) | 44 | 37 | 7 | 84% Weak |
(4.8) In a patient with peritoneal sarcomatosis and distant metastasis (liver or lung) who has responded to previous systemic treatment, we should not rule out CRS if there are options for complete cytoreduction of both (V, C) | 45 | 38 | 7 | 84% Weak |
5. HYPERTHERMIC INTRAOPERATIVE CHEMOTHERAPY (HIPEC) | ||||
(5.1) HIPEC is a complement used in CRS after CC0, with little evidence in peritoneal sarcomatosis, with doxorubicin+cisplatin being the most frequently used scheme (V, C) | 40 | 39 | 1 | 98% Strong |
(5.2) In peritoneal GISTosis, HIPEC lacks a rational basis as GIST is not sensitive to conventional chemotherapy, so it should not be used, except in high-volume referral centers with experience in these procedures and always under clinical investigation (V, C) | 44 | 42 | 2 | 95% Strong |
(5.3) In non-GIST peritoneal sarcomatosis, the evidence of the role of HIPEC after CRS is unknown, so it is recommended that its administration is carried out exclusively in those patients with a response to induction chemotherapy in whom complete cytoreduction is achieved, in referring Centers and under clinical investigation (V, C) | 43 | 38 | 5 | 88% Weak |
6. POSTOPERATIVE ADJUVANT TREATMENT | ||||
(6.1) The Committee formed by the multidisciplinary team will assess the different histological subtypes in each particular situation and possible adjuvant or directed therapeutic options (V, C) | 44 | 44 | 0 | 100% unanimous |
(6.2) In patients with peritoneal GISTosis, with response to induction treatment with Imatinib and subsequent CRS with complete cytoreduction, treatment with Imatinib will be maintained until disease progression or unacceptable toxicity (I, A) | 43 | 41 | 2 | 95% strong |
7. FOLLOW-UP | ||||
(7.1) Surveillance with imaging every 3–6 months is justified after complete cytoreductive surgery for peritoneal sarcomatosis, as many patients will develop recurrent metastases and some will be candidates for additional local or systemic treatment, which must be decided within the Committee formed by the multidisciplinary team (IV, A) | 43 | 41 | 2 | 95% strong |
(7.2) CT thorax–abdomen–pelvis c/c, given its contribution as an imaging diagnosis and its usual greater availability, is the standard test for the follow-up of patients treated for peritoneal sarcomatosis (IV, A) | 44 | 44 | 0 | 100% unanimous |
(7.3) In the event of abdominal recurrence after previous CRS with complete cytoreduction, a new CRS will be recommended as long as it presents a response to systemic treatment and/or has the possibility of new complete cytoreduction (V, C) | 44 | 39 | 5 | 89% weak |
8. FINAL RECOMMENDATION | ||||
(8.1) In patients with advanced metastatic sarcoma such as peritoneal sarcomatosis, inclusion in clinical trials is recommended (V, A) | 46 | 44 | 2 | 96% strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Casares, F.C.; Martín-Broto, J.; Cascales-Campos, P.; Torres-Melero, J.; López-Rojo, I.; Gómez-Barbadillo, J.; González-Bayón, L.; Sebio, A.; Serrano, C.; Carvalhal, S.; et al. Ibero-American Consensus for the Management of Peritoneal Sarcomatosis: Updated Review and Clinical Recommendations. Cancers 2024, 16, 2646. https://doi.org/10.3390/cancers16152646
Muñoz-Casares FC, Martín-Broto J, Cascales-Campos P, Torres-Melero J, López-Rojo I, Gómez-Barbadillo J, González-Bayón L, Sebio A, Serrano C, Carvalhal S, et al. Ibero-American Consensus for the Management of Peritoneal Sarcomatosis: Updated Review and Clinical Recommendations. Cancers. 2024; 16(15):2646. https://doi.org/10.3390/cancers16152646
Chicago/Turabian StyleMuñoz-Casares, Francisco Cristóbal, Javier Martín-Broto, Pedro Cascales-Campos, Juan Torres-Melero, Irene López-Rojo, José Gómez-Barbadillo, Luis González-Bayón, Ana Sebio, César Serrano, Sara Carvalhal, and et al. 2024. "Ibero-American Consensus for the Management of Peritoneal Sarcomatosis: Updated Review and Clinical Recommendations" Cancers 16, no. 15: 2646. https://doi.org/10.3390/cancers16152646