Breast Cancer Screening Using Inverse Modeling of Surface Temperatures and Steady-State Thermal Imaging
Abstract
:Simple Summary
Abstract
1. Introduction
Thermal Imaging Background
2. Materials and Methods
- Women 21 years or older;
- Able to provide informed consent;
- Breast lesions identified as BIRADS 4 or BIRADS 5, or detected clinically on physical exam;
- Malignancy confirmed by biopsy of the lesion.
- Patient-specific digital breast models of both breasts generated using MRI images through image processing and 3D reconstruction techniques with ImageJ 1.51n software as described in Gonzalez-Hernandez et al. [53];
- Simulated breast surface temperatures of each breast generated using the patient-specific breast model with Ansys Fluent 2019 R2 thermal modeling software for thermal modeling of breast cancer;
- Tumor size and location predicted through inverse modeling using the Levenberg–Marquard algorithm (LMA) for inverse modeling [54].
- Infrared imaging data integrated with the above software and algorithm to accurately predict the presence or absence of breast cancer.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cancer Facts & Figures 2022. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (accessed on 20 December 2023).
- Freer, P.E. Mammographic Breast Density: Impact on Breast Cancer Risk and Implications for Screening. Radiographics 2015, 35, 302–315. [Google Scholar] [CrossRef]
- Lian, J.; Li, K. A Review of Breast Density Implications and Breast Cancer Screening. Clin. Breast Cancer 2020, 20, 283–290. [Google Scholar] [CrossRef]
- Massat, M.B. Breast Imaging Update: Guidelines, Recall Rates and Personalized Care. Appl. Radiol. 2017, 46, 28–31. [Google Scholar] [CrossRef]
- Hussein, H.; Abbas, E.; Keshavarzi, S.; Fazelzad, R.; Bukhanov, K.; Kulkarni, S.; Au, F.; Ghai, S.; Alabousi, A.; Freitas, V. Supplemental Breast Cancer Screening in Women with Dense Breasts and Negative Mammography: A Systematic Review and Meta-Analysis. Radiology 2023, 306, e221785. [Google Scholar] [CrossRef]
- Choi, Y.; Woo, O.-H.; Shin, H.-S.; Cho, K.R.; Seo, B.K.; Choi, G.-Y. Quantitative Analysis of Radiation Dosage and Image Quality between Digital Breast Tomosynthesis (DBT) with Two-Dimensional Synthetic Mammography and Full-Field Digital Mammography (FFDM). Clin. Imaging 2019, 55, 12–17. [Google Scholar] [CrossRef]
- Gennaro, G.; Bernardi, D.; Houssami, N. Radiation Dose with Digital Breast Tomosynthesis Compared to Digital Mammography: Per-View Analysis. Eur. Radiol. 2018, 28, 573–581. [Google Scholar] [CrossRef]
- Christiansen, C.L.; Wang, F.; Barton, M.B.; Kreuter, W.; Elmore, J.G.; Gelfand, A.E.; Fletcher, S.W. Predicting the Cumulative Risk of False-Positive Mammograms. JNCI J. Natl. Cancer Inst. 2000, 92, 1657–1666. [Google Scholar] [CrossRef]
- Ramadan, S.Z. Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. J. Healthc. Eng. 2020, 2020, e9162464. [Google Scholar] [CrossRef]
- Zebari, D.A.; Ibrahim, D.A.; Zeebaree, D.Q.; Haron, H.; Salih, M.S.; Damaševičius, R.; Mohammed, M.A. Systematic Review of Computing Approaches for Breast Cancer Detection Based Computer Aided Diagnosis Using Mammogram Images. Appl. Artif. Intell. 2021, 35, 2157–2203. [Google Scholar] [CrossRef]
- Bai, J.; Posner, R.; Wang, T.; Yang, C.; Nabavi, S. Applying Deep Learning in Digital Breast Tomosynthesis for Automatic Breast Cancer Detection: A Review. Med. Image Anal. 2021, 71, 102049. [Google Scholar] [CrossRef]
- Jones, M.A.; Islam, W.; Faiz, R.; Chen, X.; Zheng, B. Applying Artificial Intelligence Technology to Assist with Breast Cancer Diagnosis and Prognosis Prediction. Front. Oncol. 2022, 12, 980793. [Google Scholar] [CrossRef]
- Nassif, A.B.; Talib, M.A.; Nasir, Q.; Afadar, Y.; Elgendy, O. Breast Cancer Detection Using Artificial Intelligence Techniques: A Systematic Literature Review. Artif. Intell. Med. 2022, 127, 102276. [Google Scholar] [CrossRef]
- Henriksen, E.L.; Carlsen, J.F.; Vejborg, I.M.; Nielsen, M.B.; Lauridsen, C.A. The Efficacy of Using Computer-Aided Detection (CAD) for Detection of Breast Cancer in Mammography Screening: A Systematic Review. Acta Radiol. 2019, 60, 13–18. [Google Scholar] [CrossRef]
- Giess, C.S.; Wang, A.; Ip, I.K.; Lacson, R.; Pourjabbar, S.; Khorasani, R. Patient, Radiologist, and Examination Characteristics Affecting Screening Mammography Recall Rates in a Large Academic Practice. J. Am. Coll. Radiol. 2019, 16, 411–418. [Google Scholar] [CrossRef]
- Veenhuizen, S.G.A.; de Lange, S.V.; Bakker, M.F.; Pijnappel, R.M.; Mann, R.M.; Monninkhof, E.M.; Emaus, M.J.; de Koekkoek-Doll, P.K.; Bisschops, R.H.C.; Lobbes, M.B.I.; et al. Supplemental Breast MRI for Women with Extremely Dense Breasts: Results of the Second Screening Round of the DENSE Trial. Radiology 2021, 299, 278–286. [Google Scholar] [CrossRef]
- Vourtsis, A.; Berg, W.A. Breast Density Implications and Supplemental Screening. Eur. Radiol. 2019, 29, 1762–1777. [Google Scholar] [CrossRef]
- Mullen, L.A.; Panigrahi, B.; Hollada, J.; Panigrahi, B.; Falomo, E.T.; Harvey, S.C. Strategies for Decreasing Screening Mammography Recall Rates While Maintaining Performance Metrics. Acad. Radiol. 2017, 24, 1556–1560. [Google Scholar] [CrossRef]
- Vollmer, M.; Möllmann, K.-P. Infrared Thermal Imaging: Fundamentals, Research and Applications, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; ISBN 978-3-527-41351-5. [Google Scholar]
- Strąkowska, M.; Strąkowski, R.; Strzelecki, M.; De Mey, G.; Więcek, B. Thermal Modelling and Screening Method for Skin Pathologies Using Active Thermography. Biocybern. Biomed. Eng. 2018, 38, 602–610. [Google Scholar] [CrossRef]
- Lawson, R. Implications of Surface Temperatures in the Diagnosis of Breast Cancer. Can. Med. Assoc. J. 1956, 75, 309. [Google Scholar]
- Lawson, R.N. A New Infrared Imaging Device. Can. Med. Assoc. J. 1958, 79, 402–403. [Google Scholar]
- Lawson, R.N.; Chughtai, M.S. Breast Cancer and Body Temperature. Can. Med. Assoc. J. 1963, 88, 68–70. [Google Scholar]
- Lawson, R.N.; Saunders, A.L.; Cowen, R.D. Breast Cancer and Heptaldehyde. Can. Med. Assoc. J. 1956, 75, 486–488. [Google Scholar]
- Kandlikar, S.G.; Perez-Raya, I.; Raghupathi, P.A.; Gonzalez-Hernandez, J.-L.; Dabydeen, D.; Medeiros, L.; Phatak, P. Infrared Imaging Technology for Breast Cancer Detection—Current Status, Protocols and New Directions. Int. J. Heat. Mass. Transf. 2017, 108, 2303–2320. [Google Scholar] [CrossRef]
- Singh, D.; Singh, A.K. Role of Image Thermography in Early Breast Cancer Detection—Past, Present and Future. Comput. Methods Programs Biomed. 2020, 183, 105074. [Google Scholar] [CrossRef]
- Collett, A.E.; Guilfoyle, C.; Gracely, E.J.; Frazier, T.G.; Barrio, A.V. Infrared Imaging Does Not Predict the Presence of Malignancy in Patients with Suspicious Radiologic Breast Abnormalities. Breast J. 2014, 20, 375–380. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, J.-L.; Recinella, A.N.; Kandlikar, S.G.; Dabydeen, D.; Medeiros, L.; Phatak, P. Technology, Application and Potential of Dynamic Breast Thermography for the Detection of Breast Cancer. Int. J. Heat. Mass. Transf. 2019, 131, 558–573. [Google Scholar] [CrossRef]
- Owens, A.; Kandlikar, S.G.; Phatak, P. Potential of Infrared Imaging for Breast Cancer Detection: A Critical Evaluation. J. Eng. Sci. Med. Diagn. Ther. 2021, 4, 041005. [Google Scholar] [CrossRef]
- Mashekova, A.; Zhao, Y.; Ng, E.Y.K.; Zarikas, V.; Fok, S.C.; Mukhmetov, O. Early Detection of the Breast Cancer Using Infrared Technology—A Comprehensive Review. Therm. Sci. Eng. Prog. 2022, 27, 101142. [Google Scholar] [CrossRef]
- Lozano, A.; Hassanipour, F. Infrared Imaging for Breast Cancer Detection: An Objective Review of Foundational Studies and Its Proper Role in Breast Cancer Screening. Infrared Phys. Technol. 2019, 97, 244–257. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Castañeda-Gill, J.M.; Vishwanatha, J.K. Antiangiogenic Mechanisms and Factors in Breast Cancer Treatment. J. Carcinog. 2016, 15, 1. [Google Scholar] [CrossRef]
- Watmough, D.J.; Oliver, R. Emissivity of Human Skin in the Waveband between 2µ and 6µ. Nature 1968, 219, 622–624. [Google Scholar] [CrossRef]
- Steketee, J. Spectral Emissivity of Skin and Pericardium. Phys. Med. Biol. 1973, 18, 686. [Google Scholar] [CrossRef]
- Charlton, M.; Stanley, S.A.; Whitman, Z.; Wenn, V.; Coats, T.J.; Sims, M.; Thompson, J.P. The Effect of Constitutive Pigmentation on the Measured Emissivity of Human Skin. PLoS ONE 2020, 15, e0241843. [Google Scholar] [CrossRef]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical Applications of Infrared Thermography: A Review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Gautherie, M. Thermopathology of Breast Cancer: Measurement and Analysis of in Vivo Temperature and Blood Flow. Ann. N. Y. Acad. Sci. 1980, 335, 383–415. [Google Scholar] [CrossRef]
- Gautherie, M. Temperature and Blood Flow Patterns in Breast Cancer during Natural Evolution and Following Radiotherapy. Prog. Clin. Biol. Res. 1982, 107, 21–64. [Google Scholar]
- Gautherie, M. Thermobiological Assessment of Benign and Malignant Breast Diseases. Am. J. Obstet. Gynecol. 1983, 147, 861–869. [Google Scholar] [CrossRef]
- Gullino, P.M. Natural History of Breast Cancer: Progression from Hyperplasia to Neoplasia as Predicted by Angiogenesis. Cancer 1977, 39, 2697–2703. [Google Scholar] [CrossRef]
- Gullino, P.M.; Yi, P.-N.; Grantham, F.H. Relationship Between Temperature and Blood Supply or Consumption of Oxygen and Glucose by Rat Mammary Carcinomas. JNCI J. Natl. Cancer Inst. 1978, 60, 835–847. [Google Scholar] [CrossRef]
- Gullino, P.M. Influence of Blood Supply on Thermal Properties and Metabolism of Mammary Carcinomas. Ann. N. Y. Acad. Sci. 1980, 335, 1–21. [Google Scholar] [CrossRef]
- Etehadtavakol, M.; Ng, E.Y.K. Survey of Numerical Bioheat Transfer Modelling for Accurate Skin Surface Measurements. Therm. Sci. Eng. Prog. 2020, 20, 100681. [Google Scholar] [CrossRef]
- Pennes, H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef]
- Shrivastava, D. Theory and Applications of Heat Transfer in Humans; John Wiley & Sons, Incorporated: Newark, UK, 2018; ISBN 978-1-119-12731-4. [Google Scholar]
- Lozano, A.; Hayes, J.C.; Compton, L.M.; Azarnoosh, J.; Hassanipour, F. Determining the Thermal Characteristics of Breast Cancer Based on High-Resolution Infrared Imaging, 3D Breast Scans, and Magnetic Resonance Imaging. Sci. Rep. 2020, 10, 10105. [Google Scholar] [CrossRef]
- Mukhmetov, O.; Igali, D.; Mashekova, A.; Zhao, Y.; Ng, E.Y.K.; Fok, S.C.; Teh, S.L. Thermal Modeling for Breast Tumor Detection Using Thermography. Int. J. Therm. Sci. 2021, 161, 106712. [Google Scholar] [CrossRef]
- Recinella, A.N.; Gonzalez-Hernandez, J.-L.; Kandlikar, S.G.; Dabydeen, D.; Medeiros, L.; Phatak, P. Clinical Infrared Imaging in the Prone Position for Breast Cancer Screening—Initial Screening and Digital Model Validation. J. Eng. Sci. Med. Diagn. Ther. 2020, 3, 011005. [Google Scholar] [CrossRef]
- Gutierrez, C.; Owens, A.; Medeiros, L.; Dabydeen, D.; Sritharan, N.; Phatak, P.; Kandlikar, S.G. Breast Cancer Detection Using Enhanced IRI-Numerical Engine and Inverse Heat Transfer Modeling: Model Description and Clinical Validation. Sci. Rep. 2024, 14, 3316. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, J.-L.; Kandlikar, S.G.; Dabydeen, D.; Medeiros, L.; Phatak, P. Generation and Thermal Simulation of a Digital Model of the Female Breast in Prone Position. J. Eng. Sci. Med. Diagn. Ther. 2018, 1, 041006. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, J.-L.; Recinella, A.N.; Kandlikar, S.G.; Dabydeen, D.; Medeiros, L.; Phatak, P. An Inverse Heat Transfer Approach for Patient-Specific Breast Cancer Detection and Tumor Localization Using Surface Thermal Images in the Prone Position. Infrared Phys. Technol. 2020, 105, 103202. [Google Scholar] [CrossRef]
- Gutierrez, C.; Kandlikar, S.G. Detectability of Breast Cancer through Inverse Heat Transfer Modeling Using Patient-Specific Surface Temperatures. J. Eng. Sci. Med. Diagn. Ther. 2024. submitted. [Google Scholar]
Age | Laterality | Location | Breast Tissue Density | Histology | Grade | Actual Size (cm) | Estimated Size (cm) | DCIS/ LCIS | Staging | ER | PR | HER2 | Depth of Tumor Based on MRI (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
68 | L | UOQ | SF | ADH | X | 0.5 | 1 | None | — | — | — | — | 2.91 |
60 | R | UOQ | HD | DCIS | 2 | 1.4 | 1.3 | DCIS | T1c N0 Mx | + | + | — | 1.18 |
71 | R | UOQ | PF | IDC | 1 | 0.9 | 1 | None | T1c N0 Mx | + | - | 1+ | 2.26 |
67 | L | UIQ | ED | IDC | 1 | 1.7 | 1.9 | None | T1c N0 Mx | + | + | 1+ | 2.4 |
67 | L | UOQ | SF | IDC | 1 | 1.1 | 1.2 | None | T1c N0 Mx | + | + | 2+ | 2.28 |
48 | R | UOQ | SF | IDC | 1 | 1.1 | 1 | DCIS | T1c N0 Mx | + | + | 1+ | 2.23 |
64 | R | UOQ | SF | IDC | 1 | 1.2 | 1 | None | T1c N0 Mx | + | + | 1+ | 4.95 |
65 | L | UOQ | HD | IDC | 1 | 1.6 | 1.4 | None | T1c N0 Mx | + | + | 1+ | — |
70 | R | UOQ | SF | IDC | 2 | 0.8 | 1 | DCIS | T1c N0 Mx | + | + | 1+ | 2.14 |
51 | L | UOQ | SF | IDC | 2 | 1.9 | 1.9 | LCIS | T2 N1a M0 | + | + | 1+ | 0.95 |
46 | R | LIQ | HD | IDC | 2 | 1.1 | 1.5 | DCIS | T1c N0 Mx | + | + | 1+ | 2.96 |
72 | R | UOQ | SF | IDC | 2 | 1.1 | 1 | DCIS | T1c N0 Mx | + | + | 2+ | 2.74 |
64 | L | UOQ | PF | IDC | 2 | 1.5 | 1 | DCIS | T1c N1a M0 | + | + | 2+ | 2.93 |
63 | L | UIQ | SF | IDC | 2 | 0.5 | 1 | DCIS | T1b N0 Mx | + | + | 0+ | 3.9 |
57 | L | UIQ | SF | IDC | 2 | 1.2 | 1 | None | T1c N0 Mx | + | + | 2+ | 2 |
52 | R | UOQ | SF | IDC | 3 | 1.2 | 1 | DCIS | T1a N0 Mx | — | — | 0+ | 5.45 |
68 | R | UOQ | SF | IDC | 3 | 2.7 | 2.7 | DCIS | T2 N1a Mx | + | + | 1+ | 2.72 |
68 | L | UOQ | HD | IDC | 3 | 1.3 | 1 | None | T2 N0 Mx | — | — | 0+ | 2.43 |
70 | R | LIQ | SF | IDC | 3 | 0.5 | 1 | DCIS | T1b N0 Mx | — | — | 0+ | 3.76 |
42 | R | UOQ | HD | IDC | 3 | 0.5 | 1 | DCIS | T1b N0 Mx | — | — | 0+ | 2.42 |
49 | R | LOQ | SF | IDC | 3 | 2.6 | 2.7 | DCIS | T2 N0 Mx | — | — | 0+ | 4.3 |
72 | L | UIQ | SF | IDC | 3 | 0.9 | 1 | DCIS | T1b N0 Mx | — | — | 0+ | 1.14 |
68 | L | UOQ | SF | ILC | 1 | 0.8 | 1 | DCIS | T1c N1a M0 | + | + | 1+ | 2.93 |
70 | L | UOQ | SF | ILC | 2 | 2.1 | 2.3 | LCIS | T2 N0 Mx | + | + | 2+ | 2.27 |
67 | L | UIQ | SF | LCIS | X | 0.5 | 1 | LCIS | — | — | — | — | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sritharan, N.; Gutierrez, C.; Perez-Raya, I.; Gonzalez-Hernandez, J.-L.; Owens, A.; Dabydeen, D.; Medeiros, L.; Kandlikar, S.; Phatak, P. Breast Cancer Screening Using Inverse Modeling of Surface Temperatures and Steady-State Thermal Imaging. Cancers 2024, 16, 2264. https://doi.org/10.3390/cancers16122264
Sritharan N, Gutierrez C, Perez-Raya I, Gonzalez-Hernandez J-L, Owens A, Dabydeen D, Medeiros L, Kandlikar S, Phatak P. Breast Cancer Screening Using Inverse Modeling of Surface Temperatures and Steady-State Thermal Imaging. Cancers. 2024; 16(12):2264. https://doi.org/10.3390/cancers16122264
Chicago/Turabian StyleSritharan, Nithya, Carlos Gutierrez, Isaac Perez-Raya, Jose-Luis Gonzalez-Hernandez, Alyssa Owens, Donnette Dabydeen, Lori Medeiros, Satish Kandlikar, and Pradyumna Phatak. 2024. "Breast Cancer Screening Using Inverse Modeling of Surface Temperatures and Steady-State Thermal Imaging" Cancers 16, no. 12: 2264. https://doi.org/10.3390/cancers16122264
APA StyleSritharan, N., Gutierrez, C., Perez-Raya, I., Gonzalez-Hernandez, J. -L., Owens, A., Dabydeen, D., Medeiros, L., Kandlikar, S., & Phatak, P. (2024). Breast Cancer Screening Using Inverse Modeling of Surface Temperatures and Steady-State Thermal Imaging. Cancers, 16(12), 2264. https://doi.org/10.3390/cancers16122264