Novel Targets and Advanced Therapies in Diffuse Large B Cell Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Diagnostics for Clinical Decision Making in DLBCL
3. CD19 as Target
3.1. Anti-CD19 Chimeric Antigen Receptor T Cells
3.2. Anti-CD19 Antibody Tafasitamab
Name | Type of mAb | Target | Schedule of Treatment | Patients’ Population | Line of Treatment | Efficacy Data | Ref. |
---|---|---|---|---|---|---|---|
Tafasitamab | Fc-modified | CD19 | Tafasitamab i.v. 12 mg/kg on day 1,8,15,22 for cycle 1–3 (28 days each) and on day 1 and 15 from cycle 4 until PD, in combination with lenalidomide 25 mg/day on days 1–21 of each 28-day cycle per 12 cycles | R/R DLBCL (including t-IL) ineligible or relapsed after ASCT ECOG 0–2 Excluded: DH/TH HGBCL and primary refractoy disease | 2nd–4th lines of therapy | ORR 57.5% CR 41.3% mDOR not reached mPFS 11.6 months mOS 33.5 months | [39,41] |
Loncastuximab-teserine | ADC | CD19 | Loncastuximab i.v. 150 μg/kg on day 1 of 21-day cycle, for two cycles, then 75 μg/kg thereafter, for up to 1 year or until disease relapse or progression, unacceptable toxicity, or death | R/R DLBCL, DH/TH HGBCL, PMBCL, ECOG 0–2 Excluded bulky disease and t-IL | 3rd line or more | ORR 48.3% CR 24.1% mDOR 10.3 months mPFS 4.9 months mOS 9.9 months | [47,48] |
Glofitamab | BsAb | CD20/CD3 (2:1) | Obinutuzumab i.v. 1000 mg on day 1 of cycle 1, Glofitamab i.v. 2.5 mg on day 8, and 10 mg on day 15 of cycle 1, followed by 30 mg on day 1 of cycles 2 through 12 (cycles lasted 21 days) | R/R DLBCL, t-FL, HGBCL, PMBCL. ECOG 0–1 | 3rd line or more | ORR 52% CR 39% mDOR 18.4 months mPFS 4.9 months mOS 11.5 months | [49] |
Epcoritamab | BsAb | CD20/CD3 | Epcoritamab was administered subcutaneously weekly in cycles 1–3, once every 2 weeks during cycles 4–9 (days 1 and 15), and once every 4 weeks from cycle 10. Cycles lasted 28 days. Step-up dosing for 0.16 mg on day 1, 0.8 mg on day 8, and subsequent full 48 mg doses once on day 15 and beyond until disease progression or unacceptable toxicity. | R/R DLBCL, FL G3B, HGBCL, PMBCL. ECOG 0–2 | 3rd line or more | ORR 63.1% CR 38.9% mDOR 12 months mPFS 4.4 months mOS not reached | [50] |
Polatuzimab-vedotin (PV) | ADC | CD79b | PV i.v. 1.8 mg/mq + BR every 21 days for 6 cycles | R/R DLBCL (excluded t-FL) ECOG 0–2 | 2nd line or more | ORR 41.5% CR 38.7% mDOR 9.5 months mPFS 6.6 months mOS 12.5 months | [51,52,53] |
PV i.v. 1.8 mg/mq + R-CHP every 21 days for 8 cycles (cycles 7 and 8 only PV + R) (double-blinded phase 3 trial, comparator arm R-CHOP) | DLBCL IPI 2–5 ECOG 0–2 | 1st line | ORR 85.5% CR 78% 2y PFS 76.7% 2y OS 88.7% | [54] |
3.3. Anti-CD19 Antibody–Drug Conjugate Loncastuximab-Teserine
4. Anti-CD20 Bispecific T Cell-Engaging Antibodies
5. Anti-CD79b Antibody–Drug Conjugate Polatuzumab
6. Anti-ROR1 Antibody–Drug Conjugate Zilovertamab–Vedotin
7. Anti-CD30 Antibody–Drug Conjugate Brentuximab–Vedotin
8. Checkpoint Inhibitors
9. BCL-2 Inhibitors
10. BTK Inhibitors
11. XPO1 Inhibitor Selinexor
12. Future Developments in DLBCL
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sehn, L.H.; Salles, G. Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2021, 384, 842–858. [Google Scholar] [CrossRef]
- Wang, S.S. Epidemiology and etiology of diffuse large B-cell lymphoma. Semin. Hematol. 2023, 60, 255–266. [Google Scholar] [CrossRef]
- Gisselbrecht, C.; Glass, B.; Mounier, N.; Singh Gill, D.; Linch, D.C.; Trneny, M.; Bosly, A.; Ketterer, N.; Shpilberg, O.; Hagberg, H.; et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J. Clin. Oncol. 2010, 28, 4184–4190. [Google Scholar] [CrossRef]
- Crump, M.; Neelapu, S.S.; Farooq, U.; Van Den Neste, E.; Kuruvilla, J.; Westin, J.; Link, B.K.; Hay, A.; Cerhan, J.R.; Zhu, L.; et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood 2017, 130, 1800–1808. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, T.; Gu, T.; Le, T.K.; Keating, S.J. Treatment patterns and costs among US patients with diffuse large B-cell lymphoma not treated with 2L stem cell transplantation. Future Oncol. 2024, 20, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Tsutsué, S.; Makita, S.; Yi, J.; Crawford, B. Cost drivers associated with diffuse large B-cell lymphoma (DLBCL) in Japan: A structural equation model (SEM) analysis. PLoS ONE 2022, 17, e0269169. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef]
- de Leval, L.; Alizadeh, A.A.; Bergsagel, P.L.; Campo, E.; Davies, A.; Dogan, A.; Fitzgibbon, J.; Horwitz, S.M.; Melnick, A.M.; Morice, W.G.; et al. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022, 140, 2193–2227. [Google Scholar] [CrossRef]
- Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403, 503–511. [Google Scholar] [CrossRef]
- Rosenwald, A.; Wright, G.; Chan, W.C.; Connors, J.M.; Campo, E.; Fisher, R.I.; Gascoyne, R.D.; Muller-Hermelink, H.K.; Smeland, E.B.; Giltnane, J.M.; et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002, 346, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.H.; Wright, G.W.; Huang, D.W.; Hodkinson, B.; Balasubramanian, S.; Fan, Y.; Vermeulen, J.; Shreeve, M.; Staudt, L.M. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 2021, 39, 1643–1653.e3. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.W.; Wright, G.W.; Williams, P.M.; Lih, C.J.; Walsh, W.; Jaffe, E.S.; Rosenwald, A.; Campo, E.; Chan, W.C.; Connors, J.M.; et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood 2014, 123, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Ennishi, D.; Jiang, A.; Boyle, M.; Collinge, B.; Grande, B.M.; Ben-Neriah, S.; Rushton, C.; Tang, J.; Thomas, N.; Slack, G.W.; et al. Double-Hit Gene Expression Signature Defines a Distinct Subgroup of Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2019, 37, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018, 24, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.; Wright, G.W.; Huang, D.W.; Johnson, C.A.; Phelan, J.D.; Wang, J.Q.; Roulland, S.; Kasbekar, M.; Young, R.M.; Shaffer, A.L.; et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018, 378, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.W.; Huang, D.W.; Phelan, J.D.; Coulibaly, Z.A.; Roulland, S.; Young, R.M.; Wang, J.Q.; Schmitz, R.; Morin, R.D.; Tang, J.; et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell. 2020, 37, 551–568.e14. [Google Scholar] [CrossRef]
- Shah, N.N.; Fry, T.J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 2019, 16, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Bellesi, S.; Schiaffini, G.; Contegiacomo, A.; Maiolo, E.; Iacovelli, C.; Malafronte, R.; D’Innocenzo, S.; Alma, E.; Bellisario, F.; Viscovo, M.; et al. Enhancing lymphoma diagnosis on core needle biopsies: Integrating immunohistochemistry with flow cytometry. Cytom. Part B Clin. Cytom. 2024; in press. [Google Scholar]
- Scheuermann, R.H.; Racila, E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk. Lymphoma 1995, 18, 385–397. [Google Scholar] [CrossRef]
- Poe, J.C.; Minard-Colin, V.; Kountikov, E.I.; Haas, K.M.; Tedder, T.F. A c-Myc and Surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice. J. Immunol. 2012, 189, 2318–2325. [Google Scholar] [CrossRef]
- Ingle, G.S.; Chan, P.; Elliott, J.M.; Chang, W.S.; Koeppen, H.; Stephan, J.P.; Scales, S.J. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br. J. Haematol. 2008, 140, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Jacobson, C.A.; Ghobadi, A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 2023, 141, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Tam, C.S.; Borchmann, P.; Worel, N.; McGuirk, J.P.; Holte, H.; Waller, E.K.; Jaglowski, S.; Bishop, M.R.; Damon, L.E.; et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Bachy, E.; Le Gouill, S.; Di Blasi, R.; Sesques, P.; Manson, G.; Cartron, G.; Beauvais, D.; Roulin, L.; Gros, F.X.; Rubio, M.T.; et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat. Med. 2022, 28, 2145–2154. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.A.; Kersten, M.J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. All ZUMA-7 Investigators and Contributing Kite Members. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: Primary analysis of the phase 3 TRANSFORM study. Blood 2023, 141, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Houot, R.; Bachy, E.; Cartron, G.; Gros, F.X.; Morschhauser, F.; Oberic, L.; Gastinne, T.; Feugier, P.; Duléry, R.; Thieblemont, C.; et al. Axicabtagene ciloleucel as second-line therapy in large B cell lymphoma ineligible for autologous stem cell transplantation: A phase 2 trial. Nat. Med. 2023, 29, 2593–2601. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Hoda, D.; Riedell, P.A.; Ghosh, N.; Hamadani, M.; Hildebrandt, G.C.; Godwin, J.E.; Reagan, P.M.; Wagner-Johnston, N.; Essell, J.; et al. Lisocabtagene maraleucel as second-line therapy in adults with relapsed or refractory large B-cell lymphoma who were not intended for haematopoietic stem cell transplantation (PILOT): An open-label, phase 2 study. Lancet Oncol. 2022, 23, 1066–1077. [Google Scholar] [CrossRef]
- Shargian, L.; Raanani, P.; Yeshurun, M.; Gafter-Gvili, A.; Gurion, R. CAR-T cell therapy is superior to standard of care as second-line therapy for large B-cell lymphoma: A systematic review and meta-analysis. Br. J. Haematol. 2023, 200, e4–e5. [Google Scholar] [CrossRef] [PubMed]
- Westin, J.; Sehn, L.H. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift? Blood 2022, 139, 2737–2746. [Google Scholar] [CrossRef] [PubMed]
- Strati, P.; Neelapu, S.S. CAR-T failure: Beyond antigen loss and T cells. Blood 2021, 137, 2567–2568. [Google Scholar] [CrossRef] [PubMed]
- Salles, G.; Duell, J.; González Barca, E.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Tafasitamab: First Approval. Drugs 2020, 80, 1731–1737. [Google Scholar] [CrossRef]
- Duell, J.; Abrisqueta, P.; Andre, M.; Gaidano, G.; Gonzales-Barca, E.; Jurczak, W.; Kalakonda, N.; Liberati, A.M.; Maddocks, K.J.; Menne, T.; et al. Tafasitamab for patients with relapsed or refractory diffuse large B-cell lymphoma: Final 5-year efficacy and safety findings in the phase II L-MIND study. Haematologica 2024, 109, 553–566. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Rodgers, T.; Marino, D.; Frezzato, M.; Barbui, A.M.; Castellino, C.; Meli, E.; Fowler, N.H.; Salles, G.; Feinberg, B.; et al. RE-MIND: Comparing Tafasitamab + Lenalidomide (L-MIND) with a Real-World Lenalidomide Monotherapy Cohort in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Clin. Cancer Res. 2021, 27, 6124–6134. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, G.S.; Yoon, D.H.; Peters, A.; Mondello, P.; Joffe, E.; Fleury, I.; Greil, R.; Ku, M.; Marks, R.; Kim, K.; et al. Improved Efficacy of Tafasitamab Plus Lenalidomide versus Systemic Therapies for Relapsed/Refractory DLBCL: RE-MIND2, an Observational Retrospective Matched Cohort Study. Clin. Cancer Res. 2022, 28, 4003–4017. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, G.S.; Yoon, D.H.; Mondello, P.; Joffe, E.; Peters, A.; Fleury, I.; Greil, R.; Ku, M.; Marks, R.; Kim, K.; et al. RE-MIND2: Comparative effectiveness of tafasitamab plus lenalidomide versus polatuzumab vedotin/bendamustine/rituximab (pola-BR), CAR-T therapies, and lenalidomide/rituximab (R2) based on real-world data in patients with relapsed/refractory diffuse large B-cell lymphoma. Ann. Hematol. 2023, 102, 1773–1787. [Google Scholar] [CrossRef]
- Qualls, D.A.; Lambert, N.; Caimi, P.F.; Merrill, M.; Pullarkat, P.; Godby, R.C.; Bond, D.A.; Wehmeyer, G.T.; Romancik, J.; Amoozgar, B.; et al. Tafasitamab and lenalidomide in large B-cell lymphoma: Real-world outcomes in a multicenter retrospective study. Blood 2023, 142, 2327–2331. [Google Scholar] [CrossRef] [PubMed]
- Belada, D.; Kopeckova, K.; Bergua Burgues, J.M.; Stevens, D.; André, M.; Persona, E.P.; Pichler, P.; Staber, P.B.; Trneny, M.; Duell, J.; et al. Safety and efficacy of tafasitamab with or without lenalidomide added to first-line R-CHOP for DLBCL: The phase 1b First-MIND study. Blood 2023, 142, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Caimi, P.F.; Ai, W.; Alderuccio, J.P.; Ardeshna, K.M.; Hamadani, M.; Hess, B.; Kahl, B.S.; Radford, J.; Solh, M.; Stathis, A.; et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): A multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 790–800. [Google Scholar] [CrossRef]
- Caimi, P.F.; Ai, W.Z.; Alderuccio, J.P.; Ardeshna, K.M.; Hamadani, M.; Hess, B.; Kahl, B.S.; Radford, J.; Solh, M.; Stathis, A.; et al. Loncastuximab tesirine in relapsed/refractory diffuse large B-cell lymphoma: Long-term efficacy and safety from the phase II LOTIS-2 study. Haematologica 2024, 109, 1184–1193. [Google Scholar] [CrossRef]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef] [PubMed]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar] [CrossRef]
- Tilly, H.; Morschhauser, F.; Bartlett, N.L.; Mehta, A.; Salles, G.; Haioun, C.; Munoz, J.; Chen, A.I.; Kolibaba, K.; Lu, D.; et al. Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: An open-label, non-randomised, phase 1b-2 study. Lancet Oncol. 2019, 20, 998–1010. [Google Scholar] [CrossRef]
- Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2020, 38, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Sehn, L.H.; Hertzberg, M.; Opat, S.; Herrera, A.F.; Assouline, S.; Flowers, C.R.; Kim, T.M.; McMillan, A.; Ozcan, M.; Safar, V.; et al. Polatuzumab vedotin plus bendamustine and rituximab in relapsed/refractory DLBCL: Survival update and new extension cohort data. Blood Adv. 2022, 6, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai, S.; et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Furqan, F.; Hamadani, M. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma: A review of clinical data. Ther. Adv. Hematol. 2022, 13, 20406207221087511. [Google Scholar] [CrossRef] [PubMed]
- Lee, A. Loncastuximab Tesirine: First Approval. Drugs 2021, 81, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- Carlo-Stella, C.; Zinzani, P.L.; Janakiram, M.; Dia, V.; He, X.; Ervin-Haynes, A.; Dapaus, J. Planned Interim Analysis of a Phase 2 Study of Loncastuximab Tesirine Plus Ibrutinib in Patients with Advanced Diffuse Large B-Cell Lymphoma (LOTIS-3). Blood 2021, 138 (Suppl. S1), 54. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Study to Evaluate Loncastuximab Tesirine with Rituximab versus Immunochemotherapy in Participants with Relapsed or Refractory Diffuse Large B-Cell Lymphoma (LOTIS 5). NCT04384484. Available online: https://clinicaltrials.gov/study/NCT04384484 (accessed on 5 June 2024).
- ClinicalTrials.gov. A Study to Evaluate the Safety and Anti-Cancer Activity of Loncastuximab Tesirine in Combination with Other Anti-Cancer Agents in Participants with Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma (LOTIS-7). NCT04970901. Available online: https://clinicaltrials.gov/study/NCT04970901 (accessed on 5 June 2024).
- Feugier, P.; Van Hoof, A.; Sebban, C.; Solal-Celigny, P.; Bouabdallah, R.; Fermé, C.; Christian, B.; Lepage, E.; Tilly, H.; Morschhauser, F.; et al. B Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: A study by the Groupe d’Etude des Lymphomes de l’Adulte. J. Clin. Oncol. 2005, 23, 4117–4126. [Google Scholar] [CrossRef]
- Pfreundschuh, M.; Trümper, L.; Osterborg, A.; Pettengell, R.; Trneny, M.; Imrie, K.; Ma, D.; Gill, D.; Walewski, J.; Zinzani, P.L.; et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006, 7, 379–391. [Google Scholar] [CrossRef] [PubMed]
- van Imhoff, G.W.; McMillan, A.; Matasar, M.J.; Radford, J.; Ardeshna, K.M.; Kuliczkowski, K.; Kim, W.; Hong, X.; Goerloev, J.S.; Davies, A.; et al. Ofatumumab Versus Rituximab Salvage Chemoimmunotherapy in Relapsed or Refractory Diffuse Large B-Cell Lymphoma: The ORCHARRD Study. J. Clin. Oncol. 2017, 35, 544–551. [Google Scholar] [CrossRef]
- Vitolo, U.; Trněný, M.; Belada, D.; Burke, J.M.; Carella, A.M.; Chua, N.; Abrisqueta, P.; Demeter, J.; Flinn, I.; Hong, X.; et al. Obinutuzumab or Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Previously Untreated Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2017, 35, 3529–3537. [Google Scholar] [CrossRef]
- Pavlasova, G.; Mraz, M. The regulation and function of CD20: An “enigma” of B-cell biology and targeted therapy. Haematologica 2020, 105, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Glofitamab: First Approval. Drugs 2023, 83, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Cremasco, F.; Menietti, E.; Speziale, D.; Sam, J.; Sammicheli, S.; Richard, M.; Varol, A.; Klein, C.; Umana, P.; Bacac, M.; et al. Cross-linking of T cell to B cell lymphoma by the T cell bispecific antibody CD20-TCB induces IFNγ/CXCL10-dependent peripheral T cell recruitment in humanized murine model. PLoS ONE 2021, 16, e0241091. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.; Morschhauser, F.; Iacoboni, G.; Carlo-Stella, C.; Offner, F.C.; Sureda, A.; Salles, G.; Martínez-Lopez, J.; Crump, M.; Thomas, D.N.; et al. Glofitamab, a Novel, Bivalent CD20-Targeting T-Cell-Engaging Bispecific Antibody, Induces Durable Complete Remissions in Relapsed or Refractory B-Cell Lymphoma: A Phase I Trial. J. Clin. Oncol. 2021, 39, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Engelberts, P.J.; Hiemstra, I.H.; de Jong, B.; Schuurhuis, D.H.; Meesters, J.; Beltran Hernandez, I.; Oostindie, S.C.; Neijssen, J.; van den Brink, E.N.; Horbach, G.J.; et al. DuoBody-CD3xCD20 induces potent T-cell-mediated killing of malignant B cells in preclinical models and provides opportunities for subcutaneous dosing. EBioMedicine 2020, 52, 102625. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.; Mous, R.; Clausen, M.R.; Johnson, P.; Linton, K.M.; Chamuleau, M.E.D.; Lewis, D.J.; Sureda Balari, A.; Cunningham, D.; Oliveri, R.S.; et al. Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: An open-label, phase 1/2 study. Lancet 2021, 398, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Bannerji, R.; Arnason, J.E.; Advani, R.H.; Brown, J.R.; Allan, J.N.; Ansell, S.M.; Barnes, J.A.; O’Brien, S.M.; Chávez, J.C.; Duell, J.; et al. Odronextamab, a human CD20CD3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1): Results from the relapsed or refractory non-Hodgkin lymphoma cohort in a single-arm, multicentre, phase 1 trial. Lancet Haematol. 2022, 9, e327–e339. [Google Scholar] [CrossRef] [PubMed]
- Ayyappan, S.; Kim, W.S.; Kim, T.M.; Walewski, J.; Cho, S.G.; Jarque, I.; Iskierka-Jazdzewska, E.; Poon, M.; Oh, S.Y.; Lim, F.L.W.I.; et al. Final Analysis of the Phase 2 ELM-2 Study: Odronextamab in Patients with Relapsed/Refractory (R/R) Diffuse Large B-Cell Lymphoma (DLBCL). Blood 2023, 142 (Suppl. S1), 436. [Google Scholar] [CrossRef]
- Dal Porto, J.M.; Gauld, S.B.; Merrell, K.T.; Mills, D.; Pugh-Bernard, A.E.; Cambier, J. B cell antigen receptor signaling 101. Mol. Immunol. 2004, 41, 599–613. [Google Scholar] [CrossRef]
- Gazumyan, A.; Reichlin, A.; Nussenzweig, M.C. Ig beta tyrosine residues contribute to the control of B cell receptor signaling by regulating receptor internalization. J. Exp. Med. 2006, 203, 1785–1794. [Google Scholar] [CrossRef]
- Huang, X.; Takata, K.; Sato, Y.; Tanaka, T.; Ichimura, K.; Tamura, M.; Oka, T.; Yoshino, T. Downregulation of the B-cell receptor signaling component CD79b in plasma cell myeloma: A possible post transcriptional regulation. Pathol. Int. 2011, 61, 122–129. [Google Scholar] [CrossRef]
- D’Arena, G.; Musto, P.; Cascavilla, N.; Dell’Olio, M.; Di Renzo, N.; Carotenuto, M. Quantitative flow cytometry for the differential diagnosis of leukemic B-cell chronic lymphoproliferative disorders. Am. J. Hematol. 2000, 64, 275–281. [Google Scholar] [CrossRef]
- Olejniczak, S.H.; Stewart, C.C.; Donohue, K.; Czuczman, M.S. A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunol. Investig. 2006, 35, 93–114. [Google Scholar] [CrossRef] [PubMed]
- McCarron, K.F.; Hammel, J.P.; Hsi, E.D. Usefulness of CD79b expression in the diagnosis of B-cell chronic lymphoproliferative disorders. Am. J. Clin. Pathol. 2000, 113, 805–813. [Google Scholar] [CrossRef]
- Dornan, D.; Bennett, F.; Chen, Y.; Dennis, M.; Eaton, D.; Elkins, K.; French, D.; Go, M.A.; Jack, A.; Junutula, J.R.; et al. Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood 2009, 114, 2721–2729. [Google Scholar] [CrossRef]
- Deeks, E.D. Polatuzumab Vedotin: First Global Approval. Drugs 2019, 79, 1467–1475. [Google Scholar] [CrossRef]
- Pfeifer, M.; Zheng, B.; Erdmann, T.; Koeppen, H.; McCord, R.; Grau, M.; Staiger, A.; Chai, A.; Sandmann, T.; Madle, H.; et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia 2015, 29, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Lasater, E.A.; Amin, D.N.; Bannerji, R.; Mali, R.S.; Barrett, K.; Rys, R.N.; Oeh, J.; Lin, E.; Sterne-Weiler, T.; Ingalla, E.R.; et al. Targeting MCL-1 and BCL-2 with polatuzumab vedotin and venetoclax overcomes treatment resistance in R/R non-Hodgkin lymphoma: Results from preclinical models and a Phase Ib study. Am. J. Hematol. 2023, 98, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Borcherding, N.; Kusner, D.; Liu, G.H.; Zhang, W. ROR1, an embryonic protein with an emerging role in cancer biology. Protein Cell 2014, 5, 496–502. [Google Scholar] [CrossRef]
- Hojjat-Farsangi, M.; Moshfegh, A.; Daneshmanesh, A.H.; Khan, A.S.; Mikaelsson, E.; Osterborg, A.; Mellstedt, H. The receptor tyrosine kinase ROR1--an oncofetal antigen for targeted cancer therapy. Semin. Cancer Biol. 2014, 29, 21–31. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, L.; Wang-Rodriguez, J.; Zhang, L.; Cui, B.; Frankel, W.; Wu, R.; Kipps, T.J. The onco-embryonic antigen ROR1 is expressed by a variety of human cancers. Am. J. Pathol. 2012, 181, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Baskar, S.; Kwong, K.Y.; Hofer, T.; Levy, J.M.; Kennedy, M.G.; Lee, E.; Staudt, L.M.; Wilson, W.H.; Wiestner, A.; Rader, C. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin. Cancer Res. 2008, 14, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Barna, G.; Mihalik, R.; Timár, B.; Tömböl, J.; Csende, Z.; Sebestyén, A.; Bödör, C.; Csernus, B.; Reiniger, L.; Peták, I.; et al. ROR1 expression is not a unique marker of CLL. Hematol. Oncol. 2011, 29, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Daneshmanesh, A.H.; Porwit, A.; Hojjat-Farsangi, M.; Jeddi-Tehrani, M.; Tamm, K.P.; Grandér, D.; Lehmann, S.; Norin, S.; Shokri, F.; Rabbani, H.; et al. Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies. Leuk. Lymphoma 2013, 54, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, A.; Daneshmanesh, A.H.; Moshfegh, A.; Kokhaei, P.; Vågberg, J.; Schultz, J.; Olin, T.; Harrysson, S.; Smedby, K.E.; Drakos, E.; et al. ROR1 Is Expressed in Diffuse Large B-Cell Lymphoma (DLBCL) and a Small Molecule Inhibitor of ROR1 (KAN0441571C) Induced Apoptosis of Lymphoma Cells. Biomedicines 2020, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Kamrani, A.; Mehdizadeh, A.; Ahmadi, M.; Aghebati-Maleki, L.; Yousefi, M. Therapeutic approaches for targeting receptor tyrosine kinase like orphan receptor-1 in cancer cells. Expert Opin. Ther. Targets 2019, 23, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Barrientos, J.C.; Furman, R.R.; Mei, M.; Barr, P.M.; Choi, M.Y.; de Vos, S.; Kallam, A.; Patel, K.; Kipps, T.J.; et al. Zilovertamab Vedotin Targeting of ROR1 as Therapy for Lymphoid Cancers. NEJM Evid. 2022, 1, EVIDoa2100001. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J. ROR1 for Lymphoid Cancers. NEJM Evid. 2022, 1, EVIDe2100014. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, M.; Song, Y.; Lee, S.T.; Mensah, F.; Modi, D.; Fossa, A.; Kim, W.S.; Paszkiewicz-Kozik, E.; Sawalha, Y.; Sevindik, O.G.; et al. Phase 2 waveLINE-004 study: Zilovertamab vedotin (MK-2140) in relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Hemasphere 2023, 7 (Suppl. S3), e03345ef. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. A Study of Zilovertamab Vedotin (MK-2140) in Combination with Standard of Care in Participants with Relapsed or Refractory Diffuse Large B-Cell Lymphoma (rrDLBCL) (MK-2140-003). NCT05139017. Available online: https://clinicaltrials.gov/study/NCT05139017 (accessed on 5 June 2024).
- ClinicalTrials.gov. A Study of Zilovertamab Vedotin (MK-2140) in Combination with Cyclophosphamide, Doxorubicin, and Prednisone Plus Rituximab or Rituximab Biosimilar (Truxima) (R-CHP) in Participants with Diffuse Large B-Cell Lymphoma (DLBCL) (MK-2140-007). NCT05406401. Available online: https://clinicaltrials.gov/study/NCT05406401 (accessed on 5 June 2024).
- van der Weyden, C.A.; Pileri, S.A.; Feldman, A.L.; Whisstock, J.; Prince, H.M. Understanding CD30 biology and therapeutic targeting: A historical perspective providing insight into future directions. Blood Cancer J. 2017, 7, e603. [Google Scholar] [CrossRef]
- Pierce, J.M.; Mehta, A. Diagnostic, prognostic and therapeutic role of CD30 in lymphoma. Expert Rev. Hematol. 2017, 10, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Slack, G.W.; Steidl, C.; Sehn, L.H.; Gascoyne, R.D. CD30 expression in de novo diffuse large B-cell lymphoma: A population-based study from British Columbia. Br. J. Haematol. 2014, 167, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Xu-Monette, Z.Y.; Balasubramanyam, A.; Manyam, G.C.; Visco, C.; Tzankov, A.; Liu, W.M.; Miranda, R.N.; Zhang, L.; Montes-Moreno, S.; et al. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: A report from the International DLBCL Rituximab-CHOP Consortium Program Study. Blood 2013, 121, 2715–2724. [Google Scholar] [CrossRef] [PubMed]
- Collie, A.M.B.; Hill, B.T.; Manilich, E.A.; Smith, M.R.; Hsi, E.D. CD30 immunohistochemical expression in diffuse large B-cell lymphoma is associated with decreased overall survival and the non-germinal center molecular subtype. Blood 2013, 122, 4318. [Google Scholar] [CrossRef]
- Rodrigues-Fernandes, C.I.; Abreu, L.G.; Radhakrishnan, R.; Perez, D.; Amaral-Silva, G.K.; Gondak, R.O.; Rahimi, S.; Brennan, P.A.; Fonseca, F.P.; Vargas, P.A. Prognostic significance of CD30 expression in diffuse large B-cell lymphoma: A systematic review with meta-analysis. J. Oral Pathol. Med. 2021, 50, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Bourbon, E.; Maucort-Boulch, D.; Fontaine, J.; Mauduit, C.; Sesques, P.; Safar, V.; Ferrant, E.; Golfier, C.; Ghergus, D.; Karlin, L.; et al. Clinicopathological features and survival in EBV-positive diffuse large B-cell lymphoma not otherwise specified. Blood Adv. 2021, 5, 3227–3239. [Google Scholar] [CrossRef]
- Ok, C.Y.; Li, L.; Xu-Monette, Z.Y.; Visco, C.; Tzankov, A.; Manyam, G.C.; Montes-Moreno, S.; Dybkaer, K.; Chiu, A.; Orazi, A.; et al. Prevalence and clinical implications of epstein-barr virus infection in de novo diffuse large B-cell lymphoma in Western countries. Clin. Cancer Res. 2014, 20, 2338–2349. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Warnke, R.A. CD30 expression is common in mediastinal large B-cell lymphoma. Am. J. Clin. Pathol. 1999, 112, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Kinch, A.; Amini, R.M.; Hollander, P.; Molin, D.; Sundstrom, C.; Enblad, G. CD30 expression and survival in posttransplant lymphoproliferative disorders. Acta Oncol. 2020, 59, 673–680. [Google Scholar] [CrossRef]
- Ferra, J.; Mousinho, F.; Miranda, F.; Andre, S.; Afonso, C.; Nogueira, F. Use of brentuximab vedotin in a non-HIV patient with primary effusion lymphoma. Eur. J. Case Rep. Intern. Med. 2021, 8, 002345. [Google Scholar] [CrossRef]
- Bartlett, N.L.; Younes, A.; Carabasi, M.H.; Forero, A.; Rosenblatt, J.D.; Leonard, J.P.; Bernstein, S.H.; Bociek, R.G.; Lorenz, J.M.; Hart, B.W.; et al. A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood 2008, 111, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Francisco, J.A.; Cerveny, C.G.; Meyer, D.L.; Mixan, B.J.; Klussman, K.; Chace, D.F.; Rejniak, S.X.; Gordon, K.A.; DeBlanc, R.; Toki, B.E.; et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003, 102, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.S.; Sanderson, R.J.; Gordon, K.A.; Andreyka, J.; Cerveny, C.G.; Yu, C.; Lewis, T.S.; Meyer, D.L.; Zabinski, R.F.; Doronina, S.O.; et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J. Biol. Chem. 2006, 281, 10540–10547. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, N.L.; Smith, M.R.; Siddiqi, T.; Advani, R.H.; O’Connor, O.A.; Sharman, J.P.; Feldman, T.; Savage, K.J.; Shustov, A.R.; Diefenbach, C.S.; et al. Brentuximab vedotin activity in diffuse large B-cell lymphoma with CD30 undetectable by visual assessment of conventional immunohistochemistry. Leuk. Lymphoma 2017, 58, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Lobastova, L.; Lettau, M.; Babatz, F.; de Oliveira, T.D.; Nguyen, P.H.; Pauletti, B.A.; Schauss, A.C.; Durkop, H.; Janssen, O.; Paes Leme, A.F.; et al. CD30-positive extracellular vesicles enable the targeting of CD30-negative DLBCL cells by the CD30 antibody-drug conjugate brentuximab vedotin. Front. Cell Dev. Biol. 2021, 9, 698503. [Google Scholar] [CrossRef]
- Müller, P.; Martin, K.; Theurich, S.; Schreiner, J.; Savic, S.; Terszowski, G.; Lardinois, D.; Heinzelmann-Schwarz, V.A.; Schlaak, M.; Kvasnicka, H.M.; et al. Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol. Res. 2014, 2, 741–755. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, J.; Bair, S.M.; Landsburg, D.J.; Dwivedy Nasta, S.; Nagle, S.J.; Barta, S.K.; Khan, N.; Filicko-O’Hara, J.; Gaballa, S.; Strelec, L.; et al. Brentuximab vedotin in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone as frontline treatment for patients with CD30-positive B-cell lymphomas. Haematologica 2021, 106, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, E.D.; Sharman, J.P.; Oki, Y.; Advani, R.H.; Winter, J.N.; Bello, C.M.; Spitzer, G.; Palanca-Wessels, M.C.; Kennedy, D.A.; Levine, P.; et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood 2015, 125, 1394–1402. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J.O.; Koh, J.; Kim, T.M.; Lee, J.Y.; Jeon, Y.K.; Keam, B.; Kim, D.W.; Lee, J.S.; Heo, D.S. A phase II study of brentuximab vedotin in patients with relapsed or refractory Epstein-Barr virus-positive and CD30-positive lymphomas. Haematologica 2021, 106, 2277–2280. [Google Scholar] [CrossRef]
- Ward, J.P.; Berrien-Elliott, M.M.; Gomez, F.; Luo, J.; Becker-Hapak, M.; Cashen, A.F.; Wagner-Johnston, N.D.; Maddocks, K.; Mosior, M.; Foster, M.; et al. Phase 1/dose expansion trial of brentuximab vedotin and lenalidomide in relapsed or refractory diffuse large B-cell lymphoma. Blood 2022, 139, 1999–2010. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Brentuximab Vedotin Plus Lenalidomide and Rituximab for the Treatment of Relapsed/Refractory DLBCL (ECHELON-3). NCT04404283. Available online: https://clinicaltrials.gov/study/NCT04404283 (accessed on 5 June 2024).
- Zinzani, P.L.; Santoro, A.; Gritti, G.; Brice, P.; Barr, P.M.; Kuruvilla, J.; Cunningham, D.; Kline, J.; Johnson, N.A.; Mehta-Shah, N.; et al. Nivolumab Combined with Brentuximab Vedotin for Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma: Efficacy and Safety from the Phase II CheckMate 436 Study. J. Clin. Oncol. 2019, 37, 3081–3089. [Google Scholar] [CrossRef] [PubMed]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.J.; Chapuy, B.; Ouyang, J.; Sun, H.H.; Roemer, M.G.; Xu, M.L.; Yu, H.; Fletcher, C.D.; Freeman, G.J.; Shipp, M.A.; et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin. Cancer Res. 2013, 19, 3462–3473. [Google Scholar] [CrossRef] [PubMed]
- Menter, T.; Bodmer-Haecki, A.; Dirnhofer, S.; Tzankov, A. Evaluation of the diagnostic and prognostic value of PD-L1 expression in Hodgkin and B-cell lymphomas. Hum. Pathol. 2016, 54, 17–24. [Google Scholar] [CrossRef]
- Kiyasu, J.; Miyoshi, H.; Hirata, A.; Arakawa, F.; Ichikawa, A.; Niino, D.; Sugita, Y.; Yufu, Y.; Choi, I.; Abe, Y.; et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood 2015, 126, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bai, J.F.; Zuo, M.X.; Cao, X.X.; Chen, M.; Zhang, Y.; Han, X.; Zhong, D.R.; Zhou, D.B. PD-1 expression on the surface of peripheral blood CD4+ T cell and its association with the prognosis of patients with diffuse large B-cell lymphoma. Cancer Med. 2016, 5, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Roemer, M.G.; Chapuy, B.; Liao, X.; Sun, H.; Pinkus, G.S.; Shipp, M.A.; Freeman, G.J.; Rodig, S.J. Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain. Am. J. Surg. Pathol. 2014, 38, 1715–1723. [Google Scholar] [CrossRef]
- Green, M.R.; Monti, S.; Rodig, S.J.; Juszczynski, P.; Currie, T.; O’Donnell, E.; Chapuy, B.; Takeyama, K.; Neuberg, D.; Golub, T.R.; et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010, 116, 3268–3277. [Google Scholar] [CrossRef]
- Chapuy, B.; Roemer, M.G.; Stewart, C.; Tan, Y.; Abo, R.P.; Zhang, L.; Dunford, A.J.; Meredith, D.M.; Thorner, A.R.; Jordanova, E.S.; et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2016, 127, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Nicolae, A.; Pittaluga, S.; Abdullah, S.; Steinberg, S.M.; Pham, T.A.; Davies-Hill, T.; Xi, L.; Raffeld, M.; Jaffe, E.S. EBV-positive large B-cell lymphomas in young patients: A nodal lymphoma with evidence for a tolerogenic immune environment. Blood 2015, 126, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, H.T.; Shin, W.; Chae, J.; Choi, J.; Kim, S.H.; Lim, H.; Heo, T.W.; Park, K.Y.; Lee, Y.J.; et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat. Commun. 2016, 7, 13354. [Google Scholar] [CrossRef] [PubMed]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; et al. Nivolumab in Patients with Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J. Clin. Oncol. 2016, 34, 2698–2704. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Minnema, M.C.; Johnson, P.; Timmerman, J.M.; Armand, P.; Shipp, M.A.; Rodig, S.J.; Ligon, A.H.; Roemer, M.G.M.; Reddy, N.; et al. Nivolumab for Relapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or Having Failed Autologous Transplantation: A Single-Arm, Phase II Study. J. Clin. Oncol. 2019, 37, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Frigault, M.J.; Armand, P.; Redd, R.A.; Jeter, E.; Merryman, R.W.; Coleman, K.C.; Herrera, A.F.; Dahi, P.; Nieto, Y.; LaCasce, A.S.; et al. PD-1 blockade for diffuse large B-cell lymphoma after autologous stem cell transplantation. Blood Adv. 2020, 4, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.A.; Alanio, C.; Svoboda, J.; Nasta, S.D.; Landsburg, D.J.; Lacey, S.F.; Ruella, M.; Bhattacharyya, S.; Wherry, E.J.; Schuster, S.J. Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood 2022, 139, 1026–1038. [Google Scholar] [CrossRef] [PubMed]
- Major, A.; Yu, J.; Shukla, N.; Che, Y.; Karrison, T.G.; Treitman, R.; Kamdar, M.K.; Haverkos, B.M.; Godfrey, J.; Babcook, M.A.; et al. Efficacy of checkpoint inhibition after CAR-T failure in aggressive B-cell lymphomas: Outcomes from 15 US institutions. Blood Adv. 2023, 7, 4528–4538. [Google Scholar] [CrossRef]
- Ho, C.; Gopal, A.K.; Till, B.G.; Shadman, M.; Lynch, R.C.; Cowan, A.J.; Wu, Q.V.; Voutsinas, J.; Rasmussen, H.A.; Blue, K.; et al. Pembrolizumab with R-CHOP in Previously Untreated DLBCL: Sustained, High Efficacy, and Safety with Long-Term Follow-Up. Clin. Lymphoma Myeloma Leuk. 2024, 24, e33–e39.e1. [Google Scholar] [CrossRef]
- Smith, S.D.; Till, B.G.; Shadman, M.S.; Lynch, R.C.; Cowan, A.J.; Wu, Q.V.; Voutsinas, J.; Rasmussen, H.A.; Blue, K.; Ujjani, C.S.; et al. Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: Potential for biomarker driven therapy. Br. J. Haematol. 2020, 189, 1119–1126. [Google Scholar] [CrossRef]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
- Nayak, L.; Iwamoto, F.M.; LaCasce, A.; Mukundan, S.; Roemer, M.G.M.; Chapuy, B.; Armand, P.; Rodig, S.J.; Shipp, M.A. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 2017, 129, 3071–3073. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Ribrag, V.; Moskowitz, C.H.; Michot, J.M.; Kuruvilla, J.; Balakumaran, A.; Zhang, Y.; Chlosta, S.; Shipp, M.A.; Armand, P. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood 2017, 130, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Thieblemont, C.; Melnichenko, V.; Bouabdallah, K.; Walewski, J.; Majlis, A.; Fogliatto, L.; Garcia-Sancho, A.M.; Christian, B.; Gulbas, Z.; et al. Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma: Final analysis of KEYNOTE-170. Blood 2023, 142, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, I.; Bodo, J.; Hill, B.T.; Hsi, E.D.; Almasan, A. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis. 2020, 11, 941. [Google Scholar] [CrossRef]
- Iqbal, J.; Sanger, W.G.; Horsman, D.E.; Rosenwald, A.; Pickering, D.L.; Dave, B.; Dave, S.; Xiao, L.; Cao, K.; Zhu, Q.; et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am. J. Pathol. 2004, 165, 159–166. [Google Scholar] [CrossRef]
- Iqbal, J.; Neppalli, V.T.; Wright, G.; Dave, B.J.; Horsman, D.E.; Rosenwald, A.; Lynch, J.; Hans, C.P.; Weisenburger, D.D.; Greiner, T.C.; et al. BCL2 expression is a prognostic marker for the activated B-cell like type of diffuse large B-cell lymphoma. J. Clin. Oncol. 2006, 24, 961–968. [Google Scholar] [CrossRef]
- Diepstraten, S.T.; Anderson, M.A.; Czabotar, P.E.; Lessene, G.; Strasser, A.; Kelly, G.L. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 2021, 22, 45–64. [Google Scholar] [CrossRef]
- Xu, J.; Dong, X.; Huang, D.C.S.; Xu, P.; Zhao, Q.; Chen, B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers 2023, 15, 4957. [Google Scholar] [CrossRef]
- Morschhauser, F.; Feugier, P.; Flinn, I.W.; Gasiorowski, R.; Greil, R.; Illés, A.; Johnson, N.A.; Larouche, J.F.; Lugtenburg, P.J.; Patti, C.; et al. A phase 2 study of venetoclax plus R-CHOP as first-line treatment for patients with diffuse large B-cell lymphoma. Blood 2021, 137, 600–609. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Testing the Addition of a New Anti-Cancer Drug, Venetoclax, to Usual Chemotherapy for High Grade B-Cell Lymphomas. NCT03984448. Available online: https://clinicaltrials.gov/study/NCT03984448 (accessed on 5 June 2024).
- Rutherford, S.C.; Abramson, J.S.; Bartlett, N.L.; Barta, S.K.; Khan, N.; Joyce, R.; Maddocks, K.; Ali-Shaw, T.; Senese, S.; Yuan, Y.; et al. Venetoclax with dose-adjusted EPOCH-R as initial therapy for patients with aggressive B-cell lymphoma: A single-arm, multicentre, phase 1 study. Lancet Haematol. 2021, 8, e818–e827. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Roberts, A.W.; Seymour, J.F.; Pagel, J.M.; Kahl, B.S.; Wierda, W.G.; Puvvada, S.; Kipps, T.J.; Anderson, M.A.; Salem, A.H.; et al. Phase I First-in-Human Study of Venetoclax in Patients with Relapsed or Refractory Non-Hodgkin Lymphoma. J. Clin. Oncol. 2017, 35, 826–833. [Google Scholar] [CrossRef] [PubMed]
- De Vos, S.; Swinnen, L.J.; Wang, D.; Reid, E.; Fowler, N.; Cordero, J.; Dunbar, M.; Enschede, S.H.; Nolan, C.; Petrich, A.M.; et al. Venetoclax, bendamustine, and rituximab in patients with relapsed or refractory NHL: A phase Ib dose-finding study. Ann. Oncol. 2018, 29, 1932–1938. [Google Scholar] [CrossRef]
- Gritti, G.; Marlton, P.; Phillips, T.J.; Arthur, C.; Bannerji, R.; Corradini, P.; Johnston, A.; Seymour, J.F.; Yuen, S.; Hirata, J. Polatuzumab Vedotin Plus Venetoclax with Rituximab in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Primary Efficacy Analysis of a Phase Ib/II Study. Blood 2020, 136 (Suppl. 1), 45–47. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Obinutuzumab, Venetoclax, and Lenalidomide in Treating Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma. NCT02992522. Available online: https://clinicaltrials.gov/study/NCT02992522 (accessed on 5 June 2024).
- ClinicalTrials.gov. Venetoclax Plus R-ICE Chemotherapy for Relapsed/Refractory Diffuse Large B-Cell Lymphoma. NCT03064867. Available online: https://clinicaltrials.gov/study/NCT03064867 (accessed on 5 June 2024).
- ClinicalTrials.gov. Loncastuximab Tesirine and Venetoclax for Relapsed/ Refractory Non-Hodgkin Lymphoma. NCT05053659. Available online: https://clinicaltrials.gov/study/NCT05053659 (accessed on 5 June 2024).
- Han, Y.B.; Yang, J.M.; Kwon, H.J.; Lee, J.O.; Lee, J.S.; Paik, J.H. Clinicopathologic and prognostic significance of Bruton’s tyrosine kinase expression in diffuse large B-cell lymphoma. Anticancer Res. 2021, 41, 5677–5692. [Google Scholar] [CrossRef]
- Younes, A.; Sehn, L.H.; Johnson, P.; Zinzani, P.L.; Hong, X.; Zhu, J.; Patti, C.; Belada, D.; Samoilova, O.; Suh, C.; et al. Randomized Phase III Trial of Ibrutinib and Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2019, 37, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Jia, S.; Zhang, Y.; Li, J.; Yang, Q.; Zeng, L.; Zong, X.; Lu, Y.; Lu, S.; Zhou, J.; et al. Efficacy and safety of zanubrutinib plus R-CHOP in treatment of non-GCB DLBCL with extranodal involvement. Front. Immunol. 2023, 14, 1219167. [Google Scholar] [CrossRef]
- Goy, A.; Ramchandren, R.; Ghosh, N.; Munoz, J.; Morgan, D.S.; Dang, N.H.; Knapp, M.; Delioukina, M.; Kingsley, E.; Ping, J.; et al. Ibrutinib plus lenalidomide and rituximab has promising activity in relapsed/refractory non-germinal center B-cell-like DLBCL. Blood 2019, 134, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, X.; Wei, J.; Yang, C.; Tong, H.; Mai, W.; Yang, M.; Qian, J.; Mao, L.; Meng, H.; et al. Rituximab, lenalidomide and BTK inhibitor as frontline treatment for elderly or unfit patients with diffuse large b-cell lymphoma: A real-world analysis of single center. Exp. Hematol. Oncol. 2022, 11, 57. [Google Scholar] [CrossRef]
- Yang, H.; Xiang, B.; Song, Y.; Zhang, H.; Zhao, W.; Zou, D.; Lv, F.; Guo, W.; Liu, A.; Li, C.; et al. Zanubrutinib monotherapy for relapsed or refractory non-germinal center diffuse large b-cell lymphoma. Blood Adv. 2022, 6, 629–636. [Google Scholar] [CrossRef]
- Strati, P.; De Vos, S.; Ruan, J.; Maddocks, K.J.; Flowers, C.R.; Rule, S.; Patel, P.; Xu, Y.; Wei, H.; Frigault, M.M.; et al. Acalabrutinib for treatment of diffuse large B-cell lymphoma: Results from. a phase Ib study. Haematologica 2021, 106, 2774–2778. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Acalabrutinib in Combination with R-CHOP for Previously Untreated Diffuse Large B-Cell Lymphoma (DLBCL) (REMoDL-A). NCT04546620. Available online: https://clinicaltrials.gov/study/NCT04546620 (accessed on 5 June 2024).
- ClinicalTrials.gov. Acalabrutinib (ACP-196), a Btk Inhibitor, for Treatment of de Novo Activated B-Cell (ABC) Subtype of Diffuse Large B-Cell Lymphoma. NCT02112526. Available online: https://clinicaltrials.gov/study/NCT02112526 (accessed on 5 June 2024).
- ClinicalTrials.gov. Acalabrutinib Plus RICE for Relapsed/Refractory DLBCL. NCT03736616. Available online: https://clinicaltrials.gov/study/NCT03736616 (accessed on 5 June 2024).
- ClinicalTrials.gov. Acalabrutinib in Combination with R-ICE for Relapsed or Refractory Lymphoma. NCT04189952. Available online: https://clinicaltrials.gov/study/NCT04189952 (accessed on 5 June 2024).
- ClinicalTrials.gov. A Study to Evaluate Efficacy and Safety of Zanubrutinib with R-CHOP in Newly Diagnosed Non-GCB DLBCL Patients with Double Expression. NCT05189197. Available online: https://clinicaltrials.gov/study/NCT05189197 (accessed on 5 June 2024).
- ClinicalTrials.gov. Zanubrutinib+Lenalidomide+R-ICE in Relapsed/Refractory DLBCL. NCT06033820. Available online: https://clinicaltrials.gov/study/NCT06033820 (accessed on 5 June 2024).
- ClinicalTrials.gov. Study of BTK Inhibitor Zanubrutinib in Participants with Relapsed/Refractory Non-GCB Type Diffuse Large B Cell Lymphoma. NCT03145064. Available online: https://www.clinicaltrials.gov/study/NCT03145064 (accessed on 5 June 2024).
- ClinicalTrials.gov. A Study of Oral LOXO-305 in Patients with Previously Treated CLL/SLL or NHL. NCT03740529. Available online: https://clinicaltrials.gov/study/NCT03740529 (accessed on 5 June 2024).
- Culjkovic-Kraljacic, B.; Fernando, T.M.; Marullo, R.; Calvo-Vidal, N.; Verma, A.; Yang, S.; Tabbò, F.; Gaudiano, M.; Zahreddine, H.; Goldstein, R.L.; et al. Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas. Blood 2016, 127, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, J.; Savona, M.; Baz, R.; Mau-Sorensen, P.M.; Gabrail, N.; Garzon, R.; Stone, R.; Wang, M.; Savoie, L.; Martin, P.; et al. Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 2017, 129, 3175–3183. [Google Scholar] [CrossRef] [PubMed]
- Marullo, R.; Rutherford, S.C.; Revuelta, M.V.; Zamponi, N.; Culjkovic-Kraljacic, B.; Kotlov, N.; Di Siervi, N.; Lara-Garcia, J.; Allan, J.N.; Ruan, J.; et al. XPO1 Enables Adaptive Regulation of mRNA Export Required for Genotoxic Stress Tolerance in Cancer Cells. Cancer Res. 2024, 84, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Huang, L.; Gu, Y.; Li, C.; Lu, H.; Chen, G.; Peng, Z.; Feng, Z. Expression of exportin-1 in diffuse large B-cell lymphoma: Immunohistochemistry and TCGA analyses. Int. J. Clin. Exp. Pathol. 2018, 11, 5547–5560. [Google Scholar]
- Kasamon, Y.L.; Price, L.S.L.; Okusanya, O.O.; Richardson, N.C.; Li, R.J.; Ma, L.; Wu, Y.T.; Theoret, M.; Pazdur, R.; Gormley, N.J. FDA Approval Summary: Selinexor for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Oncologist 2021, 26, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Kalakonda, N.; Maerevoet, M.; Cavallo, F.; Follows, G.; Goy, A.; Vermaat, J.S.P.; Casasnovas, O.; Hamad, N.; Zijlstra, J.M.; Bakhshi, S.; et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): A single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020, 7, e511–e522. [Google Scholar] [CrossRef]
- Casasnovas, R.O.; Follows, G.; Zijlstra, J.M.; Vermaat, J.S.P.; Kalakonda, N.; Choquet, S.; Neste, E.V.D.; Hill, B.; Thieblemont, C.; Cavallo, F.; et al. Comparison of the Effectiveness and Safety of the Oral Selective Inhibitor of Nuclear Export, Selinexor, in Diffuse Large B Cell Lymphoma Subtypes. Clin. Lymphoma Myeloma Leuk. 2022, 22, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Tomasik, J.; Jasiński, M.; Basak, G.W. Next generations of CAR-T cells—New therapeutic opportunities in hematology? Front Immunol. 2022, 13, 1034707. [Google Scholar] [CrossRef]
- Chu, F.; Cao, J.; Liu, J.; Yang, H.; Davis, T.J.; Kuang, S.Q.; Cheng, X.; Zhang, Z.; Karri, S.; Vien, L.T.; et al. Chimeric antigen receptor T cells to target CD79b in B-cell lymphomas. J. Immunother. Cancer 2023, 11, e007515. [Google Scholar] [CrossRef]
- Peng, H.; Nerreter, T.; Mestermann, K.; Wachter, J.; Chang, J.; Hudecek, M.; Rader, C. ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene 2022, 41, 4104–4114. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Niu, M.; Zhang, W.; Qin, S.; Zhou, J.; Yi, M. CAR-NK cells for cancer immunotherapy: Recent advances and future directions. Front. Immunol. 2024, 15, 1361194. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.; Morel, A.; Anceriz, N.; Rossi, B.; Blanchard-Alvarez, A.; Grondin, G.; Trichard, S.; Cesari, C.; Sapet, M.; Bosco, F.; et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell 2019, 177, 1701–1713.e16. [Google Scholar] [CrossRef]
- Al Sbihi, A.; Alasfour, M.; Pongas, G. Innovations in Antibody-Drug Conjugate (ADC) in the Treatment of Lymphoma. Cancers 2024, 16, 827. [Google Scholar] [CrossRef] [PubMed]
- Trnĕný, M.; Verhoef, G.; Dyer, M.J.; Ben Yehuda, D.; Patti, C.; Canales, M.; Lopez, A.; Awan, F.T.; Montgomery, P.G.; Janikova, A.; et al. A phase II multicenter study of the anti-CD19 antibody drug conjugate coltuximab ravtansine (SAR3419) in patients with relapsed or refractory diffuse large B-cell lymphoma previously treated with rituximab-based immunotherapy. Haematologica 2018, 103, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, C.H.; Fanale, M.A.; Shah, B.D.; Advani, R.H.; Chen, R.; Kim, S.; Kostic, A.; Liu, T.; Peng, J.; Forero-Torres, A. A Phase 1 Study of DenintuzumabMafodotin (SGN-CD19A) in Relapsed/Refactory B-Lineage Non-Hodgkin Lymphoma. Blood 2015, 126, 182. [Google Scholar] [CrossRef]
- Morschhauser, F.; Flinn, I.W.; Advani, R.; Sehn, L.H.; Diefenbach, C.; Kolibaba, K.; Press, O.W.; Salles, G.; Tilly, H.; Chen, A.I.; et al. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: Final results from a phase 2 randomised study (ROMULUS). Lancet Haematol. 2019, 6, e254–e265. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.Y.; Jagadeesh, D.; Grudeva-Popova, Z.; Trněný, M.; Jurczak, W.; Pylypenko, H.; André, M.; Dwivedy Nasta, S.; Rechavi-Robinson, D.; Toffanin, S.; et al. Safety and Efficacy of CD37-Targeting Naratuximab Emtansine PLUS Rituximab in Diffuse Large B-Cell Lymphoma and Other NON-Hodgkin’S B-Cell Lymphomas—A Phase 2 Study. Blood 2021, 138 (Suppl. S1), 526. [Google Scholar] [CrossRef]
- Barca, E.G. Developing New Strategies for Relapsed/Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Med. 2023, 12, 7376. [Google Scholar] [CrossRef]
- Melchardt, T.; Egle, A.; Greil, R. How I treat diffuse large B-cell lymphoma. ESMO Open 2023, 8, 100750. [Google Scholar] [CrossRef]
- Poletto, S.; Novo, M.; Paruzzo, L.; Frascione, P.M.M.; Vitolo, U. Treatment strategies for patients with diffuse large B-cell lymphoma. Cancer Treat. Rev. 2022, 110, 102443. [Google Scholar] [CrossRef] [PubMed]
- NCCN Guidelines Version 2.2024, B-Cell Lymphomas. Available online: https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (accessed on 5 June 2024).
ZUMA-1 | JULIET | TRASCEND | |
---|---|---|---|
Type of CAR-T | Axi-cel | Tisa-cel | Liso-cel |
Number of patients | 101/111 treated | 115/167 treated | 269/344 treated |
Histologies included | DLBCL, PMBCL, tFL, | DLBCL, HGBCL, tFL, | DLBCL, PMBCL, HGBCL, tFL; FL G3B |
Age, years | ≥18 | ≥18 | 18–75 |
CAR-T cells infused | 2 × 106/kg | 0.1 × 108 to 6 × 108 | 100 × 106/kg |
Type of conditioning | Cy-Flu | Cy-Flu | Cy-Flu |
Median time from registration to CAR T infusion | NR | 54 days | NR |
Bridging therapy (% patients) | not allowed (only steroids) | allowed (90%) | allowed (59%) |
CNS involvement | excluded | excluded | eligible |
Best ORR/CR | 83%/58% | 53%/40% | 73%/53% |
EFS | 38% (2 years) | - | - |
PFS | - | 31% (3 years) | 41% (2 years) |
OS | 43% (5 years) | 36% (3 years) | 50% (2 years) |
Any grade CRS/ICANS (%) | CRS 93% ICANS 64% | CRS 58% ICANS 21% | CRS 42% ICANS 30% |
Grade ≥ 3 CRS/ICANS (%) | CRS 13% ICANS 28% | CRS 24% ICANS 14% | CRS 2% ICANS 10% |
ZUMA-7 | TRANSFORM | BELINDA | |
---|---|---|---|
Type of CAR-T | Axi-cel | Liso-cel | Tisa-cel |
Number of patients | 359 | 184 | 322 |
Histologies included | DLBCL NOS, t-FL, HGBCL | DLBCL NOS, t-IL, HGBCL, Leg-type DLBCL, FL G3B, PMBCL | DLBCL NOS, t-IL, HGBCL, FL G3B, PMBCL |
Age, years | ≥18 | ≥18 | 18–75 |
CAR-T cells infused | 2 × 106 cells/kg | 1 × 108 cells | 0.6–6 × 108 cells |
Median time from registration to CAR-T infusion | 29 days | 34 days | 52 days |
Bridging therapy (% patients) | Only steroids | Salvage chemotherapy (63%) | Salvage chemotherapy (97%) |
Patients proceeding to CAR-T or ASCT | 94% vs. 36% | 97% vs. 47% | 96% vs. 32% |
CR (CAR-T vs. ASCT) | 65% vs. 32% | 74% vs. 43% | 28% vs. 28% |
EFS (CAR-T vs. ASCT) | 8.3 vs. 2 months | n.r. vs. 2.4 months | 3 vs. 3 months |
PFS (CAR-T vs. ASCT) | 14.7 vs. 3.7 months | n.r. vs. 6.2 months | n.a. |
OS (months) | n.r. vs. 35.1 months | n.r. vs. 29.9 months | 16.9 vs. 15.3 months |
Any grade CRS/ICANS | 92%/60% | 49%/11% | 61%/10% |
Grade ≥ 3 CRS/ICANS | 6%/21% | 1%/4% | 5%/2% |
ADC | Target Antigen | Cytotoxic Payload | Clinical Data in DLBCL | Ref. |
---|---|---|---|---|
Coltuximab ravtansine (SAR3419) | CD19 | maytansinoid DM4 | In monotherapy, ORR 43.9% and CR 14.6% in R/R DLBCL | [183] |
Denintuzumab Mafodotin (SGN-19A or SGN-CD19A) | CD19 | MMAF | In monotherapy, ORR 33% and CR 23% in R/R DLBCL | [184] |
Pinatuzumab Vedotin (DCDT2980S, RG-7593) | CD22 | MMAF | In combination with rituximab, ORR 60% and CR 26% in R/R DLBCL | [185] |
Naratuximab Emtansine (IMGN529) | CD37 | maytansinoid DM1 | In combination with rituximab, ORR 44.7% and CR 31.6% in R/R DLBCL | [186] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alò, F.; Bellesi, S.; Maiolo, E.; Alma, E.; Bellisario, F.; Malafronte, R.; Viscovo, M.; Campana, F.; Hohaus, S. Novel Targets and Advanced Therapies in Diffuse Large B Cell Lymphomas. Cancers 2024, 16, 2243. https://doi.org/10.3390/cancers16122243
D’Alò F, Bellesi S, Maiolo E, Alma E, Bellisario F, Malafronte R, Viscovo M, Campana F, Hohaus S. Novel Targets and Advanced Therapies in Diffuse Large B Cell Lymphomas. Cancers. 2024; 16(12):2243. https://doi.org/10.3390/cancers16122243
Chicago/Turabian StyleD’Alò, Francesco, Silvia Bellesi, Elena Maiolo, Eleonora Alma, Flaminia Bellisario, Rosalia Malafronte, Marcello Viscovo, Fabrizia Campana, and Stefan Hohaus. 2024. "Novel Targets and Advanced Therapies in Diffuse Large B Cell Lymphomas" Cancers 16, no. 12: 2243. https://doi.org/10.3390/cancers16122243
APA StyleD’Alò, F., Bellesi, S., Maiolo, E., Alma, E., Bellisario, F., Malafronte, R., Viscovo, M., Campana, F., & Hohaus, S. (2024). Novel Targets and Advanced Therapies in Diffuse Large B Cell Lymphomas. Cancers, 16(12), 2243. https://doi.org/10.3390/cancers16122243