Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence
Abstract
:Simple Summary
Abstract
1. Introduction
2. Application of AI/ML Models in PDAC Screening and Early Detection
2.1. Classical ML Models for PDAC Risk Prediction
2.2. Natural Language Processing (NLP) for PDAC Risk Prediction
2.3. Computer Vision (CV) for PDAC Risk Prediction
3. Application of AI/ML Models in the Monitoring of IPMNs
4. Application of AI/ML Models in PDAC Detection and Diagnosis
4.1. PDAC Detection
4.2. PDAC Diagnosis
5. Application of AI/ML Models in PDAC Treatment Outcome Prediction and Patient Stratification
5.1. Patient Stratification for P-Net and PDAC Treatment Regimens
5.2. PDAC Treatment Outcome Prediction
6. Application of AI/ML Models in Patient Surveillance of Post-Treatment Complications from PDAC Treatment
7. Discussion
7.1. Challenges and Opportunities
7.2. Future of PDAC Research: Pancreatic Cyst Monitoring
7.3. Future of PDAC Research: Incorporation with Molecular Data
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
CNN | Convolutional Neural Network |
PDAC | Pancreatic Ductal Adenocarcinoma |
IPMN | Intraductal Papillary Mucinous Neoplasm |
CT | Computed Tomography |
CECT | Contrast-Enhanced Computed Tomography |
EUS | Endoscopic Ultrasound |
CEUS | Contrast-Enhanced Endoscopic Ultrasound |
MRI | Magnetic Resonance Imaging |
IHC | Immunohistochemistry |
H&E | Hematoxylin and Eosin |
POPF | Post-Operative Pancreatic Fistula |
P-Net | Pancreatic Neuroendocrine Tumor |
WSI | Whole Slide Image |
TRS | Tumor Response Scoring |
References
- Halbrook, C.J.; Lyssiotis, C.A.; di Magliano, M.P.; Maitra, A. Pancreatic cancer: Advances and challenges. Cell 2023, 186, 1729–1754. [Google Scholar] [CrossRef] [PubMed]
- Nakaoka, K.; Ohno, E.; Kawabe, N.; Kuzuya, T.; Funasaka, K.; Nakagawa, Y.; Nagasaka, M.; Ishikawa, T.; Watanabe, A.; Tochio, T.; et al. Current status of the diagnosis of early-stage pancreatic ductal adenocarcinoma. Diagnostics 2023, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Kolbeinsson, H.M.; Chandana, S.; Wright, G.P.; Chung, M. Pancreatic cancer: A review of current treatment and novel therapies. J. Investig. Surg. 2023, 36, 2129884. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, W. Pancreatic cancer: A review of risk factors, diagnosis, and treatment. Technol. Cancer Res. Treat. 2020, 19, 1533033820962117. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Heller, D.R.; Nicolson, N.G.; Ahuja, N.; Khan, S.; Kunstman, J.W. Association of treatment inequity and ancestry with pancreatic ductal adenocarcinoma survival. JAMA Surg. 2020, 155, e195047. [Google Scholar] [CrossRef] [PubMed]
- Permuth, J.B.; Vyas, S.; Li, J.; Chen, D.T.; Jeong, D.; Choi, J.W. Comparison of radiomic features in a diverse cohort of patients with pancreatic ductal adenocarcinomas. Front. Oncol. 2021, 11, 712950. [Google Scholar] [CrossRef]
- Sharma, A.; Chari, S.T. Pancreatic cancer and diabetes mellitus. Curr. Treat. Options Gastroenterol. 2018, 16, 466–478. [Google Scholar] [CrossRef]
- Pandol, S.J.; Apte, M.V.; Wilson, J.S.; Gukovskaya, A.S.; Edderkaoui, M. The burning question: Why is smoking a risk factor for pancreatic cancer? Pancreatology 2012, 12, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Bogumil, D.; Stram, D.; Preston, D.L.; Pandol, S.J.; Wu, A.H.; McKean-Cowdin, R.; Conti, D.V.; Setiawan, V.W. Excess pancreatic cancer risk due to smoking and modifying effect of quitting smoking: The Multiethnic Cohort Study. Cancer Causes Control 2024, 35, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic cancer: Pathogenesis, screening, diagnosis, and treatment. Gastroenterology 2022, 163, 386–402. [Google Scholar] [CrossRef] [PubMed]
- Pancreatic Cancer Action Network. Genetics and Hereditary Factors of Pancreatic Cancer. Available online: https://pancan.org/facing-pancreatic-cancer/about-pancreatic-cancer/risk-factors/genetic-hereditary/ (accessed on 30 April 2024).
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, M.; Koreyasu, R.; Kamimura, K.; Tsutsumi, Y. Pancreatic intraductal papillary mucinous neoplasm with hyaline globules (thanatosomes): Report of two cases. Int. Med. Case Rep. J. 2021, 14, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Asafo-Agyei, K.O.; Osueni, A.; Mukherjee, S. Pancreatic Cysts; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525979/ (accessed on 30 April 2024).
- Lisotti, A.; Napoleon, B.; Facciorusso, A.; Cominardi, A.; Crinò, S.F.; Brighi, N.; Gincul, R.; Kitano, M.; Yamashita, Y.; Marchegiani, G.; et al. Contrast-enhanced EUS for the characterization of mural nodules within pancreatic cystic neoplasms: Systematic review and meta-analysis. Gastrointest. Endosc. 2021, 94, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Moris, M.; Bridges, M.D.; Pooley, R.A.; Raimondo, M.; Woodward, T.A.; Stauffer, J.A.; Asbun, H.J.; Wallace, M.B. Association between advances in high-resolution cross-section imaging technologies and increase in prevalence of pancreatic cysts from 2005 to 2014. Clin. Gastroenterol. Hepatol. 2016, 14, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Intraductal Papillary Mucinous Neoplasm (IPMN): What It Is. Available online: https://my.clevelandclinic.org/health/diseases/23176-intraductal-papillary-mucinous-neoplasm-ipmn (accessed on 30 April 2024).
- Jeong, D.; Morse, B.; Polk, S.L.; Chen, D.T.; Li, J.; Hodul, P.; Centeno, B.A.; Costello, J.; Jiang, K.; Machado, S.; et al. Pancreatic Cyst Size Measurement on Magnetic Resonance Imaging Compared to Pathology. Cancers 2024, 16, 206. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic Cancer: A Review. JAMA 2021, 326, 851–862. [Google Scholar] [CrossRef]
- Heinrich, S.; Lang, H. Neoadjuvant therapy of pancreatic cancer: Definitions and benefits. Int. J. Mol. Sci. 2017, 18, 1622. [Google Scholar] [CrossRef]
- Qian, Y.; Gong, Y.; Fan, Z.; Luo, G.; Huang, Q.; Deng, S.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 2020, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Park, C.M.; Kwon, H.; Lee, K.H. Erlotinib plus gemcitabine versus gemcitabine for pancreatic cancer: Real-world analysis of Korean national database. BMC Cancer 2016, 16, 443. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA: A Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed]
- Luchini, C.; Pea, A.; Scarpa, A. Artificial intelligence in oncology: Current applications and future perspectives. Br. J. Cancer 2022, 126, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.M.; Papanikolaou, N.; Bick, U.; Illing, R.; Kahn Jr, C.E.; Kalpathi-Cramer, J.; Matos, C.; Martí-Bonmatí, L.; Miles, A.; Mun, S.K.; et al. Artificial intelligence and machine learning in cancer imaging. Commun. Med. 2022, 2, 133. [Google Scholar] [CrossRef] [PubMed]
- Waqas, A.; Tripathi, A.; Ramachandran, R.P.; Stewart, P.; Rasool, G. Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review. arXiv 2023, arXiv:2303.06471. [Google Scholar]
- Hayashi, H.; Uemura, N.; Matsumura, K.; Zhao, L.; Sato, H.; Shiraishi, Y.; Yamashita, Y.i.; Baba, H. Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma. World J. Gastroenterol. 2021, 27, 7480. [Google Scholar] [CrossRef]
- Qureshi, T.A.; Javed, S.; Sarmadi, T.; Pandol, S.J.; Li, D. Artificial intelligence and imaging for risk prediction of pancreatic cancer. Chin. Clin. Oncol. 2022, 11, 1. [Google Scholar] [CrossRef]
- Schuurmans, M.; Alves, N.; Vendittelli, P.; Huisman, H.; Hermans, J.; Litjens, G.; Chang, D.; Verbeke, C.; Malats, N.; Löhr, M. Artificial intelligence in pancreatic ductal adenocarcinoma imaging: A commentary on potential future applications. Gastroenterology 2023, 165, 309–316. [Google Scholar] [CrossRef]
- Ladd, A.M.; Diehl, D.L. Artificial intelligence for early detection of pancreatic adenocarcinoma: The future is promising. World J. Gastroenterol. 2021, 27, 1283. [Google Scholar] [CrossRef]
- Osipov, A.; Nikolic, O.; Gertych, A.; Parker, S.; Hendifar, A.; Singh, P.; Filippova, D.; Dagliyan, G.; Ferrone, C.R.; Zheng, L.; et al. The Molecular Twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients. Nat. Cancer 2024, 5, 299–314. [Google Scholar] [CrossRef]
- Derk, C.F. Klatte and Michael B. Wallace and Matthias Löhr and Marco J. Bruno and Monique E. van Leerdam. Hereditary pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 2022, 58–59, 101783. [Google Scholar]
- Muhammad, W.; Hart, G.R.; Nartowt, B.; Farrell, J.J.; Johung, K.; Liang, Y.; Deng, J. Pancreatic cancer prediction through an artificial neural network. Front. Artif. Intell. 2019, 2, 2. [Google Scholar] [CrossRef]
- Appelbaum, L.; Cambronero, J.P.; Stevens, J.P.; Horng, S.; Pollick, K.; Silva, G.; Haneuse, S.; Piatkowski, G.; Benhaga, N.; Duey, S.; et al. Development and validation of a pancreatic cancer risk model for the general population using electronic health records: An observational study. Eur. J. Cancer 2021, 143, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Roch, A.M.; Mehrabi, S.; Krishnan, A.; Schmidt, H.E.; Kesterson, J.; Beesley, C.; Dexter, P.R.; Palakal, M.; Schmidt, C.M. Automated pancreatic cyst screening using natural language processing: A new tool in the early detection of pancreatic cancer. Hpb 2015, 17, 447–453. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Zhuang, P.; Cao, H.; Wu, S.; Tan, Z.; Gao, S.; Li, P.; Jin, W.; Shao, Z.; et al. A novel staging system derived from natural language processing of pathology reports to predict prognostic outcomes of pancreatic cancer: A retrospective cohort study. Int. J. Surg. 2023, 109, 3476–3489. [Google Scholar] [CrossRef]
- Placido, D.; Yuan, B.; Hjaltelin, J.X.; Zheng, C.; Haue, A.D.; Chmura, P.J.; Yuan, C.; Kim, J.; Umeton, R.; Antell, G.; et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat. Med. 2023, 29, 1113–1122. [Google Scholar] [CrossRef]
- Qureshi, T.A.; Gaddam, S.; Wachsman, A.M.; Wang, L.; Azab, L.; Asadpour, V.; Chen, W.; Xie, Y.; Wu, B.; Pandol, S.J.; et al. Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images. Cancer Biomarkers 2022, 33, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yu, Q.; Chu, L.; Kawamoto, S.; Park, S.; Liu, F.; Chen, J.; Zhu, Z.; Li, B.; Zhou, Z.; et al. The felix project: Deep networks to detect pancreatic neoplasms. medRxiv 2022. [Google Scholar] [CrossRef]
- Kenner, B.; Chari, S.T.; Kelsen, D.; Klimstra, D.S.; Pandol, S.J.; Rosenthal, M.; Rustgi, A.K.; Taylor, J.A.; Yala, A.; Abul-Husn, N.; et al. Artificial intelligence and early detection of pancreatic cancer: 2020 summative review. Pancreas 2021, 50, 251. [Google Scholar] [CrossRef]
- Jia, K.; Kundrot, S.; Palchuk, M.B.; Warnick, J.; Haapala, K.; Kaplan, I.D.; Rinard, M.; Appelbaum, L. A pancreatic cancer risk prediction model (Prism) developed and validated on large-scale US clinical data. Ebiomedicine 2023, 98, 104888. [Google Scholar] [CrossRef]
- Watson, M.D.; Lyman, W.B.; Passeri, M.J.; Murphy, K.J.; Sarantou, J.P.; Iannitti, D.A.; Martinie, J.B.; Vrochides, D.; Baker, E.H. Use of artificial intelligence deep learning to determine the malignant potential of pancreatic cystic neoplasms with preoperative computed tomography imaging. Am. Surg. 2021, 87, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chao, W.L.; Cao, T.; Culp, S.; Napoléon, B.; El-Dika, S.; Machicado, J.D.; Pannala, R.; Mok, S.; Luthra, A.K.; et al. Improving Pancreatic Cyst Management: Artificial Intelligence-Powered Prediction of Advanced Neoplasms through Endoscopic Ultrasound-Guided Confocal Endomicroscopy. Biomimetics 2023, 8, 496. [Google Scholar] [CrossRef]
- Hernandez-Barco, Y.G.; Daye, D.; Fernandez-del Castillo, C.F.; Parker, R.F.; Casey, B.W.; Warshaw, A.L.; Ferrone, C.R.; Lillemoe, K.D.; Qadan, M. IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms. Ann. Hepato-Biliary Surg. 2023, 27, 195. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, Z.; Wang, L.B.; Ai, Y.; Zhang, F.; Lai, M.; Chang, E.I.C. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinform. 2017, 18, 281. [Google Scholar] [CrossRef]
- Fu, H.; Mi, W.; Pan, B.; Guo, Y.; Li, J.; Xu, R.; Zheng, J.; Zou, C.; Zhang, T.; Liang, Z.; et al. Automatic pancreatic ductal adenocarcinoma detection in whole slide images using deep convolutional neural networks. Front. Oncol. 2021, 11, 665929. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Patra, A.; Khasawneh, H.; Korfiatis, P.; Rajamohan, N.; Suman, G.; Majumder, S.; Panda, A.; Johnson, M.P.; Larson, N.B.; et al. Radiomics-based machine-learning models can detect pancreatic cancer on prediagnostic computed tomography scans at a substantial lead time before clinical diagnosis. Gastroenterology 2022, 163, 1435–1446. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Gu, J.; Xu, D.; Song, L.; Zhao, Q.; Cheng, F.; Yuan, Z.; Tian, S.; Yang, X.; Tian, J.; et al. Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis. BMC Med. 2022, 20, 74. [Google Scholar] [CrossRef]
- Cao, K.; Xia, Y.; Yao, J.; Han, X.; Lambert, L.; Zhang, T.; Tang, W.; Jin, G.; Jiang, H.; Fang, X.; et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nat. Med. 2023, 29, 3033–3043. [Google Scholar] [CrossRef]
- Chen, P.T.; Wu, T.; Wang, P.; Chang, D.; Liu, K.L.; Wu, M.S.; Roth, H.R.; Lee, P.C.; Liao, W.C.; Wang, W. Pancreatic cancer detection on CT scans with deep learning: A nationwide population-based study. Radiology 2023, 306, 172–182. [Google Scholar] [CrossRef]
- Kuwahara, T.; Hara, K.; Mizuno, N.; Haba, S.; Okuno, N.; Kuraishi, Y.; Fumihara, D.; Yanaidani, T.; Ishikawa, S.; Yasuda, T.; et al. Artificial intelligence using deep learning analysis of endoscopic ultrasonography images for the differential diagnosis of pancreatic masses. Endoscopy 2023, 55, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Viviers, C.G.; Ramaekers, M.; de With, P.H.; Mavroeidis, D.; Nederend, J.; Luyer, M.; van der Sommen, F. Improved pancreatic tumor detection by utilizing clinically-relevant secondary features. In MICCAI Workshop on Cancer Prevention through Early Detection; Springer: Berlin/Heidelberg, Germany, 2022; pp. 139–148. [Google Scholar]
- Tayebi Arasteh, S.; Ziller, A.; Kuhl, C.; Makowski, M.; Nebelung, S.; Braren, R.; Rueckert, D.; Truhn, D.; Kaissis, G. Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging. arXiv 2023, arXiv:2302.01622. [Google Scholar]
- Qiu, W.; Duan, N.; Chen, X.; Ren, S.; Zhang, Y.; Wang, Z.; Chen, R. Pancreatic ductal adenocarcinoma: Machine learning–based quantitative computed tomography texture analysis for prediction of histopathological grade. Cancer Manag. Res. 2019, 11, 9253–9264. [Google Scholar] [CrossRef]
- Bakasa, W.; Viriri, S. Vgg16 feature extractor with extreme gradient boost classifier for pancreas cancer prediction. J. Imaging 2023, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Cen, C.; Wang, C.; Wang, S.; Wen, K.; Liu, L.; Li, X.; Wu, L.; Huang, M.; Ma, L.; Liu, H.; et al. Clinical-radiomics nomogram using contrast-enhanced CT to predict histological grade and survival in pancreatic ductal adenocarcinoma. Front. Oncol. 2023, 13, 1218128. [Google Scholar] [CrossRef] [PubMed]
- Si, K.; Xue, Y.; Yu, X.; Zhu, X.; Li, Q.; Gong, W.; Liang, T.; Duan, S. Fully end-to-end deep-learning-based diagnosis of pancreatic tumors. Theranostics 2021, 11, 1982. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, B.; Ghoshal, B.; Tucker, A. Leveraging uncertainty in deep learning for pancreatic adenocarcinoma grading. In Annual Conference on Medical Image Understanding and Analysis; Springer: Berlin/Heidelberg, Germany, 2022; pp. 565–577. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Chen, J.; Mei, J.; Li, X.; Lu, Y.; Yu, Q.; Wei, Q.; Luo, X.; Xie, Y.; Adeli, E.; Wang, Y.; et al. 3d transunet: Advancing medical image segmentation through vision transformers. arXiv 2023, arXiv:2310.07781. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27. Available online: https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf (accessed on 30 April 2024).
- Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 2014, 9, 211–407. [Google Scholar] [CrossRef]
- Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-preserving federated brain tumour segmentation. In Proceedings of the Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 13 October 2019; Proceedings 10. Springer: Berlin/Heidelberg, Germany, 2019; pp. 133–141. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Sehmi, M.N.M.; Fauzi, M.F.A.; Ahmad, W.S.H.M.W.; Chan, E.W.L. Pancreatic cancer grading in pathological images using deep learning convolutional neural networks. F1000Research 2021, 10, 1057. [Google Scholar] [CrossRef]
- van Dam, J.; Verkolf, E.; Dekker, E.; Bonsing, B.; Bratlie, S.; Brosens, L.; Busch, O.; van Driel, L.; van Eijck, C.; Feshtali, S.; et al. Perioperative or adjuvant mFOLFIRINOX for resectable pancreatic cancer (PREOPANC-3): Study protocol for a multicenter randomized controlled trial. BMC Cancer 2023, 23, 728. [Google Scholar] [CrossRef] [PubMed]
- Nimgaonkar, V.; Krishna, V.; Krishna, V.; Tiu, E.; Joshi, A.; Vrabac, D.; Bhambhvani, H.; Smith, K.; Johansen, J.S.; Makawita, S.; et al. Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer. Cell Rep. Med. 2023, 4, 101013. [Google Scholar] [CrossRef] [PubMed]
- Nevala-Plagemann, C.; Hidalgo, M.; Garrido-Laguna, I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat. Rev. Clin. Oncol. 2020, 17, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Lyu, T.; Xiong, F.; Wang, J.; Ke, W.; Li, Z. Mgnn: A multimodal graph neural network for predicting the survival of cancer patients. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020; pp. 1697–1700. [Google Scholar]
- Mu, W.; Liu, C.; Gao, F.; Qi, Y.; Lu, H.; Liu, Z.; Zhang, X.; Cai, X.; Ji, R.Y.; Hou, Y.; et al. Prediction of clinically relevant pancreatico-enteric anastomotic fistulas after pancreatoduodenectomy using deep learning of preoperative computed tomography. Theranostics 2020, 10, 9779. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.D.; Baimas-George, M.R.; Murphy, K.J.; Pickens, R.C.; Iannitti, D.A.; Martinie, J.B.; Baker, E.H.; Vrochides, D.; Ocuin, L.M. Pure and hybrid deep learning models can predict pathologic tumor response to neoadjuvant therapy in pancreatic adenocarcinoma: A pilot study. Am. Surg. 2021, 87, 1901–1909. [Google Scholar] [CrossRef]
- Wei, Q.; Ramsey, S.A. Predicting chemotherapy response using a variational autoencoder approach. Bmc Bioinform. 2021, 22, 453. [Google Scholar] [CrossRef] [PubMed]
- Kaissis, G.; Ziegelmayer, S.; Lohöfer, F.; Steiger, K.; Algül, H.; Muckenhuber, A.; Yen, H.Y.; Rummeny, E.; Friess, H.; Schmid, R.; et al. A machine learning algorithm predicts molecular subtypes in pancreatic ductal adenocarcinoma with differential response to gemcitabine-based versus FOLFIRINOX chemotherapy. PLoS ONE 2019, 14, e0218642. [Google Scholar] [CrossRef] [PubMed]
- Preuss, K.; Thach, N.; Liang, X.; Baine, M.; Chen, J.; Zhang, C.; Du, H.; Yu, H.; Lin, C.; Hollingsworth, M.A.; et al. Using quantitative imaging for personalized medicine in pancreatic cancer: A review of radiomics and deep learning applications. Cancers 2022, 14, 1654. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, X. Deep learning for World Health Organization grades of pancreatic neuroendocrine tumors on contrast-enhanced magnetic resonance images: A preliminary study. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1981–1991. [Google Scholar] [CrossRef]
- Kazerouni, A.; Aghdam, E.K.; Heidari, M.; Azad, R.; Fayyaz, M.; Hacihaliloglu, I.; Merhof, D. Diffusion models in medical imaging: A comprehensive survey. Med. Image Anal. 2023, 88, 102846. [Google Scholar] [CrossRef] [PubMed]
- Klimov, S.; Xue, Y.; Gertych, A.; Graham, R.P.; Jiang, Y.; Bhattarai, S.; Pandol, S.J.; Rakha, E.A.; Reid, M.D.; Aneja, R. Predicting metastasis risk in pancreatic neuroendocrine tumors using deep learning image analysis. Front. Oncol. 2021, 10, 593211. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Huang, H.; Zhang, S.; Zhang, D.; Shi, Q.; Liu, J.; Guo, J. Artificial intelligence in pancreatic cancer. Theranostics 2022, 12, 6931. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Schoppe, O.; Parra-Damas, A.; Cai, R.; Todorov, M.I.; Gondi, G.; von Neubeck, B.; Böğürcü-Seidel, N.; Seidel, S.; Sleiman, K.; et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell 2019, 179, 1661–1676. [Google Scholar] [CrossRef] [PubMed]
- Janssen, B.V.; Theijse, R.; van Roessel, S.; de Ruiter, R.; Berkel, A.; Huiskens, J.; Busch, O.R.; Wilmink, J.W.; Kazemier, G.; Valkema, P.; et al. Artificial intelligence-based segmentation of residual tumor in histopathology of pancreatic cancer after neoadjuvant treatment. Cancers 2021, 13, 5089. [Google Scholar] [CrossRef] [PubMed]
- Krishna, V.; Nimgaonkar, V.; Tiu, E.; Krishna, V.; Bhambhvani, H.; Cook, S.; Miller, D.; Vrabac, D.; Joshi, A.; Singhi, A.D.; et al. Gemcitabine response prediction in the adjuvant treatment of resected pancreatic ductal adenocarcinoma using an AI histopathology platform. JCO 2022, 40, e16295. [Google Scholar] [CrossRef]
- Guan, H.; Yap, P.T.; Bozoki, A.; Liu, M. Federated learning for medical image analysis: A survey. Pattern Recognit. 2024, 151, 110424. [Google Scholar] [CrossRef] [PubMed]
- Lautizi, M.; Baumbach, J.; Weichert, W.; Steiger, K.; List, M.; Pfarr, N.; Kacprowski, T. The limits of molecular signatures for pancreatic ductal adenocarcinoma subtyping. NAR Cancer 2022, 4, zcac030. [Google Scholar] [CrossRef] [PubMed]
- Cheerla, A.; Gevaert, O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 2019, 35, i446–i454. [Google Scholar] [CrossRef]
- Sinkala, M.; Mulder, N.; Martin, D. Machine learning and network analyses reveal disease subtypes of pancreatic cancer and their molecular characteristics. Sci. Rep. 2020, 10, 1212. [Google Scholar] [CrossRef]
- Elrakaybi, A.; Ruess, D.A.; Lübbert, M.; Quante, M.; Becker, H. Epigenetics in pancreatic ductal adenocarcinoma: Impact on biology and utilization in diagnostics and treatment. Cancers 2022, 14, 5926. [Google Scholar] [CrossRef] [PubMed]
- Bahado-Singh, R.O.; Turkoglu, O.; Aydas, B.; Vishweswaraiah, S. Precision oncology: Artificial intelligence, circulating cell-free DNA, and the minimally invasive detection of pancreatic cancer—A pilot study. Cancer Med. 2023, 12, 19644–19655. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, M.; Ji, L.; Fan, H. A multi-omics machine learning framework in predicting the recurrence and metastasis of patients with pancreatic adenocarcinoma. Front. Microbiol. 2022, 13, 1032623. [Google Scholar] [CrossRef] [PubMed]
- Ogunleye, A.; Piyawajanusorn, C.; Ghislat, G.; Ballester, P.J. Large-Scale Machine Learning Analysis Reveals DNA Methylation and Gene Expression Response Signatures for Gemcitabine-Treated Pancreatic Cancer. Health Data Sci. 2024, 4, 0108. [Google Scholar] [CrossRef] [PubMed]
- Omori, Y.; Ono, Y.; Tanino, M.; Karasaki, H.; Yamaguchi, H.; Furukawa, T.; Enomoto, K.; Ueda, J.; Sumi, A.; Katayama, J.; et al. Pathways of progression from intraductal papillary mucinous neoplasm to pancreatic ductal adenocarcinoma based on molecular features. Gastroenterology 2019, 156, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, A.; Polanco, P.M.; Boone, B.A.; Wald, A.I.; McGrath, K.; Brand, R.E.; Khalid, A.; Kubiliun, N.; O’Broin-Lennon, A.M.; Park, W.G.; et al. Prospective, multi-institutional, real-time next-generation sequencing of pancreatic cyst fluid reveals diverse genomic alterations that improve the clinical management of pancreatic cysts. Gastroenterology 2023, 164, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Torre-Healy, L.A.; Kawalerski, R.R.; Oh, K.; Chrastecka, L.; Peng, X.L.; Aguirre, A.J.; Rashid, N.U.; Yeh, J.J.; Moffitt, R.A. Open-source curation of a pancreatic ductal adenocarcinoma gene expression analysis platform (pdacR) supports a two-subtype model. Commun. Biol. 2023, 6, 163. [Google Scholar] [CrossRef]
- Nguyen, N.; Teer, J.K.; Park, M.A.; Beato, F.; McDonald, P.; Fleming, J.B.; Permuth, J.B.; Chen, K.C.; Karolak, A. Text-based Integration of Mutational Profiles for Classification and Biomarker Identification of Intraductal Papillary Mucinous Neoplasms of the Pancreas. medRxiv 2023. [Google Scholar] [CrossRef]
Trial ID | Location | Study | Study Start Date | Enrollment |
---|---|---|---|---|
NCT04743479 | Shanghai, China | ESPRIT-AI | 20 December 2020 | 5000 |
NCT03452774 | New York, NY, USA | SYNERGY-AI | 1 January 2018 | 50,000 |
NCT06055010 | Utrecht, The Netherlands | IMPACT | 1 January 2014 | 5000 |
NCT06320717 | Buffalo, NY, USA | AI Derived Biomarker to Select Neoadjuvant Treatment for Borderline Resectable Pancreatic Ductal Adenocarcinoma | 2 January 2024 | 100 |
NCT04899739 | Strasbourg, France | EchoSurg | 5 December 2021 | 45 |
NCT06256705 | Clichy, France | OPERANDI-NET | 25 March 2024 | 80 |
NCT05729737 | Beijing, China | Radiographic Response to Chemotherapy in Unresected Localized Pancreatic Cancer | 1 January 2022 | 100 |
Category | Ref | Dataset | AI/ML Model | Metrics |
---|---|---|---|---|
Classical ML | [36] | NHIS features | ANN | AUC = 0.85 |
[37] | EHR | Logistic Regression | AUC = 0.71 | |
NLP | [38] | Medical Textbooks, Patient Records | Dependency Parser | Sens = 0.99 |
[39] | Pathology Reports | Encoder/Decoder + Autoregressive Transformer | F-1 = 0.89 | |
[40] | ICD-8 + ICD-10 | Transformer | AUC = 0.88 | |
CV | [41] | CT Scans | 3-D U-Net | DSC = 0.87 |
[42] | CT Scans | Naive Bayes | Acc = 0.86 |
Category | Ref | Dataset | AI/ML Model | Metrics |
---|---|---|---|---|
Monitoring cysts and lesions | [46] | EUS Confocal Microscopy | Mask-R-CNN + VGGNet | Acc = 0.74 |
[45] | CT Scans | LeNet | Acc = 0.89 | |
[47] | Clinical + Pathological Features | SVM | Acc = 0.77 |
Category | Ref | Dataset | AI/ML Model | Metrics |
---|---|---|---|---|
Detection | [50] | CT | SVM | Acc = 0.922 |
[51] | CEUS | ResNet-50 | AUC = 0.953 | |
[52] | CT | CNNs | AUC = 0.986 | |
[53] | CT | 3D TransUNet | Sens = 0.91 | |
[54] | EUS | EfficientNetV2-L | Sens = 0.96 | |
[55] | CECT | 3D U-Net | Sens = 0.99 | |
[56] | CT | ResNet9 | AUC = 0.95 | |
Diagnosis | [57] | CECT | SVM | Acc = 0.86 |
[58] | CT | VGG16-XGBoost | Acc = 0.97 | |
[59] | CECT | LASSO Regression | AUC = 0.75 | |
[60] | CT | CNNs | Acc = 0.867 | |
[61] | H&E Slides | Bayesian DenseNet-201 | Acc = 0.856 |
Category | Ref | Dataset | Model | Metrics |
---|---|---|---|---|
Patient Treatment Stratification | [75] | MRI | CNN | AUC = 0.85 |
[76] | CT | CNN | Acc = 0.87 | |
Treatment Outcome Prediction | [76] | CT | CNN | Acc = 0.87 |
[77] | CT | CNN | AUC = 0.785 | |
[78] | RNA-seq | VAE/XGBoost | AUC = 0.74 | |
[79] | IHC | XGBoost | Sens = 0.92 | |
[73] | H&E | Hover-Net | Hazard Ratio = 2.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukund, A.; Afridi, M.A.; Karolak, A.; Park, M.A.; Permuth, J.B.; Rasool, G. Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence. Cancers 2024, 16, 2240. https://doi.org/10.3390/cancers16122240
Mukund A, Afridi MA, Karolak A, Park MA, Permuth JB, Rasool G. Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence. Cancers. 2024; 16(12):2240. https://doi.org/10.3390/cancers16122240
Chicago/Turabian StyleMukund, Ashwin, Muhammad Ali Afridi, Aleksandra Karolak, Margaret A. Park, Jennifer B. Permuth, and Ghulam Rasool. 2024. "Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence" Cancers 16, no. 12: 2240. https://doi.org/10.3390/cancers16122240
APA StyleMukund, A., Afridi, M. A., Karolak, A., Park, M. A., Permuth, J. B., & Rasool, G. (2024). Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence. Cancers, 16(12), 2240. https://doi.org/10.3390/cancers16122240