Stereotactic Body Radiotherapy (SBRT) to Localised Prostate Cancer in the Era of MRI-Guided Adaptive Radiotherapy: Doses Delivered in the HERMES Trial Comparing Two- and Five-Fraction Treatments
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Pre-Treatment Workflow
2.3. Treatment Workflow
2.4. Dosimetric Analysis
2.5. Dose Delivered
2.6. Electron Return Effect
3. Results
3.1. Percentage of Target Volumes Meeting the Mandatory Dose Constraints
3.2. Target Coverage
3.3. OAR Received Dose
3.4. Electron Return Effect
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenner, D.J.; Hall, E.J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Ritter, M.A. The α/β ratio for prostate cancer: What is it, really? Radiother. Oncol. 2005, 76, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Vogelius, I.R.; Bentzen, S.M. Dose Response and Fractionation Sensitivity of Prostate Cancer After External Beam Radiation Therapy: A Meta-analysis of Randomized Trials. Radiat. Oncol. Biol. 2018, 100, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfi, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- McPartlin, A.J.; Glicksman, R.; Pintilie, M.; Tsuji, D.; Mok, G.; Bayley, A.; Chung, P.; Bristow, R.G.; Gospodarowicz, M.K.; Catton, C.N.; et al. PMH 9907: Long-term outcomes of a randomized phase 3 study of short-term bicalutamide hormone therapy and dose-escalated external-beam radiation therapy for localized prostate cancer. Cancer 2016, 122, 2595–2603. [Google Scholar] [CrossRef]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.P.; Michalski, J.M.; Dayes, I.S.; et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J. Clin. Oncol. 2016, 34, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Widmark, A.; Gunnlaugsson, A.; Beckman, L.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; Ginman, C.; Johansson, B.; Björnlinger, K.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 2019, 394, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.C.; Silva, J.; Hartman, H.E.; Dess, R.T.; Kishan, A.U.; Beeler, W.H.; Gharzai, L.A.; Jaworski, E.M.; Mehra, R.; Hearn, J.W.D.; et al. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.M.; Bloch, D.A.; Cotrutz, C.; Beckman, A.C.; Henning, G.T.; Woodhouse, S.A.; Williamson, S.K.; Mohideen, N.; Dombrowski, J.J.; Hong, R.L.; et al. Multicenter Trial of Stereotactic Body Radiation Therapy for Low- and Intermediate-Risk Prostate Cancer: Survival and Toxicity Endpoints. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 296–303. [Google Scholar] [CrossRef]
- Yuan, Y.; Aghdam, N.; King, C.R.; Fuller, D.B.; Weng, J.; Chu, F.I.; Mardirossian, G.; Patel, A.; Nickols, N.G.; Kupelian, P.A.; et al. Testosterone Levels and Sexual Quality of Life after Stereotactic Body Radiation Therapy for Prostate Cancer: A Multi-Institutional Analysis of Prospective Trials. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 149–154. [Google Scholar] [CrossRef]
- Kerkmeijer, L.G.W.; Groen, V.H.; Pos, F.J.; Haustermans, K.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; de Boer, J.C.J.; van der Voort van Zijp, J.; van Vulpen, M.; et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients with Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Draulans, C.; van der Heide, U.A.; Haustermans, K.; Pos, F.J.; van der Voort van Zyp, J.; De Boer, H.; Groen, V.H.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; et al. Primary endpoint analysis of the multicentre phase II hypo-FLAME trial for intermediate and high risk prostate cancer. Radiother. Oncol. 2020, 147, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.L.; Cheung, P.; Chung, H.; Chu, W.; Detsky, J.; Liu, S.; hoskin, G.; Szumacher, E.; Tseng, C.L.; Vesprini, D.; et al. Two-fraction stereotactic ablative radiotherapy with simultaneous boost to MRI-defined dominant intra-prostatic lesion—Results from the 2SMART phase 2 trial. Radiother. Oncol. 2023, 181, 109503. [Google Scholar] [CrossRef]
- Brennan, V.S.; Burleson, S.; Kostrzewa, C.; Godoy Scripes, P.; Subashi, E.; Zhang, Z.; Tyagi, N.; Zelefsky, M.J. SBRT focal dose intensification using an MR-Linac adaptive planning for intermediate-risk prostate cancer: An analysis of the dosimetric impact of intra-fractional organ changes. Radiother. Oncol. 2023, 179, 109441. [Google Scholar] [CrossRef] [PubMed]
- Raaymakers, B.W.; Lagendijk, J.J.W.; Overweg, J.; Kok, J.G.M.; Raaijmakers, A.J.E.; Kerkhof, E.M.; Van Der Put, R.W.; Meijsing, I.; Crijns, S.P.M.; Benedosso, F.; et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: Proof of concept. Phys. Med. Biol. 2009, 54, N229-37. [Google Scholar] [CrossRef] [PubMed]
- Tocco, B.R.; Kishan, A.U.; Ma, T.M.; Kerkmeijer, L.G.W.; Tree, A.C. MR-Guided Radiotherapy for Prostate Cancer. Front. Oncol. 2020, 10, 616291. [Google Scholar] [CrossRef] [PubMed]
- Westley, D.R.L.; Biscombe, K.; Dunlop, A.; Mitchell, A.; Oelfke, U.; Nil, S.; Murray, J.; Pathmanathan, A.; Hafeez, S.; Parker, C.; et al. Interim toxicity analysis from the randomised HERMES trial of 2- and 5-fraction MRI-guided adaptive prostate radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2023, 118, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.E.; Oelfke, U.; McNair, H.A.; Tree, A.C. GI factors, potential to predict prostate motion during radiotherapy; a scoping review. Clin. Transl. Radiat. Oncol. 2023, 40, 100604. [Google Scholar] [CrossRef] [PubMed]
- Raaijmakers, A.J.E.; Raaymakers, B.W.; Lagendijk, J.J.W. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys. Med. Biol. 2005, 50, 1363–1376. [Google Scholar] [CrossRef]
- Godoy Scripes, P.; Subashi, E.; Burleson, S.; Liang, J.; Romesser, P.; Crane, C.; Mechalakos, J.; Hunt, M.; Tyagi, N. Impact of varying air cavity on planning dosimetry for rectum patients treated on a 1.5 T hybrid MR-linac system. J. Appl. Clin. Med. Phys. 2020, 21, 144–152. [Google Scholar] [CrossRef]
- de Mol van Otterloo, S.R.; Christodouleas, J.P.; Blezer, E.L.A.; Akhiat, H.; Brown, K.; Choudhury, A.; Eggert, D.; Erickson, B.A.; Faivre-Finn, C.; Fuller, C.D.; et al. The MOMENTUM Study: An International Registry for the Evidence-Based Introduction of MR-Guided Adaptive Therapy. Front Oncol. 2020, 10, 1328. [Google Scholar] [CrossRef] [PubMed]
- Tree, A.C.; Ostler, P.; van der Voet, H.; Chu, W.; Loblaw, A.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; Staffurth, J.; et al. Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2022, 23, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, A.; Mitchell, A.; Tree, A.; Barnes, H.; Bower, L.; Chick, J.; Goodwin, E.; Herbert, T.; Lawes, R.; McNair, H.; et al. Daily adaptive radiotherapy for patients with prostate cancer using a high field MR-linac: Initial clinical experiences and assessment of delivered doses compared to a C-arm linac. Clin. Transl. Radiat. Oncol. 2020, 23, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Willigenburg, T.; Zachiu, C.; Bol, G.H.; de Groot-van Beugel, E.N.; Lagendijk, J.J.W.; van der Voort van Zyp, J.R.N.; Raaymakers, B.W.; de Boer, J.C.J. Clinical application of a sub-fractionation workflow for intrafraction re-planning during prostate radiotherapy treatment on a 1.5 Tesla MR-Linac: A practical method to mitigate intrafraction motion. Radiother. Oncol. 2022, 176, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Soh, R. Advantages of MR-guided radiotherapy with comprehensive motion management using Elekta Unity. J. Med. Imaging Radiat. Sci. 2023, 54, S1. [Google Scholar] [CrossRef]
- Hoskin, P.; Rojas, A.; Ostler, P.; Hughes, R.; Alonzi, R.; Lowe, G.; Bryant, L. High-dose-rate brachytherapy alone given as two or one fraction to patients for locally advanced prostate cancer: Acute toxicity. Radiother. Oncol. 2014, 110, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Jawad, M.S.; Dilworth, J.T.; Gustafson, G.S.; Ye, H.; Wallace, M.; Martinez, A.; Chen, P.Y.; Krauss, D.J. Outcomes Associated with 3 Treatment Schedules of High-Dose-Rate Brachytherapy Monotherapy for Favorable-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Morton, G.; McGuffin, M.; Chung, H.T.; Tseng, C.L.; Helou, J.; Ravi, A.; Cheung, P.; Szumacher, E.; Liu, S.; Chu, W.; et al. Prostate high dose-rate brachytherapy as monotherapy for low and intermediate risk prostate cancer: Early toxicity and quality-of life results from a randomized phase II clinical trial of one fraction of 19Gy or two fractions of 13.5Gy. Radiother. Oncol. 2017, 122, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Ferini, G.; Zagardo, V.; Valenti, V.; Aiello, D.; Federico, M.; Fazio, I.; Harikar, M.M.; Marchese, V.A.; Illari, S.I.; Viola, A.; et al. Towards Personalization of Planning Target Volume Margins Fitted to the Abdominal Adiposity in Localized Prostate Cancer Patients Receiving Definitive or Adjuvant/Salvage Radiotherapy: Suggestive Data from an ExacTrac vs. CBCT Comparison. Anticancer Res. 2023, 43, 4077–4088. [Google Scholar] [CrossRef]
- Ferini, G.; Pergolizzi, S. A ten-year-long update on radiation proctitis among prostate cancer patients treated with curative external beam radiotherapy. In Vivo Int. Inst. Anticancer. Res. 2021, 35, 1379–1391. [Google Scholar] [CrossRef]
- Ferini, G.; Tripoli, A.; Molino, L.; Cacciola, A.; Lillo, S.; Parisi, S.; Umina, V.; Illari, S.I.; Marchese, V.A.; Cravagno, I.R.; et al. How much daily image-guided volumetric modulated arc therapy is useful for proctitis prevention with respect to static intensity modulated radiotherapy supported by topical medications among localized prostate cancer patients? Anticancer Res. 2021, 41, 2101–2110. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.U.; Ma, T.M.; Lamb, J.M.; Casado, M.; Wilhalme, H.; Low, D.A.; Sheng, K.; Sharma, S.; Nickols, N.G.; Pham, J.; et al. Magnetic Resonance Imaging-Guided vs Computed Tomography-Guided Stereotactic Body Radiotherapy for Prostate Cancer: The MIRAGE Randomized Clinical Trial. JAMA Oncol. 2023, 9, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.R.; Clark, M.A.; Patel, P.; Kafka-Peterson, K.; Zaide, L.; Ma, T.M.; Steinberg, M.L.; Cao, M.; Raldow, A.C.; Lamb, J.; et al. Time-Driven Activity-Based Costing of CT-Guided vs MR-Guided Prostate SBRT. Appl. Radiat. 2021, 10, 33. [Google Scholar] [CrossRef]
- Kraus, R.D.; Weil, C.R.; Abdel-Wahab, M. Benefits of Adopting Hypofractionated Radiotherapy as a Standard of Care in Low-and Middle-Income Countries. JCO Glob. Oncol. 2022, 8, e2200215. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, W.M.; Glassman, G.; Morris, C.G.; Costa, J.A.; Williams, C.R.; Harris, S.E.; Mandia, S.E.; Hoppe, B.S.; Henderson, R.H.; Bryant, C.M.; et al. Bacterial Urinary Tract Infection after Transrectal Placement of Fiducial Markers prior to Proton Radiotherapy for Prostate Cancer. Int. J. Part. Ther. 2016, 3, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Pommer, T.; Oh, J.H.; Munck af Rosenschöld, P.; Deasy, J.O. Simulating intrafraction prostate motion with a random walk model. Adv. Radiat Oncol. 2017, 2, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Fredman, E.; Icht, O.; Moore, A.; Bragilovski, D.; Kindler, J.; Golan, S.; Limon, D. SABR-Dual: A phase II/III trial of two-fraction versus five-fraction stereotactic radiotherapy for localized low- and favorable intermediate-risk prostate cancer. BMC Cancer 2024, 24, 431. [Google Scholar] [CrossRef]
- Wolfe, S.; Diven, M.A.; Marciscano, A.E.; Zhou, X.K.; Kishan, A.U.; Steinberg, M.L.; Miccio, J.A.; Camilleri, P.; Nagar, H. A randomized phase II trial of MR-guided prostate stereotactic body radiotherapy administered in 5 or 2 fractions for localized prostate cancer (FORT). BMC Cancer 2023, 23, 923. [Google Scholar] [CrossRef]
A. | Target Dosimetric Criterion | |
Structure | 2-fraction | 5-fraction |
GTV_27 | V27 Gy > 95% (−5%) | NA |
CTVpsv | V24 Gy > 95% (−5%) | V36.25 Gy > 95% |
CTVsv (lower high-risk patients) | V20 Gy > 95% (−5%) | V30 Gy > 95% |
B. | OAR Dosimetric Criterion | |
Structure | 2-fraction | 5-fraction |
Urethra | D10% < 26 Gy (+1 Gy) | D50% < 42 Gy |
Bladder | D5 cm3 < V20.8 Gy | D5 cm3 (+5 cm3) < V37 Gy |
D15 cm3 < V14.6 Gy | D40% < 18.1 Gy | |
Rectum | D1 cm3 < 20.8 Gy | D1 cm3 (+1 cm3) < 36 Gy |
D4 cm3 < 17.6 Gy | D20% < 29 Gy |
Mandatory Constraints Met (%) | |||||
---|---|---|---|---|---|
Cohort | Target | Dosimetric Criterion | Session | Verif | Post |
2-fraction | GTV | V27 Gy > 95% (−5%) | 100% | 89% | 89% |
CTVpsv | V24 Gy > 95% (−5%) | 100% | 100% | 90% | |
CTVsv | V20 Gy > 95% (−5%) | 100% | 100% | 92% | |
5-fraction | CTVpsv | V36.25 Gy > 95% | 100% | 100% | 88% |
CTVsv | V30 Gy > 95% | 100% | 100% | 92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westley, R.; Casey, F.; Mitchell, A.; Alexander, S.; Nill, S.; Murray, J.; Ratnakumaran, R.; Pathmanathan, A.; Oelfke, U.; Dunlop, A.; et al. Stereotactic Body Radiotherapy (SBRT) to Localised Prostate Cancer in the Era of MRI-Guided Adaptive Radiotherapy: Doses Delivered in the HERMES Trial Comparing Two- and Five-Fraction Treatments. Cancers 2024, 16, 2073. https://doi.org/10.3390/cancers16112073
Westley R, Casey F, Mitchell A, Alexander S, Nill S, Murray J, Ratnakumaran R, Pathmanathan A, Oelfke U, Dunlop A, et al. Stereotactic Body Radiotherapy (SBRT) to Localised Prostate Cancer in the Era of MRI-Guided Adaptive Radiotherapy: Doses Delivered in the HERMES Trial Comparing Two- and Five-Fraction Treatments. Cancers. 2024; 16(11):2073. https://doi.org/10.3390/cancers16112073
Chicago/Turabian StyleWestley, Rosalyne, Francis Casey, Adam Mitchell, Sophie Alexander, Simeon Nill, Julia Murray, Ragu Ratnakumaran, Angela Pathmanathan, Uwe Oelfke, Alex Dunlop, and et al. 2024. "Stereotactic Body Radiotherapy (SBRT) to Localised Prostate Cancer in the Era of MRI-Guided Adaptive Radiotherapy: Doses Delivered in the HERMES Trial Comparing Two- and Five-Fraction Treatments" Cancers 16, no. 11: 2073. https://doi.org/10.3390/cancers16112073
APA StyleWestley, R., Casey, F., Mitchell, A., Alexander, S., Nill, S., Murray, J., Ratnakumaran, R., Pathmanathan, A., Oelfke, U., Dunlop, A., & Tree, A. C. (2024). Stereotactic Body Radiotherapy (SBRT) to Localised Prostate Cancer in the Era of MRI-Guided Adaptive Radiotherapy: Doses Delivered in the HERMES Trial Comparing Two- and Five-Fraction Treatments. Cancers, 16(11), 2073. https://doi.org/10.3390/cancers16112073