Surgical Management of High-Grade Meningiomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Perioperative Considerations
3. Surgical Strategy and Technical Considerations
3.1. Expose
3.2. Devascularize and Debulk
3.3. Dissect
3.4. Coagulation and Resection of the Dura
4. WHO Grade 2 Meningiomas
4.1. Pathologic Features
4.2. Surgical Outcomes and Survival
Authors | Year | Study Type | Setting | Number of Patients | Mean Follow-Up (Years) | GTR (%) | Recurrence Rate (%) | PFS (Years) | PFS (%) | OS (Years) | OS (%) | Factors Associated with OS iv | Factors Associated with PFS iv | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 Years | 5 Years | 10 Years | 3 Years | 5 Years | 10 Years | ||||||||||||
Aizer et al. [2] i | 2015 | Retrospective | National Cancer Institute Database | 575 | 3.9 | 47.3 | 91.3 (GTR) 78.2 (STR) | Improved: GTR | NA | ||||||||
Kumar et al. [13] i | 2015 | Retrospective | Single institution | 22 | 3.7 | 41.0 | 58% | 83% | NA | NA | |||||||
Soni et al. [14] | 2021 | Retrospective | Single institution | 214 | 4.5 | 73.8 | 31.8 | 1.9 | 70.7 (GTR) 40.5 (STR) | 60.6 (GTR) 25.5 (STR) | 4.2 | 87.8 (GTR) 78.4 (STR) | 83.0 (GTR) 43.1 (STR) | Improved: GTR | Improved: GTR | ||
Goyal et al. [15] | 2000 | Retrospective | Single institution | 22 | 5.5 | 68.2 | 36.4 | 3.8 | 10.6 | 91 | 76 | None | None | ||||
Rydzewski et al. [16] i | 2018 | Retrospective | National Cancer Database | 7811 | 25.1 | 89.3 | 75.9 | Improved: GTR without RT, RT Worse: age > 50, non-Hispanic black race, comorbidity score ≥ 2, community hospital setting | NA | ||||||||
Palma et al. [17] | 1997 | Retrospective | Single institution | 42 | 100 | 52 (5 year) | 11.9 | 77 | 55 | 95 | 79 | Improved: Simpson I | NA | ||||
Durand et al. [18] i | 2009 | Retrospective | Multi institution | 166 | 5.4 | 92.2 | 48.4 | 22.6 | 78.4 | 53.3 | Improved: Simpson I, age < 60 years iii | Improved: No RT | |||||
Yang et al. [19] i | 2008 | Retrospective | Single institution | 40 | 5.3 | 85 | 10 | 11.5 | 87.1 | 11.8 | 89.6 | None | Worse: EOR | ||||
Gabeau-Lacet et al. [20] | 2009 | Retrospective | Single institution | 47 | 5.5 | 27.7 | 4.7 | 65 | 48 | 13.2 | 86 | 61 | Worse: bone involvement | Worse: bone involvement | |||
Jo et al. [21] | 2010 | Retrospective | Single institution | 35 | 3.3 | 31.4 ii | 0 (GTR) 32 (STR) | 2.1 (GTR) 2.2 (STR) | NA | NA | |||||||
Moon et al. [22] i | 2012 | Retrospective | Single institution | 55 | 3.8 | 50.9 | 25.5 | 3.6 | NA | GTR | |||||||
Hardesty et al. [23] | 2013 | Retrospective | Single institution | 228 | 4.3 | 58 | 22 | 1.7 | NA | NA | |||||||
Park et al. [24] | 2013 | Retrospective | Single institution | 83 | 3.6 | 66.3 | 44.6 | 2.1 | 48 | 48 | 90.2 | 62 | NA | Improved: RT, GTR | |||
Zaher et al. [25] | 2013 | Retrospective | Single institution | 44 | 36.4 | 36.4 | 3.3 | 4.8 | 35 | Improved: GTR, age < 50 years | Improved: RT | ||||||
Pasquier et al. [26] i | 2008 | Retrospective | Multi institution | 82 | 71 ii | 2.1 | 62 | 67.5 | Worse: Age > 60 years, high mitotic rate iii | Worse: high mitotic rate iii | |||||||
Hammouche et al. [27] | 2014 | Retrospective | Single institution | 79 | 4.2 | 43 ii | 30 | 5.5 | 53 | 10.7 | 81 | NA | Worse: higher Simpson grade resection | ||||
Wang et al. [28] | 2015 | Retrospective | Single institution | 28 | 4.8 | 50 | 46.4 | 5.3 | 100 | NA | Improved: GTR, MIB-1 < 8% | ||||||
Da Broi et al. [29] | 2021 | Retrospective | Single institution | 77 | 5.5 | 70.1 | 28.6 | 64.9 | 51.9 | 20.8 | 86.3 | 81.9 | 65.7 | Improved: Age < 65, preoperative KPS ≥ 70, no retreatment (surgery or RT) | Improved: GTR |
Authors | Year | Study Type | Setting | Number of Patients | Mean Follow-Up (Years) | GTR % | Recurrence Rate (%) | PFS (Years) | PFS (%) | OS (Years) | OS (%) | Factors Associated with OS iv | Factors Associated with PFS iv | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 Year | 5 Year | 10 Year | 2 Year | 3 Year | 5 Year | 10 Year | ||||||||||||
Moliterno et al. [30] | 2015 | Retrospective | Single institution | 37 | 2.6 years | 59 | 2.7 | 66.6 | 27.9 | None | NA | |||||||
Kumar et al. [13] i | 2015 | Retrospective | Single institution | 15 | 3.7 years | 33.3 | 20 | 23 | NA | NA | ||||||||
Rydzewski et al. [16] i | 2018 | Retrospective | National Cancer Database | 1936 | 15.7 | 70.9 | 55.4 | Worse: Age > 50 | NA | |||||||||
Aizer et al. [31] i | 2015 | Retrospective | National Cancer Institute Database | 64 | 3.9 | 54.7 | 64.5 (GTR) 41.1 (STR) | Improved: GTR | NA | |||||||||
Orton et al. [32] | 2017 | Retrospective | National Cancer Institute Database | 755 | 58 | 41.4 | Improved: RT Worse: older age, higher comorbidity score, STR | NA | ||||||||||
Peyre et al. [33] | 2018 | Retrospective | Multi institution | 57 | 4.8 | 75 | 2.3 | 2.6 | 84 | 10 | 10 | Improved: De novo anaplastic status, lower mitotic index | NA | |||||
Sughrue et al. [34] | 2010 | Retrospective | Single institution | 63 | 5 | 63.5 | 47 | 4.2 (GTR) 8.9 (STR) | 82 | 61 | 40 | Improved: STR | NA | |||||
Champeaux and Jecko [35] | 2016 | Retrospective | Single institution | 43 | 7.4 | 71.4 | 4.1 | 81.4 | 48.8 | 27.5 | Improved: Mitosis count ≤ 14 per 10 HPF Worse: prior meningioma surgery | NA | ||||||
Champeaux et al. [36] | 2019 | Retrospective | Multi institution | 178 | 4.5 | 66.3 | 2.9 | 40 | 27.9 | Improved: Age < 65, higher EOR, RT Worse: prior meningioma surgery | NA | |||||||
Dziuk et al. [37] ii | 1998 | Retrospective | Single institution | 38 | 62.8 | 74 | 25 | Improved: GTR, RT, de novo status | NA | |||||||||
Palma et al. [17] | 1997 | Retrospective | Single institution | 29 | 100 | 84% (5 year) | 2 | 45 | 15 | 6.89 | 64.3 | 34.5 | Improved: Convexity location | NA | ||||
Durand et al. [18] i | 2009 | Retrospective | Multi institution | 33 | 5.4 | 90.9 | 8.4 | 0 | 44 | 14.2 | Improved: Simpson I, age < 60 years, histological grade 2 iii | None | ||||||
Yang et al. [19] i | 2008 | Retrospective | Single institution | 24 | 3.5 | 66.7 | 75 | 2.7 | 29 | 3.3 | 55 | 35 | Improved: RT Worse: Brain invasion, malignant progression, EOR, p53 overexpression | Improved: RT Worse: brain invasion, malignant progression, EOR, p53 overexpression | ||||
Pasquier et al. [26] i | 2008 | Retrospective | Multi institution | 37 | 71 v | 2.1 iii | 48 | 60 | Worse: Age > 60 years, high mitotic rate iii | Worse: High mitotic rate iii | ||||||||
Tosefsky et al. [38] | 2023 | Retrospective | Multi institution | 103 | 3.8 | 60 | 73% | 3.2 | 37 | 66 | Improved: RT, tumor necrosis Worse: Age ≥ 65 years, male sex, high N/C ratio | Improved: hypercellularity Worse: Age ≥ 65 years, male sex |
4.3. Adjuvant Treatment
4.4. Future Developments
5. WHO Grade 3 Meningiomas
5.1. Pathologic Features
5.2. Surgical Outcomes and Survival
5.3. Adjuvant Treatment
5.4. Future Developments
6. Recurrent High-Grade Meningiomas
7. Future Directions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Simpson, D. The recurrence of intracranial meningiomas after surgical treatment. J. Neurol. Neurosurg. Psychiatry 1957, 20, 22–39. [Google Scholar] [CrossRef] [PubMed]
- Aizer, A.A.; Bi, W.L.; Kandola, M.S.; Lee, E.Q.; Nayak, L.; Rinne, M.L.; Norden, A.D.; Beroukhim, R.; Reardon, D.A.; Wen, P.Y.; et al. Extent of resection and overall survival for patients with atypical and malignant meningioma. Cancer 2015, 121, 4376–4381. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; International Agency for Research on Cancer; WHO Classification of Tumours Editorial Board. Central Nervous System Tumours; International Agency for Research on Cancer, World Health Organization: Lyon, France, 2021. [Google Scholar]
- Toh, C.H.; Castillo, M.; Wong, A.M.; Wei, K.C.; Wong, H.F.; Ng, S.H.; Wan, Y.L. Differentiation between classic and atypical meningiomas with use of diffusion tensor imaging. AJNR Am. J. Neuroradiol. 2008, 29, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yu, J.; Liu, X.; Deng, K.; Zhuang, K.; Lin, F.; Luo, L. The efficacy of preoperative MRI features in the diagnosis of meningioma WHO grade and brain invasion. Front. Oncol. 2022, 12, 1100350. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, P.; Zhang, Y.; Cui, N.; Wang, M.; Peng, M.; Gao, C.; Wang, T. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma. Neuroradiology 2022, 64, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Man, C.; Gong, L.; Dong, D.; Yu, X.; Wang, S.; Fang, M.; Wang, S.; Fang, X.; Chen, X.; et al. A deep learning radiomics model for preoperative grading in meningioma. Eur. J. Radiol. 2019, 116, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Al-Mefty, O. Operative Atlas of Meningiomas; Lippincott-Raven: Philadelphia, PA, USA, 1998. [Google Scholar]
- Della Pepa, G.M.; Menna, G.; Stifano, V.; Pezzullo, A.M.; Auricchio, A.M.; Rapisarda, A.; Caccavella, V.M.; La Rocca, G.; Sabatino, G.; Marchese, E.; et al. Predicting meningioma consistency and brain-meningioma interface with intraoperative strain ultrasound elastography: A novel application to guide surgical strategy. Neurosurg. Focus 2021, 50, E15. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, G.A.; Markopoulos, G.S.; Vartholomatos, E.; Goussia, A.C.; Dova, L.; Dimitriadis, S.; Mantziou, S.; Zoi, V.; Nasios, A.; Sioka, C.; et al. Intraoperative Flow Cytometry for the Evaluation of Meningioma Grade. Curr. Oncol. 2023, 30, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Goldbrunner, R.; Stavrinou, P.; Jenkinson, M.D.; Sahm, F.; Mawrin, C.; Weber, D.C.; Preusser, M.; Minniti, G.; Lund-Johansen, M.; Lefranc, F.; et al. EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol. 2021, 23, 1821–1834. [Google Scholar] [CrossRef]
- Rogers, L.; Barani, I.; Chamberlain, M.; Kaley, T.J.; McDermott, M.; Raizer, J.; Schiff, D.; Weber, D.C.; Wen, P.Y.; Vogelbaum, M.A. Meningiomas: Knowledge base, treatment outcomes, and uncertainties. A RANO review. J. Neurosurg. 2015, 122, 4–23. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, R.; Khosla, D.; Salunke, P.S.; Gupta, S.K.; Radotra, B.D. Survival and failure patterns in atypical and anaplastic meningiomas: A single-center experience of surgery and postoperative radiotherapy. J. Cancer Res. Ther. 2015, 11, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.; Davison, M.A.; Shao, J.; Momin, A.; Lopez, D.; Angelov, L.; Barnett, G.H.; Lee, J.H.; Mohammadi, A.M.; Kshettry, V.R.; et al. Extent of resection and survival outcomes in World Health Organization grade II meningiomas. J. Neuro-Oncol. 2021, 151, 173–179. [Google Scholar] [CrossRef]
- Goyal, L.K.; Suh, J.H.; Mohan, D.S.; Prayson, R.A.; Lee, J.; Barnett, G.H. Local control and overall survival in atypical meningioma: A retrospective study. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 57–61. [Google Scholar] [CrossRef]
- Rydzewski, N.R.; Lesniak, M.S.; Chandler, J.P.; Kalapurakal, J.A.; Pollom, E.; Tate, M.C.; Bloch, O.; Kruser, T.; Dalal, P.; Sachdev, S. Gross total resection and adjuvant radiotherapy most significant predictors of improved survival in patients with atypical meningioma. Cancer 2018, 124, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.; Celli, P.; Franco, C.; Cervoni, L.; Cantore, G. Long-term prognosis for atypical and malignant meningiomas: A study of 71 surgical cases. J. Neurosurg. 1997, 86, 793–800. [Google Scholar] [CrossRef]
- Durand, A.; Labrousse, F.; Jouvet, A.; Bauchet, L.; Kalamaridès, M.; Menei, P.; Deruty, R.; Moreau, J.J.; Fèvre-Montange, M.; Guyotat, J. WHO grade II and III meningiomas: A study of prognostic factors. J. Neuro-Oncol. 2009, 95, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Park, C.K.; Park, S.H.; Kim, D.G.; Chung, Y.S.; Jung, H.W. Atypical and anaplastic meningiomas: Prognostic implications of clinicopathological features. J. Neurol. Neurosurg. Psychiatry 2008, 79, 574–580. [Google Scholar] [CrossRef]
- Gabeau-Lacet, D.; Aghi, M.; Betensky, R.A.; Barker, F.G.; Loeffler, J.S.; Louis, D.N. Bone involvement predicts poor outcome in atypical meningioma. J. Neurosurg. 2009, 111, 464–471. [Google Scholar] [CrossRef]
- Jo, K.; Park, H.J.; Nam, D.H.; Lee, J.I.; Kong, D.S.; Park, K.; Kim, J.H. Treatment of atypical meningioma. J. Clin. Neurosci. 2010, 17, 1362–1366. [Google Scholar] [CrossRef]
- Moon, H.S.; Jung, S.; Jang, W.Y.; Jung, T.Y.; Moon, K.S.; Kim, I.Y. Intracranial Meningiomas, WHO Grade Il: Prognostic Implications of Clinicopathologic Features. J. Korean Neurosurg. Soc. 2012, 52, 14–20. [Google Scholar] [CrossRef]
- Hardesty, D.A.; Wolf, A.B.; Brachman, D.G.; McBride, H.L.; Youssef, E.; Nakaji, P.; Porter, R.W.; Smith, K.A.; Spetzler, R.F.; Sanai, N. The impact of adjuvant stereotactic radiosurgery on atypical meningioma recurrence following aggressive microsurgical resection. J. Neurosurg. 2013, 119, 475–481. [Google Scholar] [CrossRef]
- Park, H.J.; Kang, H.C.; Kim, I.H.; Park, S.H.; Kim, D.G.; Park, C.K.; Paek, S.H.; Jung, H.W. The role of adjuvant radiotherapy in atypical meningioma. J. Neuro-Oncol. 2013, 115, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Zaher, A.; Abdelbari Mattar, M.; Zayed, D.H.; Ellatif, R.A.; Ashamallah, S.A. Atypical meningioma: A study of prognostic factors. World Neurosurg. 2013, 80, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, D.; Bijmolt, S.; Veninga, T.; Rezvoy, N.; Villa, S.; Krengli, M.; Weber, D.C.; Baumert, B.G.; Canyilmaz, E.; Yalman, D.; et al. Atypical and malignant meningioma: Outcome and prognostic factors in 119 irradiated patients. A multicenter, retrospective study of the Rare Cancer Network. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Hammouche, S.; Clark, S.; Wong, A.H.; Eldridge, P.; Farah, J.O. Long-term survival analysis of atypical meningiomas: Survival rates, prognostic factors, operative and radiotherapy treatment. Acta Neurochir. 2014, 156, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Chuang, C.C.; Wei, K.C.; Hsu, Y.H.; Hsu, P.W.; Lee, S.T.; Wu, C.T.; Tseng, C.K.; Wang, C.C.; Chen, Y.L.; et al. Skull base atypical meningioma: Long term surgical outcome and prognostic factors. Clin. Neurol. Neurosurg. 2015, 128, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Da Broi, M.; Borrelli, P.; Meling, T.R. Predictors of Survival in Atypical Meningiomas. Cancers 2021, 13, 1970. [Google Scholar] [CrossRef]
- Moliterno, J.; Cope, W.P.; Vartanian, E.D.; Reiner, A.S.; Kellen, R.; Ogilvie, S.Q.; Huse, J.T.; Gutin, P.H. Survival in patients treated for anaplastic meningioma. J. Neurosurg. 2015, 123, 23–30. [Google Scholar] [CrossRef]
- Aizer, A.A.; Arvold, N.D.; Catalano, P.; Claus, E.B.; Golby, A.J.; Johnson, M.D.; Al-Mefty, O.; Wen, P.Y.; Reardon, D.A.; Lee, E.Q.; et al. Adjuvant radiation therapy, local recurrence, and the need for salvage therapy in atypical meningioma. Neuro Oncol. 2014, 16, 1547–1553. [Google Scholar] [CrossRef]
- Orton, A.; Frandsen, J.; Jensen, R.; Shrieve, D.C.; Suneja, G. Anaplastic meningioma: An analysis of the National Cancer Database from 2004 to 2012. J. Neurosurg. 2018, 128, 1684–1689. [Google Scholar] [CrossRef]
- Peyre, M.; Gauchotte, G.; Giry, M.; Froehlich, S.; Pallud, J.; Graillon, T.; Bielle, F.; Cazals-Hatem, D.; Varlet, P.; Figarella-Branger, D.; et al. De novo and secondary anaplastic meningiomas: A study of clinical and histomolecular prognostic factors. Neuro Oncol. 2018, 20, 1113–1121. [Google Scholar] [CrossRef]
- Sughrue, M.E.; Sanai, N.; Shangari, G.; Parsa, A.T.; Berger, M.S.; McDermott, M.W. Outcome and survival following primary and repeat surgery for World Health Organization Grade III meningiomas. J. Neurosurg. 2010, 113, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Champeaux, C.; Jecko, V. World Health Organization grade III meningiomas. A retrospective study for outcome and prognostic factors assessment. Neurochirurgie 2016, 62, 203–208. [Google Scholar] [CrossRef]
- Champeaux, C.; Jecko, V.; Houston, D.; Thorne, L.; Dunn, L.; Fersht, N.; Khan, A.A.; Resche-Rigon, M. Malignant Meningioma: An International Multicentre Retrospective Study. Neurosurgery 2019, 85, E461–E469. [Google Scholar] [CrossRef]
- Dziuk, T.W.; Woo, S.; Butler, E.B.; Thornby, J.; Grossman, R.; Dennis, W.S.; Lu, H.; Carpenter, L.S.; Chiu, J.K. Malignant meningioma: An indication for initial aggressive surgery and adjuvant radiotherapy. J. Neuro-Oncol. 1998, 37, 177–188. [Google Scholar] [CrossRef]
- Tosefsky, K.; Rebchuk, A.D.; Wang, J.Z.; Ellenbogen, Y.; Drexler, R.; Ricklefs, F.L.; Sauvigny, T.; Schüller, U.; Cutler, C.B.; Lucke-Wold, B.; et al. Grade 3 meningioma survival and recurrence outcomes in an international multicenter cohort. J. Neurosurg. 2024, 140, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Shakir, S.I.; Souhami, L.; Petrecca, K.; Mansure, J.J.; Singh, K.; Panet-Raymond, V.; Shenouda, G.; Al-Odaini, A.A.; Abdulkarim, B.; Guiot, M.C. Prognostic factors for progression in atypical meningioma. J. Neurosurg. 2018, 129, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Sahm, F.; Schrimpf, D.; Stichel, D.; Jones, D.T.W.; Hielscher, T.; Schefzyk, S.; Okonechnikov, K.; Koelsche, C.; Reuss, D.E.; Capper, D.; et al. DNA methylation-based classification and grading system for meningioma: A multicentre, retrospective analysis. Lancet Oncol. 2017, 18, 682–694. [Google Scholar] [CrossRef]
- Bi, W.L.; Greenwald, N.F.; Abedalthagafi, M.; Wala, J.; Gibson, W.J.; Agarwalla, P.K.; Horowitz, P.; Schumacher, S.E.; Esaulova, E.; Mei, Y.; et al. Genomic landscape of high-grade meningiomas. npj Genom. Med. 2017, 2, 15. [Google Scholar] [CrossRef]
- Nassiri, F.; Liu, J.; Patil, V.; Mamatjan, Y.; Wang, J.Z.; Hugh-White, R.; Macklin, A.M.; Khan, S.; Singh, O.; Karimi, S.; et al. A clinically applicable integrative molecular classification of meningiomas. Nature 2021, 597, 119–125. [Google Scholar] [CrossRef]
- Komotar, R.J.; Iorgulescu, J.B.; Raper, D.M.; Holland, E.C.; Beal, K.; Bilsky, M.H.; Brennan, C.W.; Tabar, V.; Sherman, J.H.; Yamada, Y.; et al. The role of radiotherapy following gross-total resection of atypical meningiomas. J. Neurosurg. 2012, 117, 679–686. [Google Scholar] [CrossRef]
- Rogers, C.L.; Won, M.; Vogelbaum, M.A.; Perry, A.; Ashby, L.S.; Modi, J.M.; Alleman, A.M.; Galvin, J.; Fogh, S.E.; Youssef, E.; et al. High-risk Meningioma: Initial Outcomes from NRG Oncology/RTOG 0539. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 790–799. [Google Scholar] [CrossRef]
- Zhu, H.; Bi, W.L.; Aizer, A.; Hua, L.; Tian, M.; Den, J.; Tang, H.; Chen, H.; Wang, Y.; Mao, Y.; et al. Efficacy of adjuvant radiotherapy for atypical and anaplastic meningioma. Cancer Med. 2019, 8, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Aghi, M.K.; Carter, B.S.; Cosgrove, G.R.; Ojemann, R.G.; Amin-Hanjani, S.; Martuza, R.L.; Curry, W.T., Jr.; Barker, F.G., 2nd. Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 2009, 64, 56–60. [Google Scholar] [CrossRef]
- Rubino, F.; Schur, S.; McGovern, S.L.; Kamiya-Matsuoka, C.; DeMonte, F.; Raza, S.M. Impact of salvage surgery with or without reirradiation for skull base meningiomas recurring after prior radiotherapy. J. Neurosurg. 2023, 139, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Hintz, E.B.; Park, D.J.; Ma, D.; Viswanatha, S.D.; Rini, J.N.; Schulder, M.; Goenka, A. Using 68 Ga-DOTATATE PET for Postoperative Radiosurgery and Radiotherapy Planning in Patients with Meningioma: A Case Series. Neurosurgery 2023, 93, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Gritsch, S.; Batchelor, T.T.; Gonzalez Castro, L.N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer 2022, 128, 47–58. [Google Scholar] [CrossRef]
- Perry, A.; Scheithauer, B.W.; Stafford, S.L.; Lohse, C.M.; Wollan, P.C. “Malignancy” in meningiomas: A clinicopathologic study of 116 patients, with grading implications. Cancer 1999, 85, 2046–2056. [Google Scholar] [CrossRef]
- McGirt, M.J.; Mukherjee, D.; Chaichana, K.L.; Than, K.D.; Weingart, J.D.; Quinones-Hinojosa, A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 2009, 65, 463–469; discussion 469–470. [Google Scholar] [CrossRef]
- Brachman, D.G.; Youssef, E.; Dardis, C.J.; Sanai, N.; Zabramski, J.M.; Smith, K.A.; Little, A.S.; Shetter, A.G.; Thomas, T.; McBride, H.L.; et al. Resection and permanent intracranial brachytherapy using modular, biocompatible cesium-131 implants: Results in 20 recurrent, previously irradiated meningiomas. J. Neurosurg. 2018, 131, 1819–1828. [Google Scholar] [CrossRef]
- Mooney, M.A.; Bi, W.L.; Cantalino, J.M.; Wu, K.C.; Harris, T.C.; Possatti, L.L.; Juvekar, P.; Hsu, L.; Dunn, I.F.; Al-Mefty, O.; et al. Brachytherapy with surgical resection as salvage treatment for recurrent high-grade meningiomas: A matched cohort study. J. Neuro-Oncol. 2020, 146, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Maas, S.L.N.; Stichel, D.; Hielscher, T.; Sievers, P.; Berghoff, A.S.; Schrimpf, D.; Sill, M.; Euskirchen, P.; Blume, C.; Patel, A.; et al. Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. J. Clin. Oncol. 2021, 39, 3839–3852. [Google Scholar] [CrossRef] [PubMed]
- Driver, J.; Hoffman, S.E.; Tavakol, S.; Woodward, E.; Maury, E.A.; Bhave, V.; Greenwald, N.F.; Nassiri, F.; Aldape, K.; Zadeh, G.; et al. A molecularly integrated grade for meningioma. Neuro Oncol. 2022, 24, 796–808. [Google Scholar] [CrossRef] [PubMed]
- Przybylowski, C.J.; So, V.; DeTranaltes, K.; Walker, C.; Baranoski, J.F.; Chapple, K.; Sanai, N. Sterile Gelatin Film Reduces Cortical Injury Associated with Brain Tumor Re-Resection. Oper. Neurosurg. 2021, 20, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.T.; Dalle Ore, C.L.; Diaz, M.A.; Jalili, D.D.; Raleigh, D.R.; Aghi, M.K.; Theodosopoulos, P.V.; McDermott, M.W. Surgical outcomes after reoperation for recurrent non-skull base meningiomas. J. Neurosurg. 2018, 131, 1179–1187. [Google Scholar] [CrossRef]
- Przybylowski, C.J.; Suki, D.; Raza, S.M.; DeMonte, F. Volumetric extent of resection and survival for recurrent atypical meningioma. J. Neurosurg. 2023, 139, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Clark, V.E.; Erson-Omay, E.Z.; Serin, A.; Yin, J.; Cotney, J.; Ozduman, K.; Avsar, T.; Li, J.; Murray, P.B.; Henegariu, O.; et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Clark, V.E.; Harmanci, A.S.; Bai, H.; Youngblood, M.W.; Lee, T.I.; Baranoski, J.F.; Ercan-Sencicek, A.G.; Abraham, B.J.; Weintraub, A.S.; Hnisz, D.; et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat. Genet. 2016, 48, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Brastianos, P.K.; Horowitz, P.M.; Santagata, S.; Jones, R.T.; McKenna, A.; Getz, G.; Ligon, K.L.; Palescandolo, E.; Van Hummelen, P.; Ducar, M.D.; et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat. Genet. 2013, 45, 285–289. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network; Brat, D.J.; Verhaak, R.G.; Aldape, K.D.; Yung, W.K.; Salama, S.R.; Cooper, L.A.; Rheinbay, E.; Miller, C.R.; Vitucci, M.; et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 2015, 372, 2481–2498. [Google Scholar] [CrossRef]
- Kool, M.; Korshunov, A.; Remke, M.; Jones, D.T.; Schlanstein, M.; Northcott, P.A.; Cho, Y.J.; Koster, J.; Schouten-van Meeteren, A.; van Vuurden, D.; et al. Molecular subgroups of medulloblastoma: An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012, 123, 473–484. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacult, M.A.; Przybylowski, C.J.; Raza, S.M.; DeMonte, F. Surgical Management of High-Grade Meningiomas. Cancers 2024, 16, 1978. https://doi.org/10.3390/cancers16111978
Pacult MA, Przybylowski CJ, Raza SM, DeMonte F. Surgical Management of High-Grade Meningiomas. Cancers. 2024; 16(11):1978. https://doi.org/10.3390/cancers16111978
Chicago/Turabian StylePacult, Mark A., Colin J. Przybylowski, Shaan M. Raza, and Franco DeMonte. 2024. "Surgical Management of High-Grade Meningiomas" Cancers 16, no. 11: 1978. https://doi.org/10.3390/cancers16111978
APA StylePacult, M. A., Przybylowski, C. J., Raza, S. M., & DeMonte, F. (2024). Surgical Management of High-Grade Meningiomas. Cancers, 16(11), 1978. https://doi.org/10.3390/cancers16111978