Relative Wash-In Rate in Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a New Prognostic Biomarker for Event-Free Survival in 82 Patients with Osteosarcoma: A Multicenter Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design, Setting, and Participants
2.2. rWIR and Selection of Prognostic Variables
2.3. Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Participants and Baseline Characteristics
3.2. Prognostic Factors’ Effect on EFS
3.3. Event-Free Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hogendoorn, P.C.W.; Athanasou, N.; Bielack, S.; De Alava, E.; Dei Tos, A.P.; Ferrari, S.; Gelderblom, H.; Grimer, R.; Hall, K.S.; Hassan, B.; et al. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, iii113–iii123. [Google Scholar] [CrossRef] [PubMed]
- Ingley, K.M.; Maleddu, A.; Grange, F.L.; Gerrand, C.; Bleyer, A.; Yasmin, E.; Whelan, J.; Strauss, S.J. Current approaches to management of bone sarcoma in adolescent and young adult patients. Pediatr. Blood Cancer 2022, 69, e29442. [Google Scholar] [CrossRef] [PubMed]
- Jafari, F.; Javdansirat, S.; Sanaie, S.; Naseri, A.; Shamekh, A.; Rostamzadeh, D.; Dolati, S. Osteosarcoma: A comprehensive review of management and treatment strategies. Ann. Diagn. Pathol. 2020, 49, 151654. [Google Scholar] [CrossRef] [PubMed]
- Huvos, A.G.; Rosen, G.; Marcove, R.C. Primary osteogenic sarcoma: Pathologic aspects in 20 patients after treatment with chemotherapy en bloc resection, and prosthetic bone replacement. Arch. Pathol. Lab. Med. 1977, 101, 14–18. [Google Scholar] [PubMed]
- Rosen, G.; Caparros, B.; Huvos, A.G.; Kosloff, C.; Nirenberg, A.; Cacavio, A.; Marcove, R.C.; Lane, J.M.; Mehta, B.; Urban, C. Preoperative chemotherapy for osteogenic sarcoma: Selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 1982, 49, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.J.; Frezza, A.M.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; Bonvalot, S.; et al. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 1520–1536. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Reddick, W.E.; Glass, J.O.; Ji, Q.; Billups, C.A.; Wu, J.; Hoffer, F.A.; Kaste, S.C.; Jenkins, J.J.; Ortega Flores, X.C.; et al. Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer 2012, 118, 3776–3785. [Google Scholar] [CrossRef] [PubMed]
- Tofts, P.S.; Brix, G.; Buckley, D.L.; Evelhoch, J.L.; Henderson, E.; Knopp, M.V.; Larsson, H.B.; Lee, T.Y.; Mayr, N.A.; Parker, G.J.; et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J. Magn. Reson. Imaging 1999, 10, 223–232. [Google Scholar] [CrossRef]
- Kalisvaart, G.M.; Van Den Berghe, T.; Grootjans, W.; Lejoly, M.; Huysse, W.C.J.; Bovée, J.; Creytens, D.; Gelderblom, H.; Speetjens, F.M.; Lapeire, L.; et al. Evaluation of response to neoadjuvant chemotherapy in osteosarcoma using dynamic contrast-enhanced MRI: Development and external validation of a model. Skelet. Radiol. 2023, 53, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Evenhuis, R.E.; Acem, I.; Rueten-Budde, A.J.; Karis, D.S.A.; Fiocco, M.; Dorleijn, D.M.J.; Speetjens, F.M.; Anninga, J.; Gelderblom, H.; van de Sande, M.A.J. Survival Analysis of 3 Different Age Groups and Prognostic Factors among 402 Patients with Skeletal High-Grade Osteosarcoma. Real World Data from a Single Tertiary Sarcoma Center. Cancers 2021, 13, 486. [Google Scholar] [CrossRef] [PubMed]
- Smeland, S.; Bielack, S.S.; Whelan, J.; Bernstein, M.; Hogendoorn, P.; Krailo, M.D.; Gorlick, R.; Janeway, K.A.; Ingleby, F.C.; Anninga, J.; et al. Survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer 2019, 109, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, A.S.; de Camargo, B.; Filho, V.O.; Bruniera, P.; Brunetto, A.L.; Jesus-Garcia, R.; Camargo, O.P.; Pena, W.; Péricles, P.; Davi, A.; et al. Results of the Brazilian Osteosarcoma Treatment Group Studies III and IV: Prognostic factors and impact on survival. J. Clin. Oncol. 2006, 24, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Weeden, S.; Grimer, R.J.; Cannon, S.R.; Taminiau, A.H.M.; Uscinska, B.M. The effect of local recurrence on survival in resected osteosarcoma. Eur. J. Cancer 2001, 37, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Testa, S.; Hu, B.D.; Saadeh, N.L.; Pribnow, A.; Spunt, S.L.; Charville, G.W.; Bui, N.Q.; Ganjoo, K.N. A Retrospective Comparative Analysis of Outcomes and Prognostic Factors in Adult and Pediatric Patients with Osteosarcoma. Curr. Oncol. 2021, 28, 5304–5317. [Google Scholar] [CrossRef] [PubMed]
- Grambsch, P.M.; Therneau, T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994, 81, 515–526. [Google Scholar] [CrossRef]
- Lee, K.L.; Harrell, F.E., Jr.; Tolley, H.D.; Rosati, R.A. A comparison of test statistics for assessing the effects of concomitant variables in survival analysis. Biometrics 1983, 39, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Schemper, M.; Smith, T.L. A note on quantifying follow-up in studies of failure time. Control. Clin. Trials 1996, 17, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Wen, L.; Zhou, F.; Li, J.; Lu, Q.; Liu, J.; Yu, X. Predictive value of DCE-MRI and IVIM-DWI in osteosarcoma patients with neoadjuvant chemotherapy. Front. Oncol. 2022, 12, 967450. [Google Scholar] [CrossRef]
- Hao, Y.; An, R.; Xue, Y.; Li, F.; Wang, H.; Zheng, J.; Fan, L.; Liu, J.; Fan, H.; Yin, H. Prognostic value of tumoral and peritumoral magnetic resonance parameters in osteosarcoma patients for monitoring chemotherapy response. Eur. Radiol. 2021, 31, 3518–3529. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, J.; Kumar, R.; Sreenivas, V.; Sharma, M.C.; Khan, S.A.; Rastogi, S.; Malhotra, A.; Gamnagatti, S.; Kumar, R.; Safaya, R.; et al. Prediction of chemotherapy response by PET-CT in osteosarcoma: Correlation with histologic necrosis. J. Pediatr. Hematol. Oncol. 2011, 33, e271–e278. [Google Scholar] [CrossRef]
- Byun, B.H.; Kong, C.B.; Lim, I.; Choi, C.W.; Song, W.S.; Cho, W.H.; Jeon, D.G.; Koh, J.S.; Lee, S.Y.; Lim, S.M. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: Preliminary results in osteosarcoma. J. Nucl. Med. 2013, 54, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Spraker, M.B.; Wootton, L.S.; Hippe, D.S.; Ball, K.C.; Peeken, J.C.; Macomber, M.W.; Chapman, T.R.; Hoff, M.N.; Kim, E.Y.; Pollack, S.M.; et al. MRI Radiomic Features Are Independently Associated With Overall Survival in Soft Tissue Sarcoma. Adv. Radiat. Oncol. 2019, 4, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Su, Y.; Duan, J.; Qiu, Q.; Ge, X.; Wang, A.; Yin, Y. Radiomics signature extracted from diffusion-weighted magnetic resonance imaging predicts outcomes in osteosarcoma. J. Bone Oncol. 2019, 19, 100263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ge, Y.; Gao, Q.; Zhao, F.; Cheng, T.; Li, H.; Xia, Y. Machine Learning-Based Radiomics Nomogram With Dynamic Contrast-Enhanced MRI of the Osteosarcoma for Evaluation of Efficacy of Neoadjuvant Chemotherapy. Front. Oncol. 2021, 11, 758921. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, X.; Wang, X.; Quan, X.; Deng, Y.; Lu, M.; Wei, Q.; Ye, Q.; Zhou, Q.; Xiang, Z.; et al. MRI-based radiomics signature for pretreatment prediction of pathological response to neoadjuvant chemotherapy in osteosarcoma: A multicenter study. Eur. Radiol. 2021, 31, 7913–7924. [Google Scholar] [CrossRef] [PubMed]
- Shapeero, L.G.; Vanel, D. Imaging evaluation of the response of high-grade osteosarcoma and Ewing sarcoma to chemotherapy with emphasis on dynamic contrast-enhanced magnetic resonance imaging. Semin. Musculoskelet. Radiol. 2000, 4, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Fadli, D.; Italiano, A.; Saut, O.; Buy, X.; Kind, M. Systematic review of sarcomas radiomics studies: Bridging the gap between concepts and clinical applications? Eur. J. Radiol. 2020, 132, 109283. [Google Scholar] [CrossRef] [PubMed]
- Fanciullo, C.; Gitto, S.; Carlicchi, E.; Albano, D.; Messina, C.; Sconfienza, L.M. Radiomics of Musculoskeletal Sarcomas: A Narrative Review. J. Imaging 2022, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Sourbron, S.P.; Buckley, D.L. On the scope and interpretation of the Tofts models for DCE-MRI. Magn. Reson. Med. 2011, 66, 735–745. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N Total (%) | LUMC | GUH | p-Value |
---|---|---|---|---|
Total | 82 | 53 (65) | 29 (35) | |
Sex | 0.20 | |||
Male | 50 (61) | 35 (66) | 15 (52) | |
Female | 32 (39) | 18 (34) | 14 (48) | |
Age group | 0.16 | |||
Children (0–<16 yrs) | 35 (43) | 19 (36) | 16 (55) | |
AYA (16–<40 yrs) | 35 (43) | 24 (45) | 11 (38) | |
Older adults (≥40 yrs) | 12 (15) | 10 (19) | 2 (7) | |
Location tumor | 86 | 0.10 | ||
Lower extremity | 68 (83) | 41 (77) | 27 (93) | |
Upper extremity | 7 (9) | 5 (9) | 2 (7) | |
Axial skeleton | 7 (9) | 7 (13) | 0 | |
Tumor size | 0.92 | |||
Small (≤8 cm) | 39 (48) | 25 (47) | 14 (48) | |
Large (>8 cm) | 43 (52) | 28 (53) | 15 (52) | |
Metastases at presentation | 0.98 | |||
No | 70 (85) | 46 (87) | 24 (83) | |
Yes | 12 (12) | 7 (13) | 5 (17) | |
Preoperative CTx treatment | 81 | 52 | 29 | 0.17 |
1 MAP or 2 AP completed | 4 (5) | 4 (8) | 0 (0) | |
2 MAP or 3 AP completed | 71 (87) | 43 (83) | 28 (97) | |
>2 MAP or >3 AP completed | 6 (7) | 5 (10) | 1 (3) | |
Histological response to CTx | 0.20 | |||
Poor (≥10% viable tumor cells) | 43 (52) | 25 (47) | 18 (62) | |
Good (<10% viable tumor cells) | 39 (39) | 28 (53) | 11 (38) | |
Radiological response to CTx | 0.49 | |||
Poor response (rWIR < 2.3) | 41 (50) | 28 (53) | 13 (45) | |
Good response (rWIR ≥ 2.3) | 41 (50) | 25 (47) | 16 (55) | |
Local recurrence | 0.38 | |||
No | 73 (89) | 46 (78) | 27 (93) | |
Yes | 9 (11) | 7 (13) | 2 (7) | |
Metastases during follow-up | 0.06 | |||
No | 51 (62) | 29 (55) | 22 (76) | |
Yes | 31 (38) | 24 (45) | 7 (24) |
Factors | HR | 95% CI | Factors | HR | 95% CI | Factors | HR | 95% CI |
---|---|---|---|---|---|---|---|---|
Age Group | Age group | Age Group | ||||||
Children | Ref | Children | Ref | Children | Ref | |||
AYA | 1.36 | 0.61–3.03 | AYA | 1.43 | 0.64–3.22 | AYA | 1.32 | 0.59–2.98 |
Older adults | 1.26 | 0.45–3.55 | Older adults | 1.55 | 0.55–4.41 | Older adults | 1.41 | 0.50–3.97 |
Tumor size | Tumor size | Tumor size | ||||||
Small ≤ 8 cm | Small ≤ 8 cm | Small ≤ 8 cm | ||||||
Large ≥ 8 cm | 0.90 | 0.46–2.00 | Large ≥ 8 cm | 0.97 | 0.47–2.00 | Large ≥ 8 cm | 0.96 | 0.46–2.01 |
Histological response to CTx | DCE-MRI response (binary) to CTx | DCE-MRI response (continuous) to CTx | 0.78 | 0.60–1.01 | ||||
Good responder (<10% viable tumor cells) | Good responder (rWIR < 2.3) | |||||||
Poor responder (≥10% viable tumor cells) | 1.82 | 0.86–3.84 | Poor responder (rWIR ≥ 2.3) | 2.39 | 1.14–5.01 | |||
Metastases at presentation | Metastases at presentation | Metastases at presentation | ||||||
No | No | No | ||||||
Yes | 2.29 | 0.90–5.83 | Yes | 2.31 | 0.90–5.92 | Yes | 1.85 | 0.70–4.94 |
Factors | HR | 95% CI | Factors | HR | 95% CI | Factors | HR | 95% CI |
---|---|---|---|---|---|---|---|---|
Age group | Age group | Age group | ||||||
Children | Ref | Children | Ref | Children | Ref | |||
AYA | 1.43 | 0.59–3.46 | AYA | 1.46 | 0.61–3.53 | AYA | 1.28 | 0.53–3.13 |
Older adults | 2.11 | 0.66–6.79 | Older adults | 2.30 | 0.74–7.21 | Older adults | 2.02 | 0.63–6.50 |
Tumor size | Tumor size | Tumor size | ||||||
Small ≤ 8 cm | Small ≤ 8 cm | Small ≤ 8 cm | ||||||
Large ≥ 8 cm | 1.26 | 0.55–2.92 | Large ≥ 8 cm | 1.33 | 0.60–2.97 | Large ≥ 8 cm | 1.23 | 0.54–2.80 |
Histological response to CTx | DCE-MRI response (binary) to CTx | DCE-MRI response (continuous) to CTx | 0.69 | 0.50–0.94 | ||||
Good responder (<10% viable tumor cells) | Good responder (rWIR < 2.3) | |||||||
Poor responder (≥10% viable tumor cells) | 1.98 | 0.84–4.67 | Poor responder (rWIR ≥ 2.3) | 2.28 | 1.00–5.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalisvaart, G.M.; Evenhuis, R.E.; Grootjans, W.; Van Den Berghe, T.; Callens, M.; Bovée, J.V.M.G.; Creytens, D.; Gelderblom, H.; Speetjens, F.M.; Lapeire, L.; et al. Relative Wash-In Rate in Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a New Prognostic Biomarker for Event-Free Survival in 82 Patients with Osteosarcoma: A Multicenter Study. Cancers 2024, 16, 1954. https://doi.org/10.3390/cancers16111954
Kalisvaart GM, Evenhuis RE, Grootjans W, Van Den Berghe T, Callens M, Bovée JVMG, Creytens D, Gelderblom H, Speetjens FM, Lapeire L, et al. Relative Wash-In Rate in Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a New Prognostic Biomarker for Event-Free Survival in 82 Patients with Osteosarcoma: A Multicenter Study. Cancers. 2024; 16(11):1954. https://doi.org/10.3390/cancers16111954
Chicago/Turabian StyleKalisvaart, Gijsbert M., Richard E. Evenhuis, Willem Grootjans, Thomas Van Den Berghe, Martijn Callens, Judith V. M. G. Bovée, David Creytens, Hans Gelderblom, Frank M. Speetjens, Lore Lapeire, and et al. 2024. "Relative Wash-In Rate in Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a New Prognostic Biomarker for Event-Free Survival in 82 Patients with Osteosarcoma: A Multicenter Study" Cancers 16, no. 11: 1954. https://doi.org/10.3390/cancers16111954
APA StyleKalisvaart, G. M., Evenhuis, R. E., Grootjans, W., Van Den Berghe, T., Callens, M., Bovée, J. V. M. G., Creytens, D., Gelderblom, H., Speetjens, F. M., Lapeire, L., Sys, G., Fiocco, M., Verstraete, K. L., van de Sande, M. A. J., & Bloem, J. L. (2024). Relative Wash-In Rate in Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a New Prognostic Biomarker for Event-Free Survival in 82 Patients with Osteosarcoma: A Multicenter Study. Cancers, 16(11), 1954. https://doi.org/10.3390/cancers16111954