Effect of a Long-Term Online Home-Based Supervised Exercise Program on Physical Fitness and Adherence in Breast Cancer Patients: A Randomized Clinical Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.4. Outcome Assessments
2.5. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Anthropometry and Body Composition
3.3. Physical Fitness
3.4. Safety and Adherence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.J.; Feliciano, E.M.C.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A. Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol. 2018, 4, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.H.; Cappola, A.R.; Stricker, C.T.; Sweeney, C.; Norman, S.A. The intersection of cancer and aging: Establishing the need for breast cancer rehabilitation. Cancer Epidemiol. Biomark. Prev. 2007, 16, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Kraschnewski, J.L.; Schmitz, K.H. Exercise in the prevention and treatment of breast cancer: What clinicians need to tell their patients. Transl. J. Am. Coll. Sports Med. 2017, 2, 92–96. [Google Scholar]
- Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H. Exercise guidelines for cancer survivors: Consensus statement from international multidisciplinary roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Casado, A.; Martín-Ruiz, A.; Pérez, L.M.; Provencio, M.; Fiuza-Luces, C.; Lucia, A. Exercise and the hallmarks of cancer. Trends Cancer 2017, 3, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.X.N.; Leite, J.S.; Ignacio, A.C.; Massierer, F.D.; Pfeifer, L.O.; Dos Santos Cardoso, L.A.; Alano, T.S.; Umpierre, D. The “home-based exercise for breast and prostate cancer patients during treatment—A feasibility trial” (BENEFIT CA trial): Rationale and methodological protocol. Pilot Feasibility Stud. 2023, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Ginzac, A.; Passildas, J.; Gadéa, E.; Abrial, C.; Molnar, I.; Trésorier, R.; Duclos, M.; Thivat, E.; Durando, X. Treatment-induced cardiotoxicity in breast cancer: A review of the interest of practicing a physical activity. Oncology 2019, 96, 223–234. [Google Scholar] [CrossRef]
- Abdin, S.; Lavallée, J.F.; Faulkner, J.; Husted, M. A systematic review of the effectiveness of physical activity interventions in adults with breast cancer by physical activity type and mode of participation. Psychooncology 2019, 28, 1381–1393. [Google Scholar] [CrossRef]
- Avancini, A.; Pala, V.; Trestini, I.; Tregnago, D.; Mariani, L.; Sieri, S.; Krogh, V.; Boresta, M.; Milella, M.; Pilotto, S.; et al. Exercise Levels and Preferences in Cancer Patients: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 5351. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.M.; Zabor, E.C.; Schwitzer, E.; Koelwyn, G.J.; Adams, S.C.; Nilsen, T.S.; Moskowitz, C.S.; Matsoukas, K.; Iyengar, N.M.; Dang, C.T.; et al. Efficacy of Exercise Therapy on Cardiorespiratory Fitness in Patients With Cancer: A Systematic Review and Meta-Analysis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2297–2305. [Google Scholar] [CrossRef]
- Stout, N.L.; Baima, J.; Swisher, A.K.; Winters-Stone, K.M.; Welsh, J. A Systematic Review of Exercise Systematic Reviews in the Cancer Literature (2005–2017). PM R 2017, 9, S347–S384. [Google Scholar] [CrossRef] [PubMed]
- Kilari, D.; Soto-Perez-de-Celis, E.; Mohile, S.G.; Alibhai, S.M.H.; Presley, C.J.; Wildes, T.M.; Klepin, H.D.; Demark-Wahnefried, W.; Jatoi, A.; Harrison, R.; et al. Designing exercise clinical trials for older adults with cancer: Recommendations from 2015 Cancer and Aging Research Group NCI U13 Meeting. J. Geriatr. Oncol. 2016, 7, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Alibhai, S.M.H.; Papadopoulos, E.; Mina, D.S.; Ritvo, P.; Tomlinson, G.; Sabiston, C.M.; Durbano, S.; Bremner, K.E.; Chiarotto, J.; Matthew, A.; et al. Home-based versus supervised group exercise in men with prostate cancer on androgen deprivation therapy: A randomized controlled trial and economic analysis. J. Geriatr. Oncol. 2024, 15, 101646. [Google Scholar] [CrossRef]
- Dalal, H.M.; Zawada, A.; Jolly, K.; Moxham, T.; Taylor, R.S. Home based versus centre based cardiac rehabilitation: Cochrane systematic review and meta-analysis. BMJ 2010, 340, b5631. [Google Scholar] [CrossRef]
- Natalucci, V.; Marini, C.F.; Flori, M.; Pietropaolo, F.; Lucertini, F.; Annibalini, G.; Vallorani, L.; Sisti, D.; Saltarelli, R.; Villarini, A.; et al. Effects of a Home-Based Lifestyle Intervention Program on Cardiometabolic Health in Breast Cancer Survivors during the COVID-19 Lockdown. J. Clin. Med. 2021, 10, 2678. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Díez-Fernández, D.M.; Esteban-Simón, A.; Rodríguez-Pérez, M.A.; Artés-Rodríguez, E.; Casimiro-Artés, M.A.; Moreno-Martos, H.; Toro-de-Federico, A.; Hachem-Salas, N.; Bartholdy, C.; et al. Effects of a 12-week supervised resistance training program, combined with home-based physical activity, on physical fitness and quality of life in female breast cancer survivors: The EFICAN randomized controlled trial. J. Cancer Surviv. Res. Pract. 2023, 17, 1371–1385. [Google Scholar] [CrossRef]
- Stefani, L.; Klika, R.; Mascherini, G.; Mazzoni, F.; Lunghi, A.; Petri, C.; Petreni, P.; Di Costanzo, F.; Maffulli, N.; Galanti, G. Effects of a home-based exercise rehabilitation program for cancer survivors. J. Sports Med. Phys. Fitness 2019, 59, 846–852. [Google Scholar] [CrossRef]
- Lopez, C.; McGarragle, K.; Pritlove, C.; Jones, J.M.; Alibhai, S.M.H.; Lenton, E.; Santa Mina, D. Variability and limitations in home-based exercise program descriptions in oncology: A scoping review. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2020, 28, 4005–4017. [Google Scholar] [CrossRef]
- Coughlin, S.S.; Caplan, L.; Stone, R.; Stewart, J. A review of home-based physical activity interventions for breast cancer survivors. Curr. Cancer Rep. 2019, 1, 6–12. [Google Scholar] [CrossRef]
- Onerup, A.; Andersson, J.; Angenete, E.; Bock, D.; Börjesson, M.; Ehrencrona, C.; Fagevik Olsén, M.; Larsson, P.-A.; de la Croix, H.; Wedin, A.; et al. Effect of Short-term Homebased Pre- and Postoperative Exercise on Recovery After Colorectal Cancer Surgery (PHYSSURG-C): A Randomized Clinical Trial. Ann. Surg. 2022, 275, 448. [Google Scholar] [CrossRef] [PubMed]
- Sagarra-Romero, L.; Butragueño, J.; Gomez-Bruton, A.; Lozano-Berges, G.; Vicente-Rodríguez, G.; Morales, J.S. Effects of an online home-based exercise intervention on breast cancer survivors during COVID-19 lockdown: A feasibility study. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2022, 30, 6287–6297. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, A.A.; Virani, S.A.; Bland, K.A.; McKenzie, D.C.; Gelmon, K.A.; Warburton, D.E.R.; Campbell, K.L. Exercise training affects hemodynamics not cardiac function during anthracycline-based chemotherapy. Breast Cancer Res. Treat. 2020, 184, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Lahart, I.M.; Metsios, G.S.; Nevill, A.M.; Kitas, G.D.; Carmichael, A.R. Randomised controlled trial of a home-based physical activity intervention in breast cancer survivors. BMC Cancer 2016, 16, 234. [Google Scholar] [CrossRef] [PubMed]
- Lavín-Pérez, A.M.; Collado-Mateo, D.; Hinojo González, C.; De Juan Ferré, A.; Ruisánchez Villar, C.; Mayo, X.; Jiménez, A. High-intensity exercise prescription guided by heart rate variability in breast cancer patients: A study protocol for a randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2023, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales. Hum. Kinet. 1998. Available online: https://psycnet.apa.org/record/1998-07179-000 (accessed on 23 September 2021).
- Galiano-Castillo, N.; Arroyo-Morales, M.; Ariza-Garcia, A.; Sánchez-Salado, C.; Fernández-Lao, C.; Cantarero-Villanueva, I.; Martín-Martín, L. The six-minute walk test as a measure of health in breast cancer patients. J. Aging Phys. Act. 2016, 24, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Vogt, L.; Thiel, C.; Jäger, E.; Banzer, W. Validity of the six-minute walk test in cancer patients. Int. J. Sports Med. 2013, 34, 631–636. [Google Scholar] [CrossRef]
- Fell, B.L.; Hanekom, S.; Heine, M. Six-minute walk test protocol variations in low-resource settings—A scoping review. South Afr. J. Physiother. 2021, 77, 1549. [Google Scholar] [CrossRef]
- Harikesavan, K.; Chakravarty, R.D.; Maiya, A.G. Influence of early mobilization program on pain, self-reported and performance based functional measures following total knee replacement. J. Clin. Orthop. Trauma 2019, 10, 340–344. [Google Scholar] [CrossRef]
- Sogbossi, E.S.; Thonnard, J.-L.; Batcho, C.S. Assessing Locomotion Ability in West African Stroke Patients: Validation of ABILOCO-Benin Scale. Arch. Phys. Med. Rehabil. 2014, 95, 1470–1476.e3. [Google Scholar] [CrossRef] [PubMed]
- Cantarero-Villanueva, I.; Fernández-Lao, C.; Diaz-Rodriguez, L.; Fernández-de-Las-Peñas, C.; Ruiz, J.R.; Arroyo-Morales, M. The handgrip strength test as a measure of function in breast cancer survivors: Relationship to cancer-related symptoms and physical and physiologic parameters. Am. J. Phys. Med. Rehabil. 2012, 91, 774–782. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.; Liu, T.; Zhang, D. Association of grip strength with risk of all-cause mortality, cardiovascular diseases, and cancer in community-dwelling populations: A meta-analysis of prospective cohort studies. J. Am. Med. Dir. Assoc. 2017, 18, 551-e17. [Google Scholar] [CrossRef]
- Nikander, R.; Sievänen, H.; Ojala, K.; Oivanen, T.; Kellokumpu-Lehtinen, P.-L.; Saarto, T. Effect of a vigorous aerobic regimen on physical performance in breast cancer patients—A randomized controlled pilot trial. Acta Oncol. Stockh. Swed. 2007, 46, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Van Soom, T.; Gebruers, N.; Tjalma, W.; Schep, G.; van Breda, E. Physical Testing in Cancer Patients: Practical Testing in a Clinical Setting. 2021. Available online: https://repository.uantwerpen.be/link/irua/178875 (accessed on 25 June 2023).
- Millor, N.; Lecumberri, P.; Gómez, M.; Martínez-Ramírez, A.; Izquierdo, M. An evaluation of the 30-s chair stand test in older adults: Frailty detection based on kinematic parameters from a single inertial unit. J. NeuroEng. Rehabil. 2013, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Wells, K.F.; Dillon, E.K. The Sit and Reach—A Test of Back and Leg Flexibility. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1952, 23, 115–118. [Google Scholar] [CrossRef]
- Cadmus-Bertram, L.; Irwin, M.; Alfano, C.; Campbell, K.; Duggan, C.; Foster-Schubert, K.; Wang, C.-Y.; McTiernan, A. Predicting adherence of adults to a 12-month exercise intervention. J. Phys. Act. Health 2014, 11, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Quantitative methods in psychology: A power primer. Psychol. Bull. 1992, 112, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Batalik, L.; Winnige, P.; Dosbaba, F.; Vlazna, D.; Janikova, A. Home-based aerobic and resistance exercise interventions in cancer patients and survivors: A systematic review. Cancers 2021, 13, 1915. [Google Scholar] [CrossRef]
- Chindapasirt, J. Sarcopenia in Cancer Patients. Asian Pac. J. Cancer Prev. APJCP 2015, 16, 8075–8077. [Google Scholar] [CrossRef]
- Christensen, J.F.; Jones, L.W.; Andersen, J.L.; Daugaard, G.; Rorth, M.; Hojman, P. Muscle dysfunction in cancer patients. Ann. Oncol. 2014, 25, 947–958. [Google Scholar] [CrossRef]
- Jones, L.M.; Stoner, L.; Baldi, J.C.; McLaren, B. Circuit resistance training and cardiovascular health in breast cancer survivors. Eur. J. Cancer Care 2020, 29, 13231. [Google Scholar] [CrossRef]
- Mallard, J.; Hucteau, E.; Hureau, T.J.; Pagano, A.F. Skeletal muscle deconditioning in breast cancer patients undergoing chemotherapy: Current knowledge and insights from other cancers. Front. Cell Dev. Biol. 2021, 9, 719643. [Google Scholar] [CrossRef]
- Kroenke, C.H.; Rosner, B.; Chen, W.Y.; Kawachi, I.; Colditz, G.A.; Holmes, M.D. Functional impact of breast cancer by age at diagnosis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 1849–1856. [Google Scholar] [CrossRef]
- Neil-Sztramko, S.E.; Kirkham, A.A.; Hung, S.H.; Niksirat, N.; Nishikawa, K.; Campbell, K.L. Aerobic capacity and upper limb strength are reduced in women diagnosed with breast cancer: A systematic review. J. Physiother. 2014, 60, 189–200. [Google Scholar] [CrossRef]
- DeNysschen, C.A.; Burton, H.; Ademuyiwa, F.; Levine, E.; Tetewsky, S.; O’Connor, T. Exercise intervention in breast cancer patients with aromatase inhibitor-associated arthralgia: A pilot study: Exercise intervention in cancer patients: Pilot study. Eur. J. Cancer Care 2014, 23, 493–501. [Google Scholar] [CrossRef]
- Murri, A.; Vitucci, D.; Tranchita, E.; Grazioli, E.; Gori, S.; Modena, A.; Turazza, M.; Filippini, R.; Galeazzi, S.; Verzè, M. “OPERATION PHALCO”—Adapted Physical Activity for Breast Cancer Survivors: Is It Time for a Multidisciplinary Approach? Cancers 2022, 15, 34. [Google Scholar] [CrossRef]
- Collado-Mateo, D.; Lavín-Pérez, A.M.; Peñacoba, C.; Del Coso, J.; Leyton-Román, M.; Luque-Casado, A.; Gasque, P.; Fernandez-del-Olmo, M.A.; Amado-Alonso, D. Key factors associated with adherence to physical exercise in patients with chronic diseases and older adults: An umbrella review. Int. J. Environ. Res. Public Health 2021, 18, 2023. [Google Scholar] [CrossRef]
Home-Based Exercise Group N (%) | Exercise Recommendation Group N (%) | |
---|---|---|
Age (years, mean ± SD) | 49.0 ± 8.9 | 50.1 ± 7.9 |
Marital Status | ||
Married or in a relationship | 24 (77.4) | 17 (60.7) |
Separated or divorced | 4 (12.9) | 5 (17.9) |
Single | 2 (6.5) | 6 (21.4) |
Widowed | 1 (3.2) | 0 (0.0) |
Breast cancer subtype | ||
Luminal A | 12 (38.7) | 10 (35.7) |
Luminal B (her2 +) | 4 (12.9) | 5 (17.8) |
Luminal B (her2 −) | 11 (35.4) | 10 (35.7) |
Enriched-her2 | 2 (6.5) | 2 (7.2) |
Basal-like | 2 (6.5) | 1 (3.6) |
Laterality | ||
Right breast | 10 (32.3) | 10 (35.7) |
Left breast | 17 (54.8) | 17 (60.79 |
Bilateral | 4 (12.9) | 1 (3.6) |
Tumor stage | ||
I | 9 (29.0) | 13 (46.4) |
II | 20 (64.5) | 12 (42.9) |
III | 1 (3.2) | 1 (3.6) |
IV | 1 (3.2) | 2 (7.1) |
Treatment during the study | ||
Chemotherapy | 16 (51.6) | 17 (60.7) |
Radiotherapy | 4 (13.0) | 2 (7.1) |
Hormone therapy | 11 (35.5) | 9 (32.2) |
Home-Based Exercise Group | Baseline | p Value/ES | 12 Weeks | p Value/ES | 24 Weeks | p Value/ES |
---|---|---|---|---|---|---|
Body Mass Index (Weight (kg)/Height (m2)) | 25.7 ± 6.7 | 1.000 | 25.7 ± 6.4 | 0.250 | 22.5 ± 10.4 | 1.000 |
Body Fat Percentage (%) | 34.7 ± 8.0 | 1.000 | 34.7 ± 7.8 | 1.000 | 33.2 ± 7.7 | 1.000 |
Muscle Mass Percentage (%) | 62.2 ± 8.7 | 0.365 | 62.0 ± 7.7 | 1.000 | 63.5 ± 8.0 | 0.955 |
Exercise recommendation group | ||||||
Body Mass Index (Weight (kg)/Height (m2)) | 25.1 ± 4.2 | 1.000 | 24.8 ± 4.4 | 0.250 | 25.4 ± 4.6 | 1.000 |
Body Fat Percentage (%) | 33.0 ± 7.1 | 1.000 | 33.1 ± 6.8 | 1.000 | 34.7 ± 7.1 | 1.000 |
Muscle Mass Percentage (%) | 63.8 ± 6.7 | 0.365 | 60.8 ± 11.2 | 1.000 | 61.0 ± 8.0 | 0.955 |
Home-Based Exercise Group | Baseline | p Value/ES | 12 Weeks | p Value/ES | 24 Weeks | p Value/ES |
---|---|---|---|---|---|---|
Right Handgrip (kg) | 25.2 ± 5.1 * | 1.000 | 26.0 ± 4.2 * | 0.804 | 26.8 ± 4.5 * | 1.000 |
Left Handgrip (kg) | 24.1 ± 5.8 * | 1.000 | 25.2 ± 4.6 * | 1.000 | 25.9 ± 4.3 * | 1.000 |
Chair–stand test (repetitions in 30″) | 18.0 ± 7.0 b | <0.001/1.5 | 27.0 ± 5.0 * c | <0.001/1.1 | 33.0 ± 6.0 * a | <0.001/2.4 |
Sit-and-reach test (cm) | 4.7 ± 8.0 b | <0.001/1.0 | 11.3 ± 5.9 * | 0.090 | 14.4 ± 4.6 * a | <0.001/1.5 |
Squat–jump test (cm) | 14.0 ± 5.9 b | <0.001/0.4 | 16.1 ± 5.3 * c | 0.034/0.2 | 17.1 ± 5.1 * a | <0.001/0.6 |
Countermovement jump test (cm) | 13.3 ± 5.4 b | <0.001/0.5 | 16.3 ± 6.2 * | 0.052 | 17.3 ± 5.9 * a | <0.001/0.7 |
6 min walking test (m) | 686.2 ± 169.0 * b | <0.001/0.6 | 789.3 ± 195.6 * c | <0.001/0.4 | 863.7 ± 174.5 * a | <0.001/1.1 |
Exercise recommendation group | ||||||
Right Handgrip (kg) | 21.8 ± 4.8 | 1.000 | 20.9 ± 4.5 | 0.804 | 19.4 ± 5.4 | 1.000 |
Left Handgrip (kg) | 19.9 ± 4.6 | 1.000 | 18.4 ± 5.3 | 1.000 | 17.8 ± 4.5 | 1.000 |
Chair–stand test (repetitions in 30″) | 19.0 ± 5.0 | 0.752 | 20.0 ± 5.0 c | 0.001/0.5 | 23.0 ± 5.0 a | <0.001/0.7 |
Sit-and-reach test (cm) | 3.4 ± 10.3 | 1.000 | 3.1 ± 8.7 c | <0.001/1.0 | −5.2 ± 8.7 a | <0.001/0.9 |
Squat–jump test (cm) | 13.1 ± 4.3 | 0.067 | 12.1 ± 3.9 | 1.000 | 12.4 ± 3.8 | 0.458 |
Countermovement jump test (cm) | 13.5 ± 4.8 b | 0.003/0.3 | 12.1 ± 4.4 | 1.000 | 12.2 ± 3.9 a | 0.040/0.3 |
6 min walking test (m) | 600.9 ± 75.1 | 0.523 | 629.6 ± 111.0 | 1.000 | 607.7 ± 87.2 | 0.117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Roca, M.E.; Catalá-Vilaplana, I.; Hernando, C.; Baliño, P.; Salas-Medina, P.; Suarez-Alcazar, P.; Folch-Ayora, A.; Collado Boira, E. Effect of a Long-Term Online Home-Based Supervised Exercise Program on Physical Fitness and Adherence in Breast Cancer Patients: A Randomized Clinical Trial. Cancers 2024, 16, 1912. https://doi.org/10.3390/cancers16101912
Garcia-Roca ME, Catalá-Vilaplana I, Hernando C, Baliño P, Salas-Medina P, Suarez-Alcazar P, Folch-Ayora A, Collado Boira E. Effect of a Long-Term Online Home-Based Supervised Exercise Program on Physical Fitness and Adherence in Breast Cancer Patients: A Randomized Clinical Trial. Cancers. 2024; 16(10):1912. https://doi.org/10.3390/cancers16101912
Chicago/Turabian StyleGarcia-Roca, María Elena, Ignacio Catalá-Vilaplana, Carlos Hernando, Pablo Baliño, Pablo Salas-Medina, Pilar Suarez-Alcazar, Ana Folch-Ayora, and Eladio Collado Boira. 2024. "Effect of a Long-Term Online Home-Based Supervised Exercise Program on Physical Fitness and Adherence in Breast Cancer Patients: A Randomized Clinical Trial" Cancers 16, no. 10: 1912. https://doi.org/10.3390/cancers16101912
APA StyleGarcia-Roca, M. E., Catalá-Vilaplana, I., Hernando, C., Baliño, P., Salas-Medina, P., Suarez-Alcazar, P., Folch-Ayora, A., & Collado Boira, E. (2024). Effect of a Long-Term Online Home-Based Supervised Exercise Program on Physical Fitness and Adherence in Breast Cancer Patients: A Randomized Clinical Trial. Cancers, 16(10), 1912. https://doi.org/10.3390/cancers16101912