The Utility of Contrast-Enhanced Ultrasound (CEUS) in Assessing the Risk of Malignancy in Thyroid Nodules
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. B-Mode, Elastography Examination Technique
2.2. CEUS Examination Technique
2.3. Pathology Examination
2.4. Statistical Analysis
3. Results
3.1. Patients
3.2. B-Mode Findings
3.3. CEUS Findings
3.4. The Combination of B-Mode and CEUS Findings
3.5. Pathology Results
4. Discussion
4.1. The Highlights of the Study
4.2. B-Mode Features of the Study Group
4.3. CEUS Features of the Study Group
4.4. The Utility of CEUS Patterns Assessed in the Study in Line with the Literature Review—Malignant Nodules
4.5. The Utility of CEUS Patterns Assessed in the Study in Line with the Literature Review—Benign Nodules
4.6. The Usefulness of CEUS Patterns in Combination with B-Mode Features Evaluated in the Study Group in Line with the Literature Review
4.7. The CEUS-TIRADS Application
4.8. Artificial Intelligence in Optimizing the US Imaging—Future Prospects
4.9. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Malignant (n = 123, 65.4%) | Benign (n = 65, 34.6%) | n-Value |
---|---|---|---|
Size, mm, median (IQR) * | 13.00 (9.00;20.75) | 21.50 (15.00;28.00) | <0.001 |
Echogenicity | |||
Mildly hypoechoic | 50 (40.7) | 28 (43.1) | 0.869 |
Markedly hypoechoic | 67 (54.5) | 11 (16.9) | <0.001 |
Hyperechoic | 0 (0.0) | 3 (4.6) | 0.040 |
Isoechoic | 6 (4.9) | 23 (35.4) | <0.001 |
Heterogenous echotexture | 49 (39.8) | 17 (26.2) | 0.087 |
Composition | |||
Solid | 115 (93.5) | 48 (73.8) | <0.001 |
Solid-cystic | 8 (6.5) | 17 (26.2) | |
Shape | |||
Oval | 94 (76.4) | 63 (96.9) | 0.001 |
Round | 1 (0.8) | 1 (1.5) | >0.999 |
Irregular | 28 (22.8) | 1 (1.5) | <0.001 |
Shape/orientation | |||
Parallel | 101 (82.1) | 60 (92.3) | 0.094 |
Non-parallel | 22 (17.9) | 5 (7.7) | |
Margins | |||
Smooth | 19 (15.4) | 43 (66.2) | <0.001 |
Ill-defined | 52 (42.3) | 13 (20.0) | 0.004 |
Irregular | 52 (42.3) | 9 (13.8) | <0.001 |
Margins irregular–angular | 19 (15.4) | 2 (3.1) | 0.020 |
Margins irregular–microlobular | 22 (17.9) | 5 (7.7) | 0.094 |
Margins irregular–spicular | 12 (9.8) | 0 (0.0) | 0.009 |
Halo | 13 (10.6) | 20 (30.8) | 0.001 |
Halo by type | |||
Thin | 7 (5.7) | 14 (21.5) | 0.002 |
Thick | 6 (4.9) | 6 (9.2) | 0.346 |
Microcalcifications | 40 (32.5) | 3 (4.6) | <0.001 |
Macrocalcifications | 21 (17.1) | 5 (7.7) | 0.121 |
Macrocalcification–ring type | 1 (0.8) | 0 (0.0) | >0.999 |
Artifacts of comet-tail shape | 0 (0.0) | 1 (1.5) | 0.346 |
Asteria score in SE | |||
1 | 4 (3.3) | 5 (7.7) | 0.282 |
2 | 18 (14.6) | 29 (44.6) | <0.001 |
3 | 45 (36.6) | 20 (30.8) | 0.433 |
4 | 47 (38.2) | 8 (12.3) | <0.001 |
EU-TIRADS category | |||
3 | 6 (4.9) | 20 (30.8) | <0.001 |
4 | 11 (8.9) | 22 (33.8) | <0.001 |
5 | 106 (86.2) | 23 (35.4) | <0.001 |
Bethesda category | |||
II | 2 (1.6) | 21 (32.3) | <0.001 |
III | 5 (4.1) | 14 (21.5) | <0.001 |
IV | 20 (16.3) | 24 (36.9) | 0.003 |
V | 55 (44.7) | 6 (9.2) | <0.001 |
VI | 41 (33.3) | 0 (0.0) | <0.001 |
B-Mode | CEUS | Univariate Model | Multivariate Model | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
Sex, male (vs. female) | – | 1.26 | 0.57–2.96 | 0.570 | – | – | – |
Age, years | – | 0.98 | 0.96–1.00 | 0.117 | – | – | – |
Size, mm | – | 0.96 | 0.93–0.98 | 0.002 | – | – | – |
Markedly hypoechoic (vs. mildly hypoechoic) | – | 3.41 | 1.59–7.76 | 0.002 | – | – | – |
Hyperechoic (vs. hypoechoic mildly/markedly) | – | 0.00 | – | 0.985 | – | – | – |
Isoechoic (vs. hypoechoic mildly/markedly) | – | 0.15 | 0.05–0.38 | <0.001 | – | – | – |
Hypoechoic (mildly/markedly) | – | 13.00 | 5.29–37.05 | <0.001 | – | – | – |
Hypoechoic (mildly/markedly) | Intensity, equal-to-thyroid parenchyma/hypoenhancement | 7.75 | 3.95–15.93 | <0.001 | – | – | – |
Hypoechoic (mildly/markedly) | Heterogenous enhancement | 6.60 | 3.42–13.10 | <0.001 | 3.36 | 1.49–7.73 | 0.004 |
Markedly hypoechoic | Intensity, equal-to-thyroid parenchyma/hypoenhancement | 21.58 | 6.34–135.23 | <0.001 | – | – | – |
Markedly hypoechoic | Heterogenous enhancement | 8.77 | 3.78–24.07 | <0.001 | – | – | – |
Heterogenous echotexture | – | 1.87 | 0.98–3.69 | 0.063 | – | – | – |
Solid-cystic composition (vs. solid) | – | 0.20 | 0.08–0.47 | <0.001 | 0.30 | 0.10–0.85 | 0.027 |
Oval shape (vs. irregular) | – | 0.05 | 0.00–0.26 | 0.004 | – | – | – |
Round shape (vs. irregular) | – | 0.04 | 0.00–1.31 | 0.056 | – | – | – |
Orientation, parallel (vs. non-parallel) | – | 0.38 | 0.12–0.99 | 0.065 | – | – | – |
Margins ill-defined (vs. smooth) | – | 9.05 | 4.12–21.08 | <0.001 | – | – | – |
Margins irregular (vs. smooth) | – | 13.08 | 5.58–33.50 | <0.001 | – | – | – |
Margins, non-smooth | Intensity, equal-to-thyroid parenchyma/hypoenhancement | 9.47 | 4.63–20.87 | <0.001 | 4.03 | 1.67–10.18 | 0.002 |
Margins, non-smooth | Heterogenous enhancement | 9.09 | 4.61–18.84 | <0.001 | – | – | – |
Margins, irregular–angular | – | 5.75 | 1.60–36.89 | 0.021 | – | – | – |
Margins, irregular -microlobular | – | 2.61 | 1.01–8.13 | 0.065 | – | – | – |
Margins, irregular–spicular | – | Inf | – | 0.988 | – | – | – |
Halo (vs. no halo) | – | 0.27 | 0.12–0.57 | <0.001 | 1.31 | 0.46–3.80 | 0.609 |
Halo, thick (vs. thin) | – | 2.00 | 0.47–8.85 | 0.349 | – | – | – |
Microcalcifications | – | 9.96 | 3.41–42.48 | <0.001 | 4.07 | 1.18–19.21 | 0.042 |
Macrocalcifications | – | 2.47 | 0.95–7.70 | 0.084 | – | – | – |
Macrocalcification–ring type | – | Inf | – | 0.987 | – | – | – |
Artifacts of comet-tail shape | – | 0.00 | – | 0.986 | – | – | – |
Extrathyroidal infiltration (vs. modelling of the capsule) | – | Inf | – | 0.988 | – | – | – |
Vascularity type I (vs. mixed) | – | Inf | – | 0.992 | – | – | – |
Vascularity type II (vs. mixed) | – | 3.39 | 1.65–7.46 | 0.001 | – | – | – |
Vascularity type III (vs. mixed) | – | Inf | – | 0.987 | – | – | – |
Pathological lymph nodes | – | Inf | – | 0.987 | – | – | – |
Asteria, 2 in SE (vs. Asteria 1) | – | 0.78 | 0.18–3.49 | 0.730 | 1.03 | 0.17–6.98 | 0.973 |
Asteria, 3 in SE (vs. Asteria 1) | – | 2.81 | 0.68–12.44 | 0.152 | 2.68 | 0.45–17.47 | 0.282 |
Asteria, 4 in SE (vs. Asteria 1) | – | 7.34 | 1.63–35.92 | 0.010 | 4.17 | 0.64–29.95 | 0.141 |
Asteria in SE, no information (vs. Asteria 1) | – | 3.75 | 0.62–27.19 | 0.162 | 6.39 | 0.62–78.51 | 0.128 |
Asteria 4 in SE | Intensity, equal-to-thyroid parenchyma/hypoenhancement | 11.12 | 3.80–47.47 | <0.001 | – | – | – |
Asteria 4 in SE | Heterogenous enhancement | 13.00 | 5.29–37.05 | <0.001 | – | – | – |
Intensity, high enhancement (vs. hypoenhancement) | – | 0.23 | 0.10–0.50 | <0.001 | – | – | – |
Intensity, equal to parenchyma (vs. hypoenhancement) | – | 0.64 | 0.26–1.49 | 0.305 | – | – | – |
Heterogenous enhancement (vs. homogenous) | – | 2.87 | 1.46–5.71 | 0.002 | – | – | – |
Slow wash-in phase (vs. equal-to-thyroid parenchyna ) | – | 2.15 | 0.96–5.10 | 0.070 | – | – | – |
Fast wash-in phase (vs. equal-to-thyroid parenchyna ) | – | 0.60 | 0.30–1.20 | 0.149 | – | – | – |
Ring enhancement | – | 0.21 | 0.06–0.60 | 0.005 | 0.30 | 0.07–1.19 | 0.098 |
Enhancement type, centrifugal (vs. centripetal) | – | 2.47 | 0.83–9.12 | 0.130 | – | – | – |
Enhancement type, spread (vs. centripetal) | – | 1.21 | 0.64–2.31 | 0.563 | – | – | – |
Fast wash-out phase (vs. no wash-out) | – | 0.16 | 0.02–0.60 | 0.018 | – | – | – |
Equal-to-thyroid parenchyma wash-out (vs. no wash-out) | – | 0.17 | 0.03–0.66 | 0.025 | – | – | – |
Slow wash-out (vs. no wash-out) | – | 0.05 | 0.01–0.22 | <0.001 | – | – | – |
B-mode/CEUS | AUC (95% CI) | Sensitivity | Specificity | Accuracy | PPV | NPV | p |
---|---|---|---|---|---|---|---|
Margins, non-smooth | 0.754 (0.687;0.820) | 0.85 | 0.66 | 0.78 | 0.83 | 0.69 | <0.001 |
Markedly hypoechoic | 0.688 (0.624;0.751) | 0.54 | 0.83 | 0.64 | 0.86 | 0.49 | <0.001 |
Mildly/markedly hypoechoic | 0.676 (0.613;0.739) | 0.95 | 0.40 | 0.76 | 0.75 | 0.81 | <0.001 |
Intensity, equal/lower than thyroid parenchyma | 0.643 (0.570;0.715) | 0.73 | 0.55 | 0.67 | 0.76 | 0.52 | <0.001 |
Margin, irregular | 0.642 (0.581;0.703) | 0.42 | 0.86 | 0.57 | 0.85 | 0.44 | <0.001 |
Asteria 4 | 0.642 (0.580;0.704) | 0.41 | 0.87 | 0.57 | 0.85 | 0.45 | <0.001 |
Microcalcification | 0.640 (0.591;0.688) | 0.33 | 0.95 | 0.54 | 0.93 | 0.43 | <0.001 |
Margins, ill-defined | 0.611 (0.546;0.677) | 0.42 | 0.80 | 0.55 | 0.80 | 0.42 | 0.002 |
Shape, irregular | 0.606 (0.566;0.646) | 0.23 | 0.98 | 0.49 | 0.97 | 0.40 | <0.001 |
Vascularity type II | 0.606 (0.543;0.669) | 0.38 | 0.83 | 0.54 | 0.81 | 0.42 | 0.002 |
Heterogenous enhancement | 0.603 (0.534;0.671) | 0.82 | 0.38 | 0.67 | 0.72 | 0.53 | 0.002 |
Structure, solid | 0.598 (0.540;0.656) | 0.93 | 0.26 | 0.70 | 0.71 | 0.68 | <0.001 |
Intensity, lower than flesh | 0.594 (0.532;0.657) | 0.36 | 0.83 | 0.52 | 0.80 | 0.41 | 0.005 |
Flow, slow | 0.586 (0.525;0.646) | 0.33 | 0.85 | 0.51 | 0.80 | 0.40 | 0.009 |
Border irregular–angular | 0.562 (0.523;0.600) | 0.15 | 0.97 | 0.44 | 0.90 | 0.38 | 0.005 |
Intensity, equal to flesh | 0.549 (0.479;0.618) | 0.37 | 0.72 | 0.49 | 0.72 | 0.38 | 0.178 |
Asteria 3 | 0.536 (0.462;0.610) | 0.39 | 0.68 | 0.49 | 0.69 | 0.38 | 0.341 |
Washout, equal to flesh | 0.516 (0.447;0.586) | 0.33 | 0.71 | 0.46 | 0.68 | 0.36 | 0.643 |
Wash-out, fast | 0.503 (0.429;0.576) | 0.39 | 0.62 | 0.47 | 0.66 | 0.35 | 0.940 |
Author | Publication Year | Nodules | Malignant Nodules | Benign Nodules | Diagnostics Methods | Sensitivity | Specificity | PPV | NPV | AUC |
---|---|---|---|---|---|---|---|---|---|---|
Zhang Y. et al. [29] | 2018 | 120 | 42 | 78 | CEUS | 97.6% | 98.7% | 97.6% | 97.6% | 0.987 |
Zhang B. et al. [30] | 2010 | 104 | 51 | 53 | CEUS | 88.2% | 92.5% | 91.8% | 89.1% | 0.904 |
Xi X. et al. [31] | 2020 | 163 | 29 | 134 | CEUS | 51.7% | 88.1% | 48.4% | 89.4% | 0.729 |
Xu Y. et al. [32] | 2019 | 432 | 258 | 174 | CEUS+TI-RADS | 85.6% | 83.3% | 88.4% | 79.6% | 0.867 |
Schleder S. et al. [34] | 2015 | 101 | 26 | 75 | CEUS | 81.0% | 92.0% | 97.0% | 63.0% | - |
Jiang J. et al. [36] | 2015 | 122 | 49 | 73 | CEUS | 90.0% | 92.0% | 88.0% | 93.0% | 0.908 |
Cantisani V. et al. [39] | 2013 | 53 | 19 | 34 | CEUS | 79.0% | 91.0% | 83.0% | 89.0% | - |
Zhang Y.Z. et al. [40] | 2016 | 145 | 63 | 82 | CEUS+HRUS+RTE | 87.3% | 91.5% | 88.7% | 90.4% | 0.935 |
Zhang Y. et al. [41] | 2017 | 319 | 79 | 244 | CEUS+TI-RADS | 97.3% | 95.5% | 88.0% | 99.1% | 0.960 |
Sui X. et al. [42] | 2016 | 109 | 66 | 43 | CEUS+RTE | 95.4% | 95.3% | 96.2% | 95.3% | 0.954 |
Author | Publication Year | Studies Number | Nodules | Sensitivity | Specificity | PPV | NPV | AUC |
---|---|---|---|---|---|---|---|---|
Zhang J. et al. [15] | 2020 | 37 | 4723 | 87.0% | 83.0% | - | - | 0.926 |
Trimboli P. et al. [23] | 2020 | 14 | 1515 | 85.0% | 82.0% | 83.0% | 85.0% | - |
Wan Q. et al. [26] | 2021 | 63 | - | 85.4% | 89.5% | 89.3% | 81.8% | 0.825 |
Ma X. et al. [27] | 2016 | 16 | 1127 | 90.0% | 86.0% | 85.4% | 79.7% | 0.940 |
Sun B. et al. [28] | 2015 | 25 | 1154 | 88.0% | 90.0% | - | - | 0.946 |
Yu D. et al. [37] | 2014 | 7 | 597 | 85.3% | 87.6% | - | - | 0.916 |
Wu Y. et al. [38] | 2022 | 11 | 1378 | 87.0% | 84.0% | 83.0% | 89.0% | - |
References
- Jiang, H.; Tian, Y.; Yan, W.; Kong, Y.; Wang, H.; Wang, A.; Dou, J.; Liang, P.; Mu, Y. The prevalence of thyroid nodules and an analysis of related lifestyle factors in Beijing communities. Int. J. Environ. Res. Public Health 2016, 13, 442. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Bomeli, S.R.; LeBeau, S.O.; Ferris, R.L. Evaluation of a thyroid nodule. Otolaryngol. Clin. N. Am. 2010, 43, 229–238. [Google Scholar] [CrossRef]
- Vigneri, R.; Malandrino, P.; Vigneri, P. The changing epidemiology of thyroid cancer. Curr. Opin. Oncol. 2015, 27, 1–7. [Google Scholar] [CrossRef]
- Melany, M.; Chen, S. Thyroid cancer ultrasound imaging and fine-needle aspiration. biopsy. Endocrinol. Metab. Clin. 2017, 46, 691–711. [Google Scholar] [CrossRef]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.; Lee, Y.H.; Lim, H.K.; Moon, W.-J.; Na, D.G.; Park, J.S.; et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [PubMed]
- Remonti, L.R.; Kramer, C.K.; Leitão, C.B.; Pinto, L.C.; Gross, J.L. Thyroid ultrasound features and risk of carcinoma: A systematic review and meta-analysis of observational studies. Thyroid 2015, 25, 538–550. [Google Scholar] [CrossRef]
- Grani, G.; Lamartina, L.; Ascoli, V.; Bosco, D.; Biffoni, M.; Giacomelli, L.; Maranghi, M.; Falcone, R.; Ramundo, V.; Cantisani, V.; et al. Reducing the number of unnecessary thyroid biopsies while improving diagnostic accuracy: Toward the “right” TIRADS. J. Clin. Endocrinol. Metab. 2019, 104, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Horvath, E.; Majlis, S.; Rossi, R.; Franco, C.; Niedmann, J.P.; Castro, A.; Dominguez, M. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J. Clin. Endocrinol. Metab. 2009, 94, 1748–1751. [Google Scholar] [CrossRef]
- Dobruch-Sobczak, K.; Adamczewski, Z.; Dedecjus, M.; Lewiński, A.; Migda, B.; Ruchała, M.; Skowrońska-Szcześniak, A.; Szczepanek-Parulska, E.; Zajkowska, K.; Żyłka, A. Summary od meta-analyses of studies involving TIRADS classifications (EU-TIRADS, ACR-TIRADS, and K-TIRADS) in evaluating the malignant potential of focal lesions of the thyroid gland. J Ultrason. 2022, 22, 121–129. [Google Scholar] [CrossRef]
- Juhlin, C.C.; Baloch, Z.W. The 3rd edition of Bethesda system for reporting thyroid cytopathology: Highlights and comments. Endocr. Pathol, 2023; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Grani, G.; Lamartina, L.; Filetti, S.; Mandel, S.J.; Cooper, D.S. The diagnosis and management of thyroid nodules: A review. JAMA 2018, 319, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta. Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Xing, Z.; Liu, J.; Peng, Y.; Zhu, J.; Su, A. Diagnostic reliability of elastography in thyroid nodules reported as indeterminate at prior fine-needle aspiration cytology (FNAC): A systematic review and Bayesian meta-analysis. Eur. Radiol. 2020, 30, 6624–6634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Meng, Y.; Chen, Y. Contrast-enhanced ultrasound for the differential diagnosis of thyroid nodules: An updated meta-analysis with comprehensive heterogeneity analysis. PLoS ONE. 2020, 15, e0231775. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.J.; Zha, L.W.; Tam, A.Y.; Lim, H.J.; Cheung, A.K.; Zhang, Y.Q.; Ni, M.; Cheung, J.C.; Wong, D.W. Endocrine Tumor Classification via Machine-Learning-Based Elastography: A Systematic Scoping Review. Cancers 2023, 15, 837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ding, H. Application of Contrast-Enhanced Ultrasound for Evaluation of Thyroid Nodules. Ultrasonography 2018, 37, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Feng, Y.; Huang, P.; Jin, J. Adverse reactions after the use of SonoVue contrast agent: Characteristics and nursing care experience. Medicine 2019, 98, e17745. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.F.; Nolsøe, C.P.; Barr, R.G.; Berzigotti, A.; Burns, P.N.; Cantisani, V.; Chammas, M.C.; Chaubal, N.; Choi, B.I.; Clevert, D.A.; et al. Guidelines and Good Clinical Practice Recommendations for Contrast-Enhanced Ultrasound (CEUS) in the Liver-Update 2020 WFUMB in Cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultrasound. Med. Biol. 2020, 46, 2579–2604. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Wang, Y.W.; Chen, W.S.; Hsiao, M.Y. Update of Contrast-enhanced Ultrasound in Musculoskeletal Medicine: Clinical Perspectives—A Review. J. Med. Ultrasound. 2023, 31, 92–100. [Google Scholar]
- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.-K. Thyroid imaging reporting and data system for US features of nodules: A step in establishing better stratification of cancer risk. Radiology 2011, 260, 892–899. [Google Scholar] [CrossRef]
- Sidhu, P.; Cantisani, V.; Dietrich, C.; Gilja, O.; Saftoiu, A.; Bartels, E.; Bertolotto, M.; Calliada, F.; Clevert, D.-A.; Cosgrove, D.; et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: Update 2017 (short version). Ultraschall. Med. 2018, 39, 154–180. [Google Scholar]
- Trimboli, P.; Castellana, M.; Virili, C.; Havre, R.F.; Bini, F.; Marinozzi, F.; D’Ambrosio, F.; Giorgino, F.; Giovanella, L.; Prosch, H.; et al. Performance of contrast-enhanced ultrasound (CEUS) in assessing thyroid nodules: A systematic review and meta-analysis using histological standard of reference. Radiol. Med. 2020, 125, 406–415. [Google Scholar] [CrossRef]
- Yang, G.E.; Na, D.G. Impact of the ultrasonography assessment method on the malignancy risk and diagnostic performance of five risk stratification systems in thyroid nodules. Endocrine 2022, 75, 137–148. [Google Scholar] [CrossRef]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur. Thyroid. J. 2017, 6, 225–237. [Google Scholar] [CrossRef]
- Wan, Q.; Cao, P.; Liu, J. Meta-analysis of contrast enhanced ultrasound in judging benign and malignant thyroid tumors. Comput. Math. Methods. Med. 2021, 2021, 2577113. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, B.; Ling, W.; Liu, R.; Jia, H.; Zhu, F.; Wang, M.; Liu, H.; Huang, J.; Liu, L. Contrast-enhanced sonography for the identification of benign and malignant thyroid nodules: Systematic review and meta-analysis. J. Clin. Ultrasound. 2016, 44, 199–209. [Google Scholar] [CrossRef]
- Sun, B.; Lang, L.; Zhu, X.; Jiang, F.; Hong, Y.; He, L. Accuracy of contrast-enhanced ultrasound in the identification of thyroid nodules: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 12882–12889. [Google Scholar]
- Zhang, Y.; Zhang, M.; Luo, Y.; Li, J.; Wang, Z.; Tang, J. The value of peripheral enhancement pattern for diagnosing thyroid cancer using contrast-enhanced ultrasound. Int. J. Endocrinol. 2018, 2018, 1625958. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y.-X.; Liu, J.-B.; Yang, M.; Dai, Q.; Zhu, Q.-L.; Gao, P. Utility of contrast-enhanced ultrasound for evaluation of thyroid nodules. Thyroid 2010, 20, 51–57. [Google Scholar] [CrossRef]
- Xi, X.; Gao, L.; Wu, Q.; Fang, S.; Xu, J.; Liu, R.; Yang, X.; Zhu, S.; Zhao, R.; Lai, X.; et al. Differentiation of thyroid nodules difficult to diagnose with contrast-enhanced ultrasonography and real-time elastography. Front. Oncol. 2020, 10, 112. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, X.; Zhao, X.; Ren, W.; Ding, W. Clinical diagnostic value of contrast-enhanced ultrasound and TI-RADS classification for benign and malignant thyroid tumors: One comparative cohort study. Medicine 2019, 98, e14051. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, F.; Liu, T.; Yang, D.; Li, Q.; Li, J.; Song, A. Revised value of contrast-enhanced ultrasound for solid hypo-echoic thyroid nodules graded with the thyroid imaging reporting and data system. Ultrasound Med. Biol. 2018, 44, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Schleder, S.; Janke, M.; Agha, A.; Schacherer, D.; Hornung, M.; Schlitt, H.J.; Stroszczynski, C.; Schreyer, A.G.; Jung, E.M. Preoperative differentiation of thyroid adenomas and thyroid carcinomas using high resolution contrast-enhanced ultrasound (CEUS). Clin. Hemorheol. Microcirc. 2015, 61, 13–22. [Google Scholar] [CrossRef]
- Hornung, M.; Jung, E.M.; Georgieva, M.; Schlitt, H.J.; Stroszczynski, C.; Agha, A. detection of microvascularization of thyroid carcinomas using linear high resolution contrast-enhanced ultrasonography (CEUS). Clin. Hemorheol. Microcirc. 2012, 52, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Shang, X.; Wang, H.; Xu, Y.-B.; Gao, Y.; Zhou, Q. Diagnostic value of contrast-enhanced ultrasound in thyroid nodules with calcification. Kaohsiung J. Med. Sci. 2015, 31, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Han, Y.; Chen, T. Contrast-enhanced ultrasound for differentiation of benign and malignant thyroid lesions. Otolaryngol. Head Neck Surg. 2014, 151, 909–915. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, C.; Shi, B.; Zeng, Z.; Wu, X.; Liu, J. Systematic review and meta-analysis: Diagnostic value of different ultrasound for benign and malignant thyroid nodules. Gland Surg. 2022, 11, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Cantisani, V.; Consorti, F.; Guerrisi, A.; Guerrisi, I.; Ricci, P.; Segni, M.D.; Mancuso, E.; Scardella, L.; Milazzo, F.; D’Ambrosio, F.; et al. Prospective comparative evaluation of quantitative-elastosonography (Q-elastography) and contrast-enhanced ultrasound for the evaluation of thyroid nodules: Preliminary experience. Eur. J. Radiol. 2013, 82, 1892–1898. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Xu, T.; Gong, H.Y.; Li, C.Y.; Ye, X.H.; Lin, H.J.; Shen, M.P.; Duan, Y.; Yang, T.; Wu, X.H. Application of high-resolution ultrasound, real-time elastography, and contrast-enhanced ultrasound in differentiating solid thyroid nodules. Medicine 2016, 95, e5329. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, P.; Tian, S.-M.; Zhao, Y.-F.; Li, J.-L.; Li, L. Usefulness of combined use of contrast-enhanced ultrasound and TI-RADS classification for the differentiation of benign from malignant lesions of thyroid nodules. Eur. Radiol. 2017, 27, 1527–1536. [Google Scholar] [CrossRef]
- Sui, X.; Liu, H.-J.; Jia, H.-L.; Fang, Q.-M. Contrast-enhanced ultrasound and real-time elastography in the differential diagnosis of malignant and benign thyroid nodules. Exp. Ther. Med. 2016, 12, 783–791. [Google Scholar] [CrossRef]
- Hang, J.; Li, F.; Qiao, X.; Ye, X.; Li, A.; Du, L. Combination of maximum shearwave elasticity modulus and TIRADS improves the diagnostic specificity in characterizing thyroid nodules: A retrospective study. Int. J. Endocrinol. 2018, 2018, 4923050. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.; Barr, R.; Bojunga, J.; Cantisani, V.; Chammas, M.C.; Dighe, M.; Vinayak, S.; Xu, J.-M.; Dietrich, C.F. WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: Part 4—Thyroid. Ultrasound. Med. Biol. 2017, 43, 4–26. [Google Scholar] [CrossRef] [PubMed]
- Brandenstein, M.; Wiesinger, I.; Künzel, J.; Hornung, M.; Stroszczynski, C.; Jung, E.M. Multiparametric sonographic imaging of thyroid lesions: Chances of B-mode, elastography and CEUS in relation to preoperative histopathology. Cancers 2022, 14, 4745. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Xu, X.; Cai, Y.; Zeng, H.; Luo, M.; Zhang, W.; Liu, R.; Lin, P.; Xu, Y.; Ye, Q.; et al. A practical CEUS thyroid reporting system for thyroid nodules. Radiology 2022, 305, 49–159. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Zheng, B.; Lian, Y.; Li, H.; Tan, L.; Xu, S.; Liu, Y.; Wu, T.; Ren, J. Contrast-enhanced ultrasound improves the potency of fine-needle aspiration in thyroid nodules with high inadequate risk. BMC Med. Imaging 2022, 22, 83. [Google Scholar] [CrossRef] [PubMed]
- Buda, M.; Wildman-Tobriner, B.; Hoang, J.K.; Thayer, D.; Tessler, F.N.; Middleton, W.D.; Mazurowski, M.A. Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology 2019, 292, 181343. [Google Scholar] [CrossRef]
- Wu, G.-G.; Lv, W.-Z.; Yin, R.; Xu, J.-W.; Yan, Y.-J.; Chen, R.-X.; Wang, J.-Y.; Zhang, B.; Cui, X.-W.; Dietrich, C.F. Deep Learning Based on ACR TI-RADS Can Improve the Differential Diagnosis of Thyroid Nodules. Front. Oncol. 2021, 11, 575166. [Google Scholar] [CrossRef]
- Sorrenti, S.; Dolcetti, V.; Radzina, M.; Bellini, M.I.; Frezza, F.; Munir, K.; Grani, G.; Durante, C.; D’Andrea, V.; David, E.; et al. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing? Cancers 2022, 14, 3357. [Google Scholar] [CrossRef]
Variable | Malignant (n = 123, 65.4%) | Benign (n = 65, 34.6%) | p-Value |
---|---|---|---|
Size, mm, median (IQR) * | 13.00 (9.00;20.75) | 21.50 (15.00;28.00) | <0.001 |
Echogenicity | |||
Markedly hypoechoic | 67 (54.5) | 11 (16.9) | <0.001 |
Hyperechoic | 0 (0.0) | 3 (4.6) | 0.040 |
Isoechoic | 6 (4.9) | 23 (35.4) | <0.001 |
Composition | |||
Solid | 115 (93.5) | 48 (73.8) | <0.001 |
Solid-cystic | 8 (6.5) | 17 (26.2) | |
Shape | |||
Oval | 94 (76.4) | 63 (96.9) | 0.001 |
Irregular | 28 (22.8) | 1 (1.5) | <0.001 |
Margins | |||
Smooth | 19 (15.4) | 43 (66.2) | <0.001 |
Ill-defined | 52 (42.3) | 13 (20.0) | 0.004 |
Irregular | 52 (42.3) | 9 (13.8) | <0.001 |
Margins irregular–angular | 19 (15.4) | 2 (3.1) | 0.020 |
Margins irregular–spicular | 12 (9.8) | 0 (0.0) | 0.009 |
Halo/rim | 13 (10.6) | 20 (30.8) | 0.001 |
Halo by type | |||
Thin | 7 (5.7) | 14 (21.5) | 0.002 |
Microcalcification | 40 (32.5) | 3 (4.6) | <0.001 |
Asteria score in SE | |||
2 | 18 (14.6) | 29 (44.6) | <0.001 |
4 | 47 (38.2) | 8 (12.3) | <0.001 |
EU-TIRADS category | |||
3 | 6 (4.9) | 20 (30.8) | <0.001 |
4 | 11 (8.9) | 22 (33.8) | <0.001 |
5 | 106 (86.2) | 23 (35.4) | <0.001 |
Bethesda category | |||
II | 2 (1.6) | 21 (32.3) | <0.001 |
III | 5 (4.1) | 14 (21.5) | <0.001 |
IV | 20 (16.3) | 24 (36.9) | 0.003 |
V | 55 (44.7) | 6 (9.2) | <0.001 |
VI | 41 (33.3) | 0 (0.0) | <0.001 |
B-Mode | CEUS | Univariate Model | Multivariate Model | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
Size, mm | – | 0.96 | 0.93–0.98 | 0.002 | – | – | – |
Markedly hypoechoic (vs. mildly hypoechoic) | – | 3.41 | 1.59–7.76 | 0.002 | – | – | – |
Isoechoic (vs. mildly/markedly hypoechoic) | – | 0.15 | 0.05–0.38 | <0.001 | – | – | – |
Hypoechoic (mildly/markedly) | – | 13.00 | 5.29–37.05 | <0.001 | – | – | – |
Composition, solid-cystic (vs. solid) | – | 0.20 | 0.08–0.47 | <0.001 | 0.30 | 0.10–0.85 | 0.027 |
Shape, oval (vs. irregular) | – | 0.05 | 0.00–0.26 | 0.004 | – | – | – |
Margins, ill-defined (vs. smooth) | – | 9.05 | 4.12–21.08 | <0.001 | – | – | – |
Margins, irregular (vs. smooth) | – | 13.08 | 5.58–33.50 | <0.001 | – | – | – |
Margins irregular–angular | – | 5.75 | 1.60–36.89 | 0.021 | – | – | – |
Halo (vs. no halo) | – | 0.27 | 0.12–0.57 | <0.001 | 1.31 | 0.46–3.80 | 0.609 |
Microcalcifications | – | 9.96 | 3.41–42.48 | <0.001 | 4.07 | 1.18–19.21 | 0.042 |
Vascularity type II (vs. mixed) | – | 3.39 | 1.65–7.46 | 0.001 | – | – | – |
Asteria score 4 in SE (vs. Asteria 1) | – | 7.34 | 1.63–35.92 | 0.010 | 4.17 | 0.64–29.95 | 0.141 |
Univariate Model | Multivariate Model | ||||||
---|---|---|---|---|---|---|---|
CEUS Contrast Enhancement Features | OR | 95% CI | p | OR | 95% CI | p | |
High enhancement (vs. lower than thyroid parenchyma) | – | 0.23 | 0.10–0.50 | <0.001 | – | – | – |
Heterogenous (vs. homogenous) | – | 2.87 | 1.46–5.71 | 0.002 | – | – | – |
Ring enhancement | – | 0.21 | 0.06–0.60 | 0.005 | 0.30 | 0.07–1.19 | 0.098 |
Fast wash-out phase (vs. no wash-out) | – | 0.16 | 0.02–0.60 | 0.018 | – | – | – |
Equal to thyroid parenchyma wash-out phase (vs. no wash-out) | – | 0.17 | 0.03–0.66 | 0.025 | – | – | – |
Slow wash-out phase (vs. no wash-out) | – | 0.05 | 0.01–0.22 | <0.001 | – | – | – |
B-Mode Features | CEUS Features | Univariate Model | Multivariate Model | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
Hypoechogenicity (mild/marked) | Hypoenhancement/equal-to-thyroid parenchyma enhancement | 7.75 | 3.95–15.93 | <0.001 | – | – | – |
Hypoechogenicity (mild/marked) | Heterogenous enhancement | 6.60 | 3.42–13.10 | <0.001 | 3.36 | 1.49–7.73 | 0.004 |
Marked hypoechogenicity | Hypoenhancement/equal-to-thyroid parenchyma enhancement | 21.58 | 6.34–135.23 | <0.001 | – | – | – |
Marked hypoechogenicity | Heterogenous enhancement | 8.77 | 3.78–24.07 | <0.001 | – | – | – |
Non-smooth margins (ill-defined/irregular) | Hypoenhancement/equal-to-thyroid parenchyma enhancement | 9.47 | 4.63–20.87 | <0.001 | 4.03 | 1.67–10.18 | 0.002 |
Non-smooth margins (ill-defined/irregular) | Heterogenous enhancement | 9.09 | 4.61–18.84 | <0.001 | – | – | – |
Asteria score 4 in SE | Hypoenhancement/equal-to-thyroid parenchyma enhancement | 11.12 | 3.80–47.47 | <0.001 | – | – | – |
Asteria score 4 in SE | Heterogenous enhancement | 13.00 | 5.29–37.05 | <0.001 | – | – | – |
Variable Contrast Enhancement Features | Malignant (n = 123, 65.4%) | Benign (n = 65, 34.6%) | p-Value |
---|---|---|---|
Intensity | |||
High enhancement | 33 (26.8) | 36 (55.4) | <0.001 |
Lower than thyroid parenchyma | 44 (35.8) | 11 (16.9) | 0.011 |
Uniformity | |||
Homogenous | 22 (17.9) | 25 (38.5) | 0.003 |
Heterogenous | 101 (82.1) | 40 (61.5) | |
Wash-in phase | |||
Slow | 40 (32.5) | 10 (15.4) | 0.018 |
Fast | 29 (23.6) | 26 (40.0) | 0.029 |
Ring enhancement | 5 (4.1) | 11 (16.9) | 0.006 |
Wash-out phase | |||
Slow | 12 (9.8) | 19 (29.2) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żyłka, A.; Dobruch-Sobczak, K.; Piotrzkowska-Wróblewska, H.; Jędrzejczyk, M.; Bakuła-Zalewska, E.; Góralski, P.; Gałczyński, J.; Dedecjus, M. The Utility of Contrast-Enhanced Ultrasound (CEUS) in Assessing the Risk of Malignancy in Thyroid Nodules. Cancers 2024, 16, 1911. https://doi.org/10.3390/cancers16101911
Żyłka A, Dobruch-Sobczak K, Piotrzkowska-Wróblewska H, Jędrzejczyk M, Bakuła-Zalewska E, Góralski P, Gałczyński J, Dedecjus M. The Utility of Contrast-Enhanced Ultrasound (CEUS) in Assessing the Risk of Malignancy in Thyroid Nodules. Cancers. 2024; 16(10):1911. https://doi.org/10.3390/cancers16101911
Chicago/Turabian StyleŻyłka, Agnieszka, Katarzyna Dobruch-Sobczak, Hanna Piotrzkowska-Wróblewska, Maciej Jędrzejczyk, Elwira Bakuła-Zalewska, Piotr Góralski, Jacek Gałczyński, and Marek Dedecjus. 2024. "The Utility of Contrast-Enhanced Ultrasound (CEUS) in Assessing the Risk of Malignancy in Thyroid Nodules" Cancers 16, no. 10: 1911. https://doi.org/10.3390/cancers16101911
APA StyleŻyłka, A., Dobruch-Sobczak, K., Piotrzkowska-Wróblewska, H., Jędrzejczyk, M., Bakuła-Zalewska, E., Góralski, P., Gałczyński, J., & Dedecjus, M. (2024). The Utility of Contrast-Enhanced Ultrasound (CEUS) in Assessing the Risk of Malignancy in Thyroid Nodules. Cancers, 16(10), 1911. https://doi.org/10.3390/cancers16101911