Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Derived Radiomic Models in Prostate Cancer Prognostication
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Study Selection
3.2. Description of Studies
3.2.1. Prediction of Prostate Cancer Diagnosis
3.2.2. Prediction of Biopsy Results
3.2.3. Prediction of Adverse Pathology following Radical Prostatectomy
3.2.4. Prediction of Prostate Cancer Recurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chiacchio, G.; Castellani, D.; Nedbal, C.; De Stefano, V.; Brocca, C.; Tramanzoli, P.; Galosi, A.B.; Donalisio Da Silva, R.; Teoh, J.Y.-C.; Tiong, H.Y.; et al. Radiomics vs Radiologist in Prostate Cancer. Results from a Systematic Review. World J. Urol. 2023, 41, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Spohn, S.K.B.; Schmidt-Hegemann, N.-S.; Ruf, J.; Mix, M.; Benndorf, M.; Bamberg, F.; Makowski, M.R.; Kirste, S.; Rühle, A.; Nouvel, J.; et al. Development of PSMA-PET-Guided CT-Based Radiomic Signature to Predict Biochemical Recurrence after Salvage Radiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2537–2547. [Google Scholar] [CrossRef] [PubMed]
- Acar, E.; Leblebici, A.; Ellidokuz, B.E.; Başbınar, Y.; Kaya, G.Ç. Machine Learning for Differentiating Metastatic and Completely Responded Sclerotic Bone Lesion in Prostate Cancer: A Retrospective Radiomics Study. BJR 2019, 92, 20190286. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, U.; Eder, M. [68Ga]Ga-PSMA-11: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer. Pharmaceuticals 2021, 14, 713. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.D.; Palma, C.A.; Calopedos, R.; Wen, L.; Woo, H.; Fulham, M.; Leslie, S. PSMA PET-CT in the Diagnosis and Staging of Prostate Cancer. Diagnostics 2022, 12, 2594. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Shouman, M.A.; Kroenke, M.; Rauscher, I.; Maurer, T.; Gschwend, J.E.; Eiber, M.; Combs, S.E. A CT-Based Radiomics Model to Detect Prostate Cancer Lymph Node Metastases in PSMA Radioguided Surgery Patients. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2968–2977. [Google Scholar] [CrossRef] [PubMed]
- Alongi, P.; Stefano, A.; Comelli, A.; Laudicella, R.; Scalisi, S.; Arnone, G.; Barone, S.; Spada, M.; Purpura, P.; Bartolotta, T.V.; et al. Radiomics Analysis of 18F-Choline PET/CT in the Prediction of Disease Outcome in High-Risk Prostate Cancer: An Explorative Study on Machine Learning Feature Classification in 94 Patients. Eur. Radiol. 2021, 31, 4595–4605. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zheng, A.; Gao, J.; Yuan, W.; Shen, C.; Bai, L.; Duan, X. Evaluation of a Radiomics Nomogram Derived from Fluoride-18 PSMA-1007 PET/CT for Risk Stratification in Newly Diagnosed Prostate Cancer. Front. Oncol. 2022, 12, 1018833. [Google Scholar] [CrossRef]
- Quartuccio, N.; Marrale, M.; Laudicella, R.; Alongi, P.; Siracusa, M.; Sturiale, L.; Arnone, G.; Cutaia, G.; Salvaggio, G.; Midiri, M.; et al. The Role of PET Radiomic Features in Prostate Cancer: A Systematic Review. Clin. Transl. Imaging 2021, 9, 579–588. [Google Scholar] [CrossRef]
- Bera, K.; Velcheti, V.; Madabhushi, A. Novel Quantitative Imaging for Predicting Response to Therapy: Techniques and Clinical Applications. Am. Soc. Clin. Oncol. Educ. Book 2018, 1008–1018. [Google Scholar] [CrossRef]
- Liberini, V.; Laudicella, R.; Balma, M.; Nicolotti, D.G.; Buschiazzo, A.; Grimaldi, S.; Lorenzon, L.; Bianchi, A.; Peano, S.; Bartolotta, T.V.; et al. Radiomics and Artificial Intelligence in Prostate Cancer: New Tools for Molecular Hybrid Imaging and Theragnostics. Eur. Radiol. Exp. 2022, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.T.; Tu, S.-J.; Tseng, J.-R. 68Ga-PSMA-11 PET/CT Features Extracted from Different Radiomic Zones Predict Response to Androgen Deprivation Therapy in Patients with Advanced Prostate Cancer. Cancers 2022, 14, 4838. [Google Scholar] [CrossRef] [PubMed]
- Correas, J.-M.; Halpern, E.J.; Barr, R.G.; Ghai, S.; Walz, J.; Bodard, S.; Dariane, C.; De La Rosette, J. Advanced Ultrasound in the Diagnosis of Prostate Cancer. World J. Urol. 2021, 39, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Van Leenders, G.J.L.H.; Van Der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef]
- Kawachi, M.H.; Bahnson, R.R.; Barry, M.; Busby, J.E.; Carroll, P.R.; Carter, H.B.; Catalona, W.J.; Cookson, M.S.; Epstein, J.I.; Etzioni, R.B.; et al. Prostate Cancer Early Detection. J. Natl. Compr. Cancer Netw. 2010, 8, 240–262. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Chaddad, A.; Niazi, T.; Probst, S.; Bladou, F.; Anidjar, M.; Bahoric, B. Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis. Front. Oncol. 2018, 8, 630. [Google Scholar] [CrossRef]
- Leung, K.H.; Rowe, S.P.; Leal, J.P.; Ashrafinia, S.; Sadaghiani, M.S.; Chung, H.W.; Dalaie, P.; Tulbah, R.; Yin, Y.; VanDenBerg, R.; et al. Deep Learning and Radiomics Framework for PSMA-RADS Classification of Prostate Cancer on PSMA PET. EJNMMI Res. 2022, 12, 76. [Google Scholar] [CrossRef]
- Zang, S.; Ai, S.; Yang, R.; Zhang, P.; Wu, W.; Zhao, Z.; Ni, Y.; Zhang, Q.; Sun, H.; Guo, H.; et al. Development and Validation of 68Ga-PSMA-11 PET/CT-Based Radiomics Model to Detect Primary Prostate Cancer. EJNMMI Res. 2022, 12, 63. [Google Scholar] [CrossRef]
- Yi, Z.; Hu, S.; Lin, X.; Zou, Q.; Zou, M.; Zhang, Z.; Xu, L.; Jiang, N.; Zhang, Y. Machine Learning-Based Prediction of Invisible Intraprostatic Prostate Cancer Lesions on 68 Ga-PSMA-11 PET/CT in Patients with Primary Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1523–1534. [Google Scholar] [CrossRef]
- Hinzpeter, R.; Baumann, L.; Guggenberger, R.; Huellner, M.; Alkadhi, H.; Baessler, B. Radiomics for Detecting Prostate Cancer Bone Metastases Invisible in CT: A Proof-of-Concept Study. Eur. Radiol. 2022, 32, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.H.; Haworth, A.; Wang, A.; Osanlouy, M.; Williams, S.; Mitchell, C.; Hofman, M.S.; Hicks, R.J.; Murphy, D.G.; Reynolds, H.M. Detecting Localised Prostate Cancer Using Radiomic Features in PSMA PET and Multiparametric MRI for Biologically Targeted Radiation Therapy. EJNMMI Res. 2023, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Bian, S.; Zhu, D.; Yuan, Y.; Pan, K.; Pan, Z.; Feng, X.; Tang, K.; Yang, Y. Machine Learning-Based Radiomics for Multiple Primary Prostate Cancer Biological Characteristics Prediction with 18F-PSMA-1007 PET: Comparison among Different Volume Segmentation Thresholds. Radiol. Med. 2022, 127, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Feliciani, G.; Celli, M.; Ferroni, F.; Menghi, E.; Azzali, I.; Caroli, P.; Matteucci, F.; Barone, D.; Paganelli, G.; Sarnelli, A. Radiomics Analysis on [68Ga]Ga-PSMA-11 PET and MRI-ADC for the Prediction of Prostate Cancer ISUP Grades: Preliminary Results of the BIOPSTAGE Trial. Cancers 2022, 14, 1888. [Google Scholar] [CrossRef]
- Kesch, C.; Radtke, J.-P.; Wintsche, A.; Wiesenfarth, M.; Luttje, M.; Gasch, C.; Dieffenbacher, S.; Pecqueux, C.; Teber, D.; Hatiboglu, G.; et al. Correlation between Genomic Index Lesions and mpMRI and 68Ga-PSMA-PET/CT Imaging Features in Primary Prostate Cancer. Sci. Rep. 2018, 8, 16708. [Google Scholar] [CrossRef] [PubMed]
- Ghezzo, S.; Mapelli, P.; Bezzi, C.; Samanes Gajate, A.M.; Brembilla, G.; Gotuzzo, I.; Russo, T.; Preza, E.; Cucchiara, V.; Ahmed, N.; et al. Role of [68Ga]Ga-PSMA-11 PET Radiomics to Predict Post-Surgical ISUP Grade in Primary Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2548–2560. [Google Scholar] [CrossRef] [PubMed]
- Solari, E.L.; Gafita, A.; Schachoff, S.; Bogdanović, B.; Villagrán Asiares, A.; Amiel, T.; Hui, W.; Rauscher, I.; Visvikis, D.; Maurer, T.; et al. The Added Value of PSMA PET/MR Radiomics for Prostate Cancer Staging. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Cysouw, M.C.F.; Jansen, B.H.E.; Van De Brug, T.; Oprea-Lager, D.E.; Pfaehler, E.; De Vries, B.M.; Van Moorselaar, R.J.A.; Hoekstra, O.S.; Vis, A.N.; Boellaard, R. Machine Learning-Based Analysis of [18F]DCFPyL PET Radiomics for Risk Stratification in Primary Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Zamboglou, C.; Carles, M.; Fechter, T.; Kiefer, S.; Reichel, K.; Fassbender, T.F.; Bronsert, P.; Koeber, G.; Schilling, O.; Ruf, J.; et al. Radiomic Features from PSMA PET for Non-Invasive Intraprostatic Tumor Discrimination and Characterization in Patients with Intermediate- and High-Risk Prostate Cancer—A Comparison Study with Histology Reference. Theranostics 2019, 9, 2595–2605. [Google Scholar] [CrossRef]
- Papp, L.; Spielvogel, C.P.; Grubmüller, B.; Grahovac, M.; Krajnc, D.; Ecsedi, B.; Sareshgi, R.A.M.; Mohamad, D.; Hamboeck, M.; Rausch, I.; et al. Supervised Machine Learning Enables Non-Invasive Lesion Characterization in Primary Prostate Cancer with [68Ga]Ga-PSMA-11 PET/MRI. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1795–1805. [Google Scholar] [CrossRef]
- Zamboglou, C.; Bettermann, A.S.; Gratzke, C.; Mix, M.; Ruf, J.; Kiefer, S.; Jilg, C.A.; Benndorf, M.; Spohn, S.; Fassbender, T.F.; et al. Uncovering the Invisible—Prevalence, Characteristics, and Radiomics Feature–Based Detection of Visually Undetectable Intraprostatic Tumor Lesions in 68GaPSMA-11 PET Images of Patients with Primary Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1987–1997. [Google Scholar] [CrossRef] [PubMed]
- Assadi, M.; Manafi-Farid, R.; Jafari, E.; Keshavarz, A.; Divband, G.; Moradi, M.M.; Adinehpour, Z.; Samimi, R.; Dadgar, H.; Jokar, N.; et al. Predictive and Prognostic Potential of Pretreatment 68Ga-PSMA PET Tumor Heterogeneity Index in Patients with Metastatic Castration-Resistant Prostate Cancer Treated with 177Lu-PSMA. Front. Oncol. 2022, 12, 1066926. [Google Scholar] [CrossRef] [PubMed]
- Moazemi, S.; Erle, A.; Khurshid, Z.; Lütje, S.; Muders, M.; Essler, M.; Schultz, T.; Bundschuh, R.A. Decision-Support for Treatment with 177 Lu-PSMA: Machine Learning Predicts Response with High Accuracy Based on PSMA-PET/CT and Clinical Parameters. Ann. Transl. Med. 2021, 9, 818. [Google Scholar] [CrossRef] [PubMed]
- Roll, W.; Schindler, P.; Masthoff, M.; Seifert, R.; Schlack, K.; Bögemann, M.; Stegger, L.; Weckesser, M.; Rahbar, K. Evaluation of 68Ga-PSMA-11 PET-MRI in Patients with Advanced Prostate Cancer Receiving 177Lu-PSMA-617 Therapy: A Radiomics Analysis. Cancers 2021, 13, 3849. [Google Scholar] [CrossRef] [PubMed]
- Moazemi, S.; Erle, A.; Lütje, S.; Gaertner, F.C.; Essler, M.; Bundschuh, R.A. Estimating the Potential of Radiomics Features and Radiomics Signature from Pretherapeutic PSMA-PET-CT Scans and Clinical Data for Prediction of Overall Survival When Treated with 177Lu-PSMA. Diagnostics 2021, 11, 186. [Google Scholar] [CrossRef]
- Huynh, L.M.; Hwang, Y.; Taylor, O.; Baine, M.J. The Use of MRI-Derived Radiomic Models in Prostate Cancer Risk Stratification: A Critical Review of Contemporary Literature. Diagnostics 2023, 13, 1128. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Park, S.Y.; Kim, H.J.; Kim, H.S. Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives. Korean J. Radiol. 2019, 20, 1124. [Google Scholar] [CrossRef]
- Stanzione, A.; Ponsiglione, A.; Alessandrino, F.; Brembilla, G.; Imbriaco, M. Beyond Diagnosis: Is There a Role for Radiomics in Prostate Cancer Management? Eur. Radiol. Exp. 2023, 7, 13. [Google Scholar] [CrossRef]
- Geady, C.; Keller, H.; Siddiqui, I.; Bilkey, J.; Dhani, N.C.; Jaffray, D.A. Bridging the gap between micro- and macro-scales in medical imaging with textural analysis—A biological basis for CT radiomics classifiers? Phys. Med. 2020, 72, 142–151. [Google Scholar] [CrossRef]
- Bobholz, S.A.; Lowman, A.K.; Barrington, A.; Brehler, M.; McGarry, S.; Cochran, E.J.; Connelly, J.; Mueller, W.M.; Agarwal, M.; O’Neill, D.; et al. Radiomic Features of Multiparametric MRI Present Stable Associations with Analogous Histological Features in Patients with Brain Cancer. Tomography 2020, 6, 160–169. [Google Scholar] [CrossRef]
- Saltz, J.; Almeida, J.; Gao, Y.; Sharma, A.; Bremer, E.; DiPrima, T.; Saltz, M.; Kalpathy-Cramer, J.; Kurc, T. Towards Generation, Management, and Exploration of Combined Radiomics and Pathomics Datasets for Cancer Research. AMIA Jt. Summits Transl. Sci. Proc. 2017, 2017, 85–94. [Google Scholar] [PubMed]
- Familiar, A.M.; Mahtabfar, A.; Fathi Kazerooni, A.; Kiani, M.; Vossough, A.; Viaene, A.; Storm, P.B.; Resnick, A.C.; Nabavizadeh, A. Radio-pathomic approaches in pediatric neuro-oncology: Opportunities and challenges. Neurooncol. Adv. 2023, 5, vdad119. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Craig, S.; Ahmed, R.; de Blank, P.; Tiwari, P. Opportunities and Advances in Radiomics and Radiogenomics for Pediatric Medulloblastoma Tumors. Diagnostics 2023, 13, 2727. [Google Scholar] [CrossRef] [PubMed]
- Skingen, V.E.; Hompland, T.; Fjeldbo, C.S.; Salberg, U.B.; Helgeland, H.; Ragnum, H.B.; Aarnes, E.K.; Vlatkovic, L.; Hole, K.H.; Seierstad, T.; et al. Prostate cancer radiogenomics reveals proliferative gene expression programs associated with distinct MRI-based hypoxia levels. Radiother. Oncol. 2023, 188, 109875. [Google Scholar] [CrossRef]
Author | Year | n= | Radiotracer | Outcome Measure | Feature Selection | Region of Interest | Model Validation | Results |
---|---|---|---|---|---|---|---|---|
Leung [18] | 2022 | n = 267 | Fluoride-18-PSMA-1007 | PSMA-RADS and PC classification | 6 features selected | Prostate | Cross-validation between training, testing, and validation data sets | AUC = 0.87 and 0.90 for lesion-level and patient-level PSMA-RADS classification. AUC = 0.92 and 0.85 for lesion-level and patient-level PC classification |
Zang [19] | 2022 | n = 125 | 68-Ga-PSMA-11 | Prediction of intraprostatic lesions | 944 features extracted/ 9 features selected | Intraprostatic lesions | Cross-validation n = 87 in training group, n = 38 in testing group | Radiomics model AUC = 0.85 vs. AUC = 0.63 for radiologists’ assessment (p = 0.036); Radiomics model vs. radiologist sensitivity AUC = 0.84 vs. AUC = 0.74 (p = 0.002) |
Yi [20] | 2022 | n = 100 | 68-Ga-PSMA-11 | Diagnosis of intraprostatic lesions invisible on PET | 1781 features extracted/ 10 features selected | Intraprostatic lesions | Cross-validation n = 64 in training set, n = 36 in testing set | 3 radiomic models with AUC = 0.903, 0.856, and 0.925 (p = 0.007, 0.045, and 0.005, respectively) |
Hinzpeter [21] | 2021 | n = 67 | 68-Ga-PSMA-11 | Diagnosis of metastatic bone cancer from PC | 1218 features extracted/ 11 features selected | Prostate | Internal validation with the original non-augmented data set | 90% diagnostic accuracy, 91% sensitivity, and 88% specificity |
Author | Year | n= | Radiotracer | Outcome Measure | Feature Selection | Region of Interest | Model Validation | Results |
---|---|---|---|---|---|---|---|---|
Chan [22] | 2023 | n = 19 patients | 68-Ga-PSMA-11 | Tumor location and grading (Grade Group scores of ≥3 for high grade and ≤2 for low grade) | 75 features selected/ 10 features analyzed | Intra-prostatic lesions (IPLs) | Cross-validation with Random Forest Classifier and Support Vector Classifier | Overall model, AUC = 0.890 |
Wang [8] | 2022 | n = 161 patients | Fluoride-18-PSMA-1007 | PSA level, Gleason score, metastasis status | 944 features selected/ 30 features analyzed | Prostate | Internal validation with training and test cohorts | Gleason score model ROC-AUC = 0.719, p < 0.01 |
Yao [23] | 2022 | n = 173 patients | Fluoride-18-PSMA-1007 | Gleason score, extracapsular extension, vascular invasion | 70 features selected/ 10 features analyzed | Prostate | Internal validation with training and test cohorts | Best model: 40–50% SUVmax AUC 0.81, p < 0.001 |
Feliciani [24] | 2022 | n = 56 scans | 68-Ga-PSMA-11 | ISUP grade | 218 features selected/29 features analyzed (for PET/CT model) 218 features selected/87 features analyzed (for MRI model) | Prostate | Internal validation with training and test cohorts | MRI AUC = 1.00 in testing and training groups MRI + PET/CT AUC = 1.00 in training group |
Kesch [25] | 2018 | n = 10 | 68-Ga-PSMA-11 | Chromosomal copy number alterations (CNAs), Gleason score | 336 features extracted | Prostate (genomic index lesions) | N/A | Lower ADC values correlate with increasing tumor aggressiveness |
Author | Year | n= | Radiotracer | Outcome Measure | Feature Selection | Region of Interest | Model Validation | Results |
---|---|---|---|---|---|---|---|---|
Ghezzo [26] | 2023 | n = 47 patients (PET/CT or PET/MRI) | 68-Ga-PSMA-11 | Postsurgical GS | 154 features selected/ 2 features analyzed | Prostate | Cross-validation | ECE AUC = 0.76 ± 0.12, p < 0.01” |
Solari [27] | 2022 | 101 patients | 68-Ga-PSMA-11 | Postsurgical GS (ISUP grades 1–3, grade 4, and grade 5) | 480 features selected/ 48 features analyzed | Prostate | External validation cohort (52 patients) | Radiomics-based machine learning model: LNI AUC = 0.86 ± 0.15, p < 0.01 |
Cysouw [28] | 2020 | 76 patients | 18-F-DCFPyL | LNM, presence of metastasis, GS, ECE | 133 features extracted/ 86 features analyzed (analysis 2), 56 features analyzed (3a), 1 feature analyzed (3b) | Prostate | Internal validation by retrospective cohort (40 patients) | QSZHGE feature GS: training-AUC = 0.91 and testing-AUC = 0.84; p < 0.01 |
Zamboglou [29] | 2020 | 72 patients | 68-Ga-PSMA-11 | ISUP grade, undetected lesions | Spearman’s correlation coefficients, Wilcoxon (1), Mann-Whitney U test (2 and 3) | Intraprostatic tumor lesions | 5-fold cross-validation | QSZHGE feature LN status: training-AUC = 0.87 and testing-AUC = 0.85; p < 0.01 |
Papp [30] | 2020 | 52 patients | 68-Ga-PSMA-11 and 18-F-FMC | low vs. high lesion risk, BCR, OPR | RaCaT software | Intraprostatic tumor lesions | 6-fold cross-validation with training (67 patients) and testing (34 patients) cohorts | Distal metastasis AUC = 0.86 ± 0.14, p < 0.01 |
Peeken [6] | 2020 | 80 patients | 68-Ga-PSMA-11 | LNM | 156 features extracted | Intraprostatic tumor lesions | 10-fold cross-validation with training cohort (47 patients) | Best model (radiomics-combined): testing-AUC = 0.95 and training-AUC = 0.89, p = 0.0035 |
Zamboglou [31] | 2019 | 20 patients | 68-Ga-PSMA-11 | GS 7, ≥8 and pelvic LNM | ComBatHarmonization and LASSO | Intraprostatic tumor lesions | External testing cohort (33 patients) | LBP features showed highest contribution to model performance |
Author | Year | n= | Radiotracer | Outcome Measure | Feature Selection | Region of Interest | Model Validation | Results |
---|---|---|---|---|---|---|---|---|
Spohn [2] | 2023 | 99 patients | 68-Ga-PSMA-11 | BCR after salvage radiation therapy | 104 features extracted | Prostate | Nested cross-validation multi-center study | Radiomic signature AUC 0.73, p < 0.001 |
Assadi [32] | 2022 | 33 patients (2517 pathological hotspots) | 68-Ga-PSMA-11 | BCR after 177Lu-PSMA and overall survival | Mutual information feature selection | Prostate | Multi-center study | Combined clinical and radiomic signature AUC 0.63; improved sensitivity (0.26 to 0.78) |
Tran [12] | 2022 | 35 patients (70 scans) | 68-Ga-PSMA-11 | Treatment response to ADT | 119 features extracted | Prostate (3 zones) | N/A | 7 features in zone 1 distinguished responders to ADT 2 features classifying nodal disease: AUC 0.698, p < 0.001 |
Moazemi [33] | 2021 | 83 patients (2070 pathological hotspots) | 68-Ga-PSMA-11 | Overall survival after 177Lu-PSMA | SUVmax: 80 features analyzed (zone 1), 21 (zone 2), 3 (zone 3) | Intraprostatic lesions | 5-fold cross-validation with training and testing cohort | Higher T2 interquartile range showed longer OS, p = 0.038 2 features in zone 2; p-value 0.018–0.34 |
Roll [34] | 2021 | 21 patients | 68-Ga-PSMA-11 | PSA response and overall survival | PyRadiomics | Prostate | Unbalanced cohort: training n = 56 patients in validation; n = 27 in testing cohorts | 2 features in zone 3; p-value 0.012–0.19 |
Papp [30] | 2020 | 52 patients | 68-Ga-PSMA-11 and 18-F-FMC | low vs. high lesion risk, BCR, OPR | ExtraTrees | Intraprostatic tumor lesions | 10-fold cross-validation with 9:1 training–testing cohort | 3 features classifying tumor relapse: AUC 0.726, p < 0.002 |
Acar [3] | 2019 | 75 patients (126 scans) | 68-Ga-PSMA-11 | Metastasis status | SVM | Intraprostatic lesions | N/A | Highest accuracy prediction biochemical response: T2w AUC 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, L.M.; Swanson, S.; Cima, S.; Haddadin, E.; Baine, M. Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Derived Radiomic Models in Prostate Cancer Prognostication. Cancers 2024, 16, 1897. https://doi.org/10.3390/cancers16101897
Huynh LM, Swanson S, Cima S, Haddadin E, Baine M. Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Derived Radiomic Models in Prostate Cancer Prognostication. Cancers. 2024; 16(10):1897. https://doi.org/10.3390/cancers16101897
Chicago/Turabian StyleHuynh, Linda My, Shea Swanson, Sophia Cima, Eliana Haddadin, and Michael Baine. 2024. "Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Derived Radiomic Models in Prostate Cancer Prognostication" Cancers 16, no. 10: 1897. https://doi.org/10.3390/cancers16101897
APA StyleHuynh, L. M., Swanson, S., Cima, S., Haddadin, E., & Baine, M. (2024). Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Derived Radiomic Models in Prostate Cancer Prognostication. Cancers, 16(10), 1897. https://doi.org/10.3390/cancers16101897