Daratumumab during Myeloma Induction Therapy Is Associated with Impaired Stem Cell Mobilization and Prolonged Post-Transplant Hematologic Recovery
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population and Study Endpoints
2.2. Patient Characteristics
2.3. Procedures
2.4. Therapy Response
2.5. Data Collection
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Induction
3.3. Mobilization
3.4. Apheresis
3.5. HDCT, ASCT, and Hospitalization
3.6. Therapy Response
3.7. Multivariate Analysis
3.8. Comparison of Mobilization Strategies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. N. Engl. J. Med. 2022, 387, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Attal, M.; Lauwers-Cances, V.; Hulin, C.; Leleu, X.; Caillot, D.; Escoffre, M.; Arnulf, B.; Macro, M.; Belhadj, K.; Garderet, L.; et al. Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma. N. Engl. J. Med. 2017, 376, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; van der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous Haematopoietic Stem-Cell Transplantation versus Bortezomib–Melphalan–Prednisone, with or without Bortezomib–Lenalidomide–Dexamethasone Consolidation Therapy, and Lenalidomide Maintenance for Newly Diagnosed Multiple Myeloma (EMN02/HO95): A Multicentre, Randomised, Open-Label, Phase 3 Study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Samaras, P.; Bargetzi, M.; Betticher, D.C.; Driessen, C.; Duchosal, M.A.; Heim, D.; Ketterer, N.; Lerch, E.; Matthes, T.; Mey, U.; et al. Updated Recommendations for Diagnosis and Treatment of Plasma Cell Myeloma in Switzerland. Swiss Med. Wkly. 2019, 149, w20031. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Daratumumab, Lenalidomide, Bortezomib, and Dexamethasone for Transplant-Eligible Newly Diagnosed Multiple Myeloma: The GRIFFIN Trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, P.M.; Sborov, D.W.; Laubach, J.; Kaufman, J.L.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Addition of Daratumumab to Lenalidomide, Bortezomib, and Dexamethasone for Transplantation-Eligible Patients with Newly Diagnosed Multiple Myeloma (GRIFFIN): Final Analysis of an Open-Label, Randomised, Phase 2 Trial. Lancet Haematol. 2023, 10, e825–e837. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, Thalidomide, and Dexamethasone with or without Daratumumab before and after Autologous Stem-Cell Transplantation for Newly Diagnosed Multiple Myeloma (CASSIOPEIA): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 390, 301–313. [Google Scholar] [CrossRef]
- Adams III, H.C.; Stevenaert, F.; Krejcik, J.; Van der Borght, K.; Smets, T.; Bald, J.; Abraham, Y.; Ceulemans, H.; Chiu, C.; Vanhoof, G.; et al. High-Parameter Mass Cytometry Evaluation of Relapsed/Refractory Multiple Myeloma Patients Treated with Daratumumab Demonstrates Immune Modulation as a Novel Mechanism of Action. Cytometry A 2019, 95, 279–289. [Google Scholar] [CrossRef]
- De Weers, M.; Tai, Y.-T.; Van Der Veer, M.S.; Bakker, J.M.; Vink, T.; Jacobs, D.C.H.; Oomen, L.A.; Peipp, M.; Valerius, T.; Slootstra, J.W.; et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. J. Immunol. 2011, 186, 1840–1848. [Google Scholar] [CrossRef] [PubMed]
- Krejcik, J.; Casneuf, T.; Nijhof, I.S.; Verbist, B.; Bald, J.; Plesner, T.; Syed, K.; Liu, K.; van de Donk, N.W.C.J.; Weiss, B.M.; et al. Daratumumab Depletes CD38+ Immune Regulatory Cells, Promotes T-Cell Expansion, and Skews T-Cell Repertoire in Multiple Myeloma. Blood 2016, 128, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Overdijk, M.B.; Verploegen, S.; Bögels, M.; van Egmond, M.; van Bueren, J.J.L.; Mutis, T.; Groen, R.W.; Breij, E.; Martens, A.C.; Bleeker, W.K.; et al. Antibody-Mediated Phagocytosis Contributes to the Anti-Tumor Activity of the Therapeutic Antibody Daratumumab in Lymphoma and Multiple Myeloma. MAbs 2015, 7, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Overdijk, M.B.; Jansen, J.H.M.; Nederend, M.; Lammerts van Bueren, J.J.; Groen, R.W.J.; Parren, P.W.H.I.; Leusen, J.H.W.; Boross, P. The Therapeutic CD38 Monoclonal Antibody Daratumumab Induces Programmed Cell Death via Fcγ Receptor–Mediated Cross-Linking. J. Immunol. 2016, 197, 807–813. [Google Scholar] [CrossRef]
- Krejcik, J.; van de Donk, N.W.C.J. Trogocytosis Represents a Novel Mechanism of Action of Daratumumab in Multiple Myeloma. Oncotarget 2018, 9, 33621–33622. [Google Scholar] [CrossRef] [PubMed]
- van der Veer, M.S.; de Weers, M.; van Kessel, B.; Bakker, J.M.; Wittebol, S.; Parren, P.W.H.I.; Lokhorst, H.M.; Mutis, T. Towards Effective Immunotherapy of Myeloma: Enhanced Elimination of Myeloma Cells by Combination of Lenalidomide with the Human CD38 Monoclonal Antibody Daratumumab. Haematologica 2011, 96, 284–290. [Google Scholar] [CrossRef] [PubMed]
- van der Veer, M.S.; de Weers, M.; van Kessel, B.; Bakker, J.M.; Wittebol, S.; Parren, P.W.H.I.; Lokhorst, H.M.; Mutis, T. The Therapeutic Human CD38 Antibody Daratumumab Improves the Anti-Myeloma Effect of Newly Emerging Multi-Drug Therapies. Blood Cancer J. 2011, 1, e41. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Gastineau, D.A.; Litzow, M.R.; Fonseca, R.; Roy, V.; Rajkumar, S.V.; et al. Impact of Lenalidomide Therapy on Stem Cell Mobilization and Engraftment Post-Peripheral Blood Stem Cell Transplantation in Patients with Newly Diagnosed Myeloma. Leukemia 2007, 21, 2035–2042. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, H.; Yan, Y.; Deng, Z.; Li, H.; Li, X.; Liu, J. Comparison of the Efficiency, Safety, and Survival Outcomes in Two Stem Cell Mobilization Regimens with Cyclophosphamide plus G-CSF or G-CSF Alone in Multiple Myeloma: A Meta-Analysis. Ann. Hematol. 2021, 100, 563–573. [Google Scholar] [CrossRef]
- Jeker, B.; Farag, S.; Taleghani, B.M.; Novak, U.; Mueller, B.U.; Li, Q.; Betticher, D.; Luethi, J.-M.; Farese, S.; Ruefer, A.; et al. A Randomized Evaluation of Vinorelbine versus Gemcitabine Chemotherapy Mobilization of Stem Cells in Myeloma Patients. Bone Marrow Transplant. 2020, 55, 2047–2051. [Google Scholar] [CrossRef]
- Bühler, S.; Akhoundova, D.; Jeker, B.; Legros, M.; Seipel, K.; Daskalakis, M.; Bacher, U.; Pabst, T. Stem Cell Mobilization with Ixazomib and G-CSF in Patients with Multiple Myeloma. Cancers 2023, 15, 430. [Google Scholar] [CrossRef] [PubMed]
- DiPersio, J.F.; Stadtmauer, E.A.; Nademanee, A.; Micallef, I.N.M.; Stiff, P.J.; Kaufman, J.L.; Maziarz, R.T.; Hosing, C.; Früehauf, S.; Horwitz, M.; et al. Plerixafor and G-CSF versus Placebo and G-CSF to Mobilize Hematopoietic Stem Cells for Autologous Stem Cell Transplantation in Patients with Multiple Myeloma. Blood 2009, 113, 5720–5726. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Friess, D.; Mansouri Taleghani, B.; Keller, P.; Mueller, B.U.; Baerlocher, G.M.; Leibundgut, K.; Pabst, T. Role of Plerixafor in Autologous Stem Cell Mobilization with Vinorelbine Chemotherapy and Granulocyte-Colony Stimulating Factor in Patients with Myeloma: A Phase II Study (PAV-Trial). Leuk. Lymphoma 2015, 56, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Jeker, B.; Novak, U.; Mansouri Taleghani, B.; Baerlocher, G.M.; Seipel, K.; Mueller, B.U.; Bigler, M.; Betticher, D.; Luethi, J.-M.; Farese, S.; et al. NSAID Treatment with Meloxicam Enhances Peripheral Stem Cell Mobilization in Myeloma. Bone Marrow Transplant. 2018, 53, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.L.; Siegel, E.; Barlogie, B.; Cottler-Fox, M.; Lin, P.; Fassas, A.; Zangari, M.; Anaissie, E.; Tricot, G. Mobilization of CD34+ Cells in Elderly Patients (≥70 Years) with Multiple Myeloma: Influence of Age, Prior Therapy, Platelet Count and Mobilization Regimen. Br. J. Haematol. 2003, 120, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Stettler, J.; Novak, U.; Baerlocher, G.M.; Seipel, K.; Mansouri Taleghani, B.; Pabst, T. Autologous Stem Cell Transplantation in Elderly Patients with Multiple Myeloma: Evaluation of Its Safety and Efficacy. Leuk. Lymphoma 2017, 58, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Klaus, J.; Herrmann, D.; Breitkreutz, I.; Hegenbart, U.; Mazitschek, U.; Egerer, G.; Cremer, F.W.; Lowenthal, R.M.; Huesing, J.; Fruehauf, S.; et al. Effect of CD34+ Cell Dose on Hematopoietic Reconstitution and Outcome in 508 Patients with Multiple Myeloma Undergoing Autologous Peripheral Blood Stem Cell Transplantation. Eur. J. Haematol. 2007, 78, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.H.; Hazelton, B.; Birch, R.; Palmer, P.; Allen, C.; Schwartzberg, L.; West, W. An Analysis of Engraftment Kinetics as a Function of the CD34 Content of Peripheral Blood Progenitor Cell Collections in 692 Patients After the Administration of Myeloablative Chemotherapy. Blood 1995, 86, 3961–3969. [Google Scholar] [CrossRef] [PubMed]
- Shpall, E.J.; Champlin, R.; Glaspy, J.A. Effect of CD34+ Peripheral Blood Progenitor Cell Dose on Hematopoietic Recovery. Biol. Blood Marrow Transplant. 1998, 4, 84–92. [Google Scholar] [CrossRef]
- Zappaterra, A.; Civettini, I.; Cafro, A.M.; Pezzetti, L.; Pierini, S.; Anghilieri, M.; Bellio, L.; Bertazzoni, P.; Grillo, G.; Minga, P.; et al. Anti-CD38 Monoclonal Antibody Impairs CD34+ Mobilization and Affects Clonogenic Potential in Multiple Myeloma Patients: CD38 Antibody Impacts on HSC Mobilization and Clonogenicity. Blood Transfus. 2024. [Google Scholar] [CrossRef]
- Cavallaro, G.; Galli, M.; Paris, L.; Stefanoni, P.; Pavoni, C.; Mangiacavalli, S.; Masoni, V.; Palumbo, M.; Pompa, A.; Cafro, A.M.; et al. Impact of the Addition of Daratumumab to the Standard Bortezomib-Thalidomide-Dexamethasone Regimen on Hematopoietic Stem Cell Mobilization and Collection, Post-Transplant Engraftment and Infectious Complications: A Case-Control Multicentre Real-Life Analysis. Blood 2023, 142, 4706. [Google Scholar] [CrossRef]
- Edmisson, J.; Fiala, M.A.; Slade, M.J.; Vickroy, A.; Kavanaugh, M.; Wilson, C.; Xiang, J.; Crees, Z.D.; Schroeder, M.A.; Stockerl-Goldstein, K.E.; et al. Despite Use of Upfront Plerixafor and G-CSF, Daratumumab Exposure Reduces Stem Cell Mobilization in Patients with Multiple Myeloma. Blood 2022, 140, 4295–4296. [Google Scholar] [CrossRef]
- Eleutherakis Papaiakovou, E.; Terpos, E.; Kanellias, N.; Migkou, M.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Fotiou, D.; Malandrakis, P.; Theodorakakou, F.; Spiliopoulou, V.; et al. Impact of Daratumumab on Stem Cell Mobilization and Collection, Engraftment and Early Post-Transplant Complications among Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation. Leuk. Lymphoma 2023, 64, 2140–2147. [Google Scholar] [CrossRef] [PubMed]
- Lemonakis, K.; Tatting, L.; Lisak, M.; Carlson, K.; Crafoord, J.; Blimark, C.H.; Santamaria, A.I.; Wichert, S.; Lenhoff, S.; Hansson, M. Impact of Daratumumab-Based Induction on Stem Cell Collection Parameters in Swedish Myeloma Patients. Haematologica 2022, 108, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Mina, R.; Garibaldi, B.; Bertuglia, G.; Casson, A.; Sarina, B.; Gay, F.; Mercadante, S.; Mariotti, J.; D’Agostino, M.; Taurino, D.; et al. Impact of Daratumumab on Hematopoietic Stem Cell Mobilization with G-CSF and on-Demand Plerixafor in Newly-Diagnosed Multiple Myeloma Patients. Blood 2023, 142, 6633. [Google Scholar] [CrossRef]
- Oza, S.; Slotky, R.; Vissa, P.; Phull, P.; Kaur, S.; Suh, H.C.; Donato, M.L.; Rowley, S.D.; Biran, N.; Vesole, D.H.; et al. Effect of Daratumumab on Stem Cell Mobilization and Engraftment Kinetics Post Autologous Stem Cell Transplantation in Patients with Newly Diagnosed Multiple Myeloma. Blood 2022, 140, 10441–10442. [Google Scholar] [CrossRef]
- Thurlapati, A.; Roubal, K.; Davis, J.A.; Shah, S.Z.; Smith, D.; McGann, M.; Gaffney, K.; Cendagorta, A.; Maldonado, A.; Weeda, E.; et al. Stem Cell Mobilization for Multiple Myeloma Patients Receiving Daratumumab-Based Induction Therapy: A Real- World Experience. Transplant. Cell. Ther. 2023, 29, 340.e1–340.e4. [Google Scholar] [CrossRef]
- Al Saleh, A.S.; Sidiqi, M.H.; Gertz, M.A.; Muchtar, E.; Lacy, M.Q.; Warsame, R.M.; Gonsalves, W.I.; Kourelis, T.V.; Hogan, W.J.; Hayman, S.R.; et al. Delayed Neutrophil Engraftment in Patients Receiving Daratumumab as Part of Their First Induction Regimen for Multiple Myeloma. Am. J. Hematol. 2020, 95, E8–E10. [Google Scholar] [CrossRef] [PubMed]
- Hulin, C.; Offner, F.; Moreau, P.; Roussel, M.; Belhadj, K.; Benboubker, L.; Caillot, D.; Facon, T.; Garderet, L.; Kuhnowski, F.; et al. Stem Cell Yield and Transplantation in Transplant-Eligible Newly Diagnosed Multiple Myeloma Patients Receiving Daratumumab + Bortezomib/Thalidomide/Dexamethasone in the Phase 3 CASSIOPEIA Study. Haematologica 2021, 106, 2257–2260. [Google Scholar] [CrossRef]
- Luan, D.; Christos, P.J.; Ancharski, M.; Guarneri, D.; Pearse, R.; Rossi, A.C.; Shore, T.B.; Mayer, S.; Phillips, A.A.; Hsu, J.; et al. Timing of Daratumumab Administered Pre-Mobilization in Multiple Myeloma Impacts Pre-Harvest Peripheral Blood CD34+ Cell Counts and Plerixafor Use. Blood 2020, 136, 15–16. [Google Scholar] [CrossRef]
- Sauer, S.; Kriegsmann, K.; Nientiedt, C.; Schmitt, A.; Müller-Tidow, C.; Raab, M.-S.; Kauer, J. Autologous Stem Cell Collection after Daratumumab, Bortezomib, Thalidomide, and Dexamethasone versus Bortezomib, Cyclophosphamide, and Dexamethasone in Newly Diagnosed Multiple Myeloma. Transfus. Med. Hemother. 2023, 50, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Bargetzi, M.J.; Passweg, J.; Baertschi, E.; Schoenenberger, A.; Gwerder, C.; Tichelli, A.; Burger, J.; Mingrone, W.; Herrmann, R.; Gratwohl, A.; et al. Mobilization of Peripheral Blood Progenitor Cells with Vinorelbine and Granulocyte Colony-Stimulating Factor in Multiple Myeloma Patients Is Reliable and Cost Effective. Bone Marrow Transplant. 2003, 31, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Samaras, P.; Pfrommer, S.; Seifert, B.; Petrausch, U.; Mischo, A.; Schmidt, A.; Schanz, U.; Nair, G.; Bargetzi, M.; Taverna, C.; et al. Efficacy of Vinorelbine Plus Granulocyte Colony–Stimulation Factor for CD34+ Hematopoietic Progenitor Cell Mobilization in Patients with Multiple Myeloma. Biol. Blood Marrow Transplant. 2015, 21, 74–80. [Google Scholar] [CrossRef]
- Mueller, B.U.; Keller, S.; Seipel, K.; Mansouri Taleghani, B.; Rauch, D.; Betticher, D.; Egger, T.; Pabst, T. Stem Cell Mobilization Chemotherapy with Gemcitabine Is Effective and Safe in Myeloma Patients with Bortezomib-Induced Neurotoxicity. Leuk. Lymphoma 2016, 57, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Sutherland, D.R.; Anderson, L.; Keeney, M.; Nayar, R.; Chin-Yee, I. The ISHAGE Guidelines for CD34+ Cell Determination by Flow Cytometry. J. Hematother. 1996, 5, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Hodroj, M.H.; Ibrahim, A.; Kreidieh, N.; Dalle, I.A.; Cheik, J.E.; Bazarbachi, A.; Moukalled, N. MM-644 Daratumumab Does Not Significantly Affect the Yield of Stem Cell Mobilization or Risk of Post-Transplant Infections in Patients With Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2023, 23, S513–S514. [Google Scholar] [CrossRef]
- Manjappa, S.; Fox, R.; Reese, J.; Firoozamand, A.; Schmikla, H.; Nall, S.; Kolk, M.; Caimi, P.F.; Driscoll, J.J.; de Lima, M.; et al. Impact of Daratumumab on Stem Cell Collection, Graft Composition and Engraftment Among Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplant. Blood 2020, 136, 35–37. [Google Scholar] [CrossRef]
- Gillich, C.; Akhoundova, D.; Hayoz, M.; Aebi, Y.; Largiadèr, C.R.; Seipel, K.; Daskalakis, M.; Bacher, U.; Pabst, T. Efficacy and Safety of High-Dose Chemotherapy with Treosulfan and Melphalan in Multiple Myeloma. Cancers 2023, 15, 2699. [Google Scholar] [CrossRef] [PubMed]
- Moser, S.; Bacher, U.; Jeker, B.; Mansouri Taleghani, B.; Betticher, D.; Ruefer, A.; Egger, T.; Novak, U.; Pabst, T. Autologous Stem Cell Transfusions on Multiple Days in Patients with Multiple Myeloma—Does It Matter? Hematol. Oncol. 2019, 37, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wong, S.W.; Zhou, P.; Chaulagain, C.P.; Doshi, P.; Klein, A.K.; Sprague, K.; Kugelmass, A.; Toskic, D.; Warner, M.; et al. Daratumumab Binds to Mobilized CD34+ Cells of Myeloma Patients in Vitro without Cytotoxicity or Impaired Progenitor Cell Growth. Exp. Hematol. Oncol. 2018, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Nijhof, I.S.; Casneuf, T.; Van Velzen, J.; Van Kessel, B.; Axel, A.E.; Syed, K.; Groen, R.W.J.; Van Duin, M.; Sonneveld, P.; Minnema, M.C.; et al. CD38 Expression and Complement Inhibitors Affect Response and Resistance to Daratumumab Therapy in Myeloma. Blood 2016, 128, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Boxhammer, R.; Steidl, S.; Endell, J. Effect of IMiD Compounds on CD38 Expression on Multiple Myeloma Cells: MOR202, a Human CD38 Antibody in Combination with Pomalidomide. J. Clin. Oncol. 2015, 33, 8588. [Google Scholar] [CrossRef]
- Herault, O.; Domenech, J.; Degenne, M.; Bremond, J.L.; Sensebe, L.; Bernard, M.C.; Binet, C.; Colombat, P. All-Trans-Retinoic Acid up-Regulates CD38 but Not c-Kit Antigens on Human Marrow CD34+ Cells without Recruitment into Cell Cycle. Br. J. Haematol. 1998, 103, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Ghose, J.; Viola, D.; Terrazas, C.; Caserta, E.; Troadec, E.; Khalife, J.; Gunes, E.G.; Sanchez, J.; McDonald, T.; Marcucci, G.; et al. Daratumumab Induces CD38 Internalization and Impairs Myeloma Cell Adhesion. Oncoimmunology 2018, 7, e1486948. [Google Scholar] [CrossRef] [PubMed]
- Venglar, O.; Kapustova, V.; Anilkumar Sithara, A.; Zihala, D.; Muronova, L.; Sevcikova, T.; Vrana, J.; Vdovin, A.; Radocha, J.; Krhovska, P.; et al. Insight into the Mechanism of CD34+ Cell Mobilisation Impairment in Multiple Myeloma Patients Treated with Anti-CD38 Therapy. Br. J. Haematol. 2023, 4, 1439–1449. [Google Scholar] [CrossRef]
- Watanabe, T.; Dave, B.; Heimann, D.G.; Jackson, J.D.; Kessinger, A.; Talmadge, J.E. Cell Adhesion Molecule Expression on CD34+ Cells in Grafts and Time to Myeloid and Platelet Recovery after Autologous Stem Cell Transplantation. Exp. Hematol. 1998, 26, 10–18. [Google Scholar]
Parameter | RVd (n = 110) | D-RVd (n = 45) | p-Value |
---|---|---|---|
Age at diagnosis (y), median (range) | 62 (31–75) | 58 (41–75) | 0.0317 |
Male sex, n (%) | 72 (65) | 17 (38) | 0.0022 |
FISH, n (%) a | 0.5296 | ||
High-risk cytogenetics | 23 (28) | 14 (35) | |
Non-high risk | 59 (72) | 26 (65) | |
(R-)ISS, n (%) b | 0.8744 | ||
I | 30 (28) | 14 (31) | |
II | 50 (47) | 19 (42) | |
III | 27 (25) | 12 (27) |
Parameter | RVd (n = 110) | D-RVd (n = 45) | p-Value |
---|---|---|---|
Mobilization medication, n (%) | <0.0001 | ||
Vinorelbine + G-CSF | 41 (37) | 21 (47) | |
Gemcitabine + G-CSF | 27 (25) | 22 (49) | |
Ixazomib + G-CSF | 15 (14) | 0 (0) | |
G-CSF only | 27 (25) | 2 (4) | |
Mobilization without meloxicam, n (%) | 11 (10) | 12 (27) | 0.0123 |
Plerixafor used, n (%) a | 27 (28) | 15 (38) | 0.3052 |
Apheresis on the planned date, n (%) b | 77 (71) | 20 (44) | 0.0029 |
Mobilization days until apheresis (d), median (range) b | 8 (8–10) | 9 (8–10) | 0.0006 |
Measurements on day of apheresis: | |||
CD34+ × 106/L, median (range) c | 52.19 (3.85–295.14) | 41.37 (6.05–115.6) | 0.0233 |
WBC × 109/L, median (range) d | 34.33 (8.97–80.34) | 33.07 (16.9–75.49) | 0.9526 |
CD34+/WBC (%), median (range) d | 0.16 (0.02–0.83) | 0.13 (0.02–0.45) | 0.0463 |
Apheresis time (min), median (range) e | 265.5 (99–724) | 297 (158–1000) | 0.0282 |
Apheresis in one day, n (%) | 104 (95) | 43 (96) | >0.9999 |
CD34+ × 106/kg BW, median (range) | 10.22 (2.39–41.54) | 8.27 (3.26–17.37) | 0.0139 |
Parameter | RVd (n = 110) | D-RVd (n = 45) | p-Value |
---|---|---|---|
HDCT, n (%) | 0.619 | ||
Treosulfan/Melphalan | 95 (86) | 37 (82) | |
Melphalan | 15 (14) | 8 (18) | |
Transp. CD34+ × 106/kg BW, median (range) | 3.6 (2.05–10.36) | 3.27 (1.90–5.15) | 0.0157 |
ASCT on multiple days, n (%) | 5 (5) | 4 (9) | 0.2848 |
Hospitalization duration (d), median (range) | 22 (13–51) | 23 (18–39) | 0.0654 |
Time to neutrophil recovery (d), median (range) a | 11 (9–27) | 12 (10–20) | 0.0164 |
Time to platelet recovery (d), median (range) b | 14 (11–20) | 16 (11–27) | 0.0002 |
≥1 PC used, n (%) c | 104 (95) | 44 (98) | 0.6719 |
Number of PCs used, median (range) d | 2 (1–16) | 4 (1–19) | 0.001 |
≥1 EC used, n (%) e | 54 (51) | 32 (74) | 0.0103 |
Number of ECs used, median (range) f | 1 (1–19) | 2 (1–8) | 0.2837 |
Fever during hospitalization, n (%) | 106 (96) | 44 (98) | >0.9999 |
≥1 Infectious complication, n (%) | 64 (58) | 31 (69) | 0.276 |
Parameter | Dara Used | Age ≥65 | Sex (f) | (R-)ISS III | ≥VGPR |
Apheresis on planned date | 0.001 | 0.11 | 0.4 | 0.5 | 0.8 |
Mobilization duration | <0.001 | 0.074 | 0.6 | 0.6 | 0.8 |
Plerixafor use | 0.2 | 0.021 | 0.3 | >0.9 | 0.054 |
CD34+ × 106/L | 0.004 | 0.001 | 0.6 | 0.2 | 0.4 |
WBC | 0.8 | 0.7 | 0.018 | 0.4 | 0.5 |
Apheresis time | 0.012 | 0.3 | 0.034 | 0.8 | 0.5 |
Collected CD34+ | 0.007 | <0.001 | 0.8 | 0.067 | 0.8 |
Transplanted CD34+ | 0.010 | >0.9 | 0.4 | 0.012 | 0.5 |
Hospitalization | 0.2 | 0.048 | 0.6 | 0.7 | 0.2 |
Neutrophil recovery | 0.069 | 0.2 | 0.13 | 0.4 | 0.11 |
Platelet recovery | <0.001 | 0.5 | 0.042 | 0.8 | 0.8 |
≥1 PC used | 0.3 | 0.3 | 0.7 | 0.7 | >0.9 |
Nr. of PCs used | <0.001 | 0.2 | 0.055 | >0.9 | 0.5 |
≥1 EC used | 0.058 | 0.5 | 0.3 | 0.2 | 0.6 |
Nr. of ECs used | 0.2 | 0.14 | 0.4 | 0.7 | 0.4 |
≥1 infectious complication | 0.12 | 0.088 | 0.7 | 0.3 | 0.8 |
Parameter | Gemcitabine (n = 22) | Vinorelbine (n = 21) | p-Value |
---|---|---|---|
Apheresis on the planned date, n (%) | 6 (27) | 13 (62) | 0.0329 |
Mobilization days until apheresis (d), median (range) | 9 (8–10) | 8 (8–9) | 0.0070 |
Plerixafor used, n (%) a | 10 (50) | 4 (24) | 0.1734 |
Measurements on day of apheresis: | |||
CD34+ × 106/L, median (range) b | 35.23 (6.05–106) | 43.03 (19.97–115.6) | 0.2174 |
WBC × 109/L, median (range) c | 37.03 (18.41–75.49) | 26.82 (16.9–52.32) | 0.0067 |
CD34+/WBC (%), median (range) c | 0.1 (0.02–0.27) | 0.16 (0.08–0.45) | 0.0071 |
Apheresis time (min), median (range) d | 359.5 (192–1000) | 277 (158–460) | 0.0200 |
Coll. CD34+ × 106/kg BW, median (range) | 8.16 (3.26–13.66) | 8.27 (3.6–17.37) | 0.7093 |
Transp. CD34+ × 106/kg BW, median (range) | 3.16 (1.9–4.98) | 3.3 (2–5.15) | 0.8569 |
Hospitalization duration (d), median (range) | 24.5 (19–39) | 22 (18–35) | 0.2470 |
Time to neutrophil recovery (d), median (range) | 12 (10–20) | 11(10–12) | 0.0158 |
Time to platelet recovery (d), median (range) e | 16 (13–27) | 15 (11–25) | 0.0430 |
≥1 PC used, n (%) | 22 (100) | 20 (95) | 0.4884 |
Number of PCs used, median (range) | 5 (1–19) | 2.5 (1–8) | 0.0015 |
≥1 EC used, n (%) f | 19 (90) | 11 (55) | 0.0148 |
Number of ECs used, median (range) g | 2 (1–8) | 1 (1–4) | 0.3921 |
Fever during hospitalization, n (%) | 22 (100) | 20 (95) | 0.4884 |
≥1 Infectious complication, n (%) | 16 (73) | 13 (62) | 0.5256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehl, J.; Akhoundova, D.; Bacher, U.; Jeker, B.; Rhyner Agocs, G.; Ruefer, A.; Soltermann, S.; Soekler, M.; Winkler, A.; Daskalakis, M.; et al. Daratumumab during Myeloma Induction Therapy Is Associated with Impaired Stem Cell Mobilization and Prolonged Post-Transplant Hematologic Recovery. Cancers 2024, 16, 1854. https://doi.org/10.3390/cancers16101854
Mehl J, Akhoundova D, Bacher U, Jeker B, Rhyner Agocs G, Ruefer A, Soltermann S, Soekler M, Winkler A, Daskalakis M, et al. Daratumumab during Myeloma Induction Therapy Is Associated with Impaired Stem Cell Mobilization and Prolonged Post-Transplant Hematologic Recovery. Cancers. 2024; 16(10):1854. https://doi.org/10.3390/cancers16101854
Chicago/Turabian StyleMehl, Julian, Dilara Akhoundova, Ulrike Bacher, Barbara Jeker, Gaëlle Rhyner Agocs, Axel Ruefer, Susanne Soltermann, Martin Soekler, Annette Winkler, Michael Daskalakis, and et al. 2024. "Daratumumab during Myeloma Induction Therapy Is Associated with Impaired Stem Cell Mobilization and Prolonged Post-Transplant Hematologic Recovery" Cancers 16, no. 10: 1854. https://doi.org/10.3390/cancers16101854
APA StyleMehl, J., Akhoundova, D., Bacher, U., Jeker, B., Rhyner Agocs, G., Ruefer, A., Soltermann, S., Soekler, M., Winkler, A., Daskalakis, M., & Pabst, T. (2024). Daratumumab during Myeloma Induction Therapy Is Associated with Impaired Stem Cell Mobilization and Prolonged Post-Transplant Hematologic Recovery. Cancers, 16(10), 1854. https://doi.org/10.3390/cancers16101854