Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology of Research
3. Artificial Intelligence and NSCLC Staging (TNM Stage)
3.1. AI-Based Algorithms for Predicting the “T” Stage
3.2. AI for Predicting “N” Lymph Node Involvement
3.3. AI for Predicting Distant Metastases “M” at Diagnosis
4. Artificial Intelligence and Prognosis
4.1. AI for Predicting Prognosis and Tumor Recurrence after Surgery
4.2. AI for Predicting Response and Prognosis after Chemotherapy, Targeted Therapy, and Immunotherapy
4.3. AI for Predicting Response and Prognosis after Radiotherapy for NSCLC
4.4. AI for Predicting Treatment Strategy/Treatment Decision
5. Limitations of AI-Based Models
6. Limitations of AI-Based Models and Future Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- van Meerbeeck, J.P.; Fennell, D.A.; De Ruysscher, D.K. Small-cell lung cancer. Lancet 2011, 378, 1741–1755. [Google Scholar] [CrossRef]
- Amisha; Malik, P.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Fam. Med. Prim. Care 2019, 8, 2328–2331. [Google Scholar] [CrossRef] [PubMed]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Brief Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Qian, Z.; Li, Y.; Wang, Y.; Li, L.; Li, R.; Wang, K.; Li, S.; Tang, K.; Zhang, C.; Fan, X.; et al. Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett. 2019, 451, 128–135. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, E.J.; Kim, H.; Park, C.M. A narrative review of deep learning applications in lung cancer research: From screening to prognostication. Transl. Lung Cancer Res. 2022, 11, 1217–1229. [Google Scholar] [CrossRef]
- Kirienko, M.; Sollini, M.; Silvestri, G.; Mognetti, S.; Voulaz, E.; Antunovic, L.; Rossi, A.; Antiga, L.; Chiti, A. Convolutional Neural Networks Promising in Lung Cancer T-Parameter Assessment on Baseline FDG-PET/CT. Contrast Media Mol. Imaging 2018, 2018, 1382309. [Google Scholar] [CrossRef] [PubMed]
- Weikert, T.; Akinci D’Antonoli, T.; Bremerich, J.; Stieltjes, B.; Sommer, G.; Sauter, A.W. Evaluation of an AI-Powered Lung Nodule Algorithm for Detection and 3D Segmentation of Primary Lung Tumors. Contrast Media Mol. Imaging 2019, 2019, 1545747. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, W.H.; Hong, J.H.; Nam, J.G.; Hwang, E.J.; Kim, H.; Goo, J.M.; Park, C.M. Growth and Clinical Impact of 6-mm or Larger Subsolid Nodules after 5 Years of Stability at Chest CT. Radiology 2020, 295, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yang, J.; Sun, Y.; Li, C.; Wu, W.; Jin, L.; Yang, Z.; Ni, B.; Gao, P.; Wang, P.; et al. 3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. Cancer Res. 2018, 78, 6881–6889. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, H.; Hong, W.; Park, J.; Hwang, E.J.; Park, C.M.; Kim, Y.T.; Goo, J.M. Prediction of visceral pleural invasion in lung cancer on CT: Deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs. Eur. Radiol. 2021, 31, 2866–2876. [Google Scholar] [CrossRef]
- Asamura, H.; Hishida, T.; Suzuki, K.; Koike, T.; Nakamura, K.; Kusumoto, M.; Nagai, K.; Tada, H.; Mitsudomi, T.; Tsuboi, M.; et al. Radiographically determined noninvasive adenocarcinoma of the lung: Survival outcomes of Japan Clinical Oncology Group 0201. J. Thorac. Cardiovasc. Surg. 2013, 146, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.S.; Gil, B.; Na, S.J.; Hong, J.H.; Chun, S.H.; An, H.J.; Kim, J.J.; Hong, S.A.; Lee, B.; Shim, W.S.; et al. DeepCUBIT: Predicting Lymphovascular Invasion or Pathological Lymph Node Involvement of Clinical T1 Stage Non-Small Cell Lung Cancer on Chest CT Scan Using Deep Cubical Nodule Transfer Learning Algorithm. Front. Oncol. 2021, 11, 661244. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qu, J.; Liang, Y.; Zhao, D.; Rehman, F.U.; Qin, K.; Zhang, X. Identification and validation of key genes with prognostic value in non-small-cell lung cancer via integrated bioinformatics analysis. Thorac. Cancer 2020, 11, 851–866. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; She, Y.; Deng, J.; Chen, S.; Wang, T.; Yang, M.; Ma, M.; Song, Y.; Qi, H.; Wang, Y.; et al. Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non-Small Cell Lung Cancer. Radiology 2022, 302, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Tau, N.; Stundzia, A.; Yasufuku, K.; Hussey, D.; Metser, U. Convolutional Neural Networks in Predicting Nodal and Distant Metastatic Potential of Newly Diagnosed Non-Small Cell Lung Cancer on FDG PET Images. AJR Am. J. Roentgenol. 2020, 215, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, J.; Han, C.; Liu, X.; Chong, Y.; Wang, Z.; Gong, L.; Zhang, J.; Gao, X.; Guo, C.; et al. Preoperative Prediction of Lymph Node Metastasis in Patients With Early-T-Stage Non-small Cell Lung Cancer by Machine Learning Algorithms. Front. Oncol. 2020, 10, 743. [Google Scholar] [CrossRef]
- Coroller, T.P.; Grossmann, P.; Hou, Y.; Rios Velazquez, E.; Leijenaar, R.T.; Hermann, G.; Lambin, P.; Haibe-Kains, B.; Mak, R.H.; Aerts, H.J. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 2015, 114, 345–350. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Mining Prognosis Index of Brain Metastases Using Artificial Intelligence. Cancers 2019, 11, 1140. [Google Scholar] [CrossRef] [PubMed]
- Kroschke, J.; von Stackelberg, O.; Heußel, C.P.; Wielpütz, M.O.; Kauczor, H.U. Imaging Biomarkers in Thoracic Oncology: Current Advances in the Use of Radiomics in Lung Cancer Patients and its Potential Use for Therapy Response Prediction and Monitoring. Rofo 2022, 194, 720–727. [Google Scholar] [CrossRef]
- Zhao, B.; James, L.P.; Moskowitz, C.S.; Guo, P.; Ginsberg, M.S.; Lefkowitz, R.A.; Qin, Y.; Riely, G.J.; Kris, M.G.; Schwartz, L.H. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non–small cell lung cancer. Radiology 2009, 252, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Balagurunathan, Y.; Gu, Y.; Wang, H.; Kumar, V.; Grove, O.; Hawkins, S.; Kim, J.; Goldgof, D.B.; Hall, L.O.; Gatenby, R.A.; et al. Reproducibility and Prognosis of Quantitative Features Extracted from CT Images. Transl. Oncol. 2014, 7, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Coroller, T.P.; Grossmann, P.; Zeleznik, R.; Kumar, A.; Bussink, J.; Gillies, R.J.; Mak, R.H.; Aerts, H.J.W.L. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med. 2018, 15, e1002711. [Google Scholar] [CrossRef]
- Yoon, H.J.; Sohn, I.; Cho, J.H.; Lee, H.Y.; Kim, J.H.; Choi, Y.L.; Kim, H.; Lee, G.; Lee, K.S.; Kim, J. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach. Medicine 2015, 94, e1753. [Google Scholar] [CrossRef] [PubMed]
- Yoshiyasu, N.; Kojima, F.; Hayashi, K.; Bando, T. Radiomics technology for identifying early-stage lung adenocarcinomas suitable for sublobar resection. J. Thorac. Cardiovasc. Surg. 2021, 162, 477–485.e1. [Google Scholar] [CrossRef]
- Akinci D’Antonoli, T.; Farchione, A.; Lenkowicz, J.; Chiappetta, M.; Cicchetti, G.; Martino, A.; Ottavianelli, A.; Manfredi, R.; Margaritora, S.; Bonomo, L.; et al. CT Radiomics Signature of Tumor and Peritumoral Lung Parenchyma to Predict Nonsmall Cell Lung Cancer Postsurgical Recurrence Risk. Acad. Radiol. 2020, 27, 497–507. [Google Scholar] [CrossRef]
- Wang, X.; Janowczyk, A.; Zhou, Y.; Thawani, R.; Fu, P.; Schalper, K.; Velcheti, V.; Madabhushi, A. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Sci. Rep. 2017, 7, 13543. [Google Scholar]
- Wang, S.; Chen, A.; Yang, L.; Cai, L.; Xie, Y.; Fujimoto, J.; Gazdar, A.; Xiao, G. Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome. Sci. Rep. 2018, 8, 10393. [Google Scholar] [CrossRef]
- Song, J.; Liu, Z.; Zhong, W.; Huang, Y.; Ma, Z.; Dong, D.; Liang, C.; Tian, J. Non-small cell lung cancer: Quantitative phenotypic analysis of CT images as a potential marker of prognosis. Sci. Rep. 2016, 6, 38282. [Google Scholar] [CrossRef]
- Khorrami, M.; Khunger, M.; Zagouras, A.; Patil, P.; Thawani, R.; Bera, K.; Rajiah, P.; Fu, P.; Velcheti, V.; Madabhushi, A. Combination of Peri- and Intratumoral Radiomic Features on Baseline CT Scans Predicts Response to Chemotherapy in Lung Adenocarcinoma. Radiol. Artif. Intell. 2019, 1, e180012. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.J.; Grossmann, P.; Tan, Y.; Oxnard, G.R.; Rizvi, N.; Schwartz, L.H.; Zhao, B. Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC. Sci. Rep. 2016, 6, 33860, Erratum in Sci. Rep. 2017, 7, 41197. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Tunali, I.; Gray, J.E.; Qi, J.; Schabath, M.B.; Gillies, R.J. Radiomics of 18F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
- Huynh, E.; Coroller, T.P.; Narayan, V.; Agrawal, V.; Hou, Y.; Romano, J.; Franco, I.; Mak, R.H.; Aerts, H.J. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother. Oncol. 2016, 120, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Lagerwaard, F.J.; Verstegen, N.E.; Haasbeek, C.J.; Slotman, B.J.; Paul, M.A.; Smit, E.F.; Senan, S. Outcomes of stereotactic ablative radiotherapy in patients with potentially operable stage I non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Mattonen, S.A.; Tetar, S.; Palma, D.A.; Louie, A.V.; Senan, S.; Ward, A.D. Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. J. Med. Imaging 2015, 2, 041010. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, A.; Khalvati, F.; Tyrrell, P.N.; Haider, M.A.; Tarique, U.; Jimenez-Juan, L.; Tjong, M.C.; Poon, I.; Eilaghi, A.; Ehrlich, L.; et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy. Sci. Rep. 2018, 8, 4003. [Google Scholar] [CrossRef] [PubMed]
- Lou, B.; Doken, S.; Zhuang, T.; Wingerter, D.; Gidwani, M.; Mistry, N.; Ladic, L.; Kamen, A.; Abazeed, M.E. An image-based deep learning framework for individualizing radiotherapy dose. Lancet Digit. Health 2019, 1, e136–e147, Erratum in Lancet Digit. Health 2019, 1, e160. [Google Scholar] [CrossRef]
- Nemoto, T.; Takeda, A.; Matsuo, Y.; Kishi, N.; Eriguchi, T.; Kunieda, E.; Kimura, R.; Sanuki, N.; Tsurugai, Y.; Yagi, M.; et al. Applying Artificial Neural Networks to Develop a Decision Support Tool for Tis-4N0M0 Non-Small-Cell Lung Cancer Treated With Stereotactic Body Radiotherapy. JCO Clin. Cancer Inform. 2022, 6, e2100176. [Google Scholar] [CrossRef]
- Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, F.; Liao, Z.; et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci. Rep. 2017, 7, 588. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Park, H.Y.; Kho, B.G.; Park, C.K.; Oh, I.J.; Kim, Y.C.; Kim, S.; Yun, J.S.; Song, S.Y.; Na, K.J.; et al. Artificial intelligence and lung cancer treatment decision: Agreement with recommendation of multidisciplinary tumor board. Transl. Lung Cancer Res. 2020, 9, 507–514. [Google Scholar] [CrossRef] [PubMed]
- You, H.S.; Gao, C.X.; Wang, H.B.; Luo, S.S.; Chen, S.Y.; Dong, Y.L.; Lyu, J.; Tian, T. Concordance of Treatment Recommendations for Metastatic Non-Small-Cell Lung Cancer Between Watson for Oncology System and Medical Team. Cancer Manag. Res. 2020, 12, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Jochems, A.; Deist, T.M.; van Soest, J.; Eble, M.; Bulens, P.; Coucke, P.; Dries, W.; Lambin, P.; Dekker, A. Distributed learning: Developing a predictive model based on data from multiple hospitals without data leaving the hospital—A real life proof of concept. Radiother. Oncol. 2016, 121, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Jochems, A.; Deist, T.M.; El Naqa, I.; Kessler, M.; Mayo, C.; Reeves, J.; Jolly, S.; Matuszak, M.; Ten Haken, R.; van Soest, J.; et al. Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 344–352. [Google Scholar] [CrossRef]
- Wang, D.D.; Zhou, W.; Yan, H.; Wong, M.; Lee, V. Personalized prediction of EGFR mutation-induced drug resistance in lung cancer. Sci. Rep. 2013, 3, 2855. [Google Scholar] [CrossRef]
- Giang, T.T.; Nguyen, T.P.; Tran, D.H. Stratifying patients using fast multiple kernel learning framework: Case studies of Alzheimer’s disease and cancers. BMC Med. Inform. Decis. Mak. 2020, 20, 108. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, R.; Lyu, Q. Multiomics and machine learning in lung cancer prognosis. J. Thorac. Dis. 2020, 12, 4531–4535. [Google Scholar] [CrossRef] [PubMed]
- Wissel, D.; Rowson, D.; Boeva, V. Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection. BioRxiv 2021. [Google Scholar] [CrossRef]
- Denton, E.; Conron, M. Improving outcomes in lung cancer: The value of the multidisciplinary health care team. J. Multidiscip. Healthc. 2016, 9, 137–144. [Google Scholar]
- Sim, Y.; Chung, M.J.; Kotter, E.; Yune, S.; Kim, M.; Do, S.; Han, K.; Kim, H.; Yang, S.; Lee, D.J.; et al. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Radiology 2020, 294, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Tam, M.D.B.S.; Dyer, T.; Dissez, G.; Morgan, T.N.; Hughes, M.; Illes, J.; Rasalingham, R.; Rasalingham, S. Augmenting lung cancer diagnosis on chest radiographs: Positioning artificial intelligence to improve radiologist performance. Clin. Radiol. 2021, 76, 607–614. [Google Scholar] [CrossRef]
- Kim, J.H.; Han, S.G.; Cho, A.; Shin, H.J.; Baek, S.E. Effect of deep learning-based assistive technology use on chest radiograph interpretation by emergency department physicians: A prospective interventional simulation-based study. BMC Med. Inform. Decis. Mak. 2021, 21, 311. [Google Scholar] [CrossRef] [PubMed]
- Abels, E.; Pantanowitz, L. Current State of the Regulatory Trajectory for Whole Slide Imaging Devices in the USA. J. Pathol. Inform. 2017, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, J.L.; Willemink, M.J.; De Cecco, C.N. Artificial Intelligence and Machine Learning in Radiology: Current State and Considerations for Routine Clinical Implementation. Investig. Radiol. 2020, 55, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, J.; Zhao, Z.; Zhang, Q.; Shao, J.; Wang, C.; Qiu, Z.; Li, W. Artificial intelligence-assisted decision making for prognosis and drug efficacy prediction in lung cancer patients: A narrative review. J. Thorac. Dis. 2021, 13, 7021–7033. [Google Scholar] [CrossRef] [PubMed]
- Lococo, F.; Boldrini, L.; Diepriye, C.D.; Evangelista, J.; Nero, C.; Flamini, S.; Minucci, A.; De Paolis, E.; Vita, E.; Cesario, A.; et al. Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: The LANTERN study. BMC Cancer 2023, 23, 540. [Google Scholar]
- Fiste, O.; Gkiozos, I.; Charpidou, A.; Syrigos, N.K. Artificial Intelligence-Based Treatment Decisions: A New Era for NSCLC. Cancers 2024, 16, 831. [Google Scholar] [CrossRef]
Study | Number of Patients | Prediction | Results |
---|---|---|---|
Hosny et al. [25] 2018 | 1194 | This study explores deep learning applications in medical imaging, allowing for the automated quantification of radiographic characteristics and potentially improving patient stratification. | The CNN was able to significantly stratify patients into low- and high-mortality-risk groups in both the radiotherapy (p < 0.001) and surgery (p = 0.03) datasets. |
Wang et al. [29] 2017 | Retrospective cohort of early-stage NSCLC (I–II) patients (Cohort #1, n = 70; Cohort #2, n = 119 and Cohort #3, n = 116). | They trained an ML model to predict the risk of recurrence in early-stage NSCLC based on digital H&E tumor microarray (TMA)-stained slides of surgically excised tissue samples. | The combination of nuclear shape, texture, and architectural features was predictive of recurrence in early-stage NSCLC, independent of clinical parameters such as gender, cancer stage, and histological subtype. |
Wang et al. [30] 2018 | 389 | They trained a deep CNN model to automatically extract histopathological features of lung ADC. | The patient prognostic model was trained using the NLST cohort and independently validated in the TCGA cohort, demonstrating the applicability of the model to other lung ADC patient cohorts. |
Song et al. [31] 2016 | 661 | The identification of poor prognosis via non-invasive methods. | They demonstrated an association between features extracted from CT images and overall survival in NSCLC patients. They concluded that tumor heterogeneity quantified via CT phenotypic signatures may indirectly reflect tumor prognosis. |
Study | Number of Patients | Prediction to Response to | Results | Comments |
---|---|---|---|---|
Khorrami et al. [32] 2019 | 125 | Chemotherapy: pemetrexed-based platinum chemotherapy | The radiomics signature was significantly associated with the following: Response to chemotherapy: AUC of 0.82 ± 0.09 Time to progression: HR 2.8; 95% CI: 1.95, 4.00; p < 0.0001) Overall survival HR 2.35; 95% CI: 1.41, 3.94; p = 0.0011) | The results from the training set were confirmed in the independent validation set. |
Aerts et al. [33] 2016 | 47 | Gefitinib in early-stage adenocarcinoma | Radiomics-feature Laws-Energy was significantly predictive for EGFR mutation status (AUC = 0.67, p = 0.03) | Capacity to predict EGFR mutations for non-invasive diagnosis |
Mu et al. [34] 2020 | 194 | Anti-PD-(L)1 immunotherapy | Multiparametric radiomics signature was able to predict the following: Durable clinical benefit with AUCs of 0.86 in the retrospective test and 0.81 in the prospective test cohorts. Progression-free survival in the training (p < 0.001), retrospective test (p = 0.001), and prospective test cohorts (p < 0.001), Overall survival in the training (p < 0.001), retrospective test (p = 0.002), and prospective test cohorts (p = 0.002) | IIIB-IV NSCLC with pre-treatment PET/CT images |
Study | Number of Patients | Prediction to Response to | Results | Comments |
---|---|---|---|---|
Huynh et al. [35] 2016 | 113 | SABR Prescribed radiation dose (Gy): 54 (18–60) Radiation dose per fraction (Gy): 18 (10–18) | Radiomics features were able to predict overall survival, cancer-specific survival, and distant metastases development. | Stage I–II NSCLC 15 imaging features (3 conventional and 12 radiomic features) and 4 clinical parameters (age, gender, performance status, overall stage) were included in the analysis. |
Mattonen et al. [37] 2015 | 22 | SABR | Radiomics able to distinguish post-SABR fibrosis from tumor recurrence (AUC 0.70). | Study validated considering manual and automatic segmentation. |
Fave et al. [41] 2017 | 107 | Radiotherapy (66 or 74 Gy) and concurrent chemotherapy | Three prognostic models were studied: 1: Only clinical variables; 2: Clinical variables and pre-treatment radiomics features; 3: Clinical variables, pre-treatment radiomics features, and changes in radiomics features between pre- and post-treatment imaging. Creating prognostic models with pre-treatment radiomics features (2) and changes in radiomics features between pre- and post-treatment imaging (3) permit better stratification for overall survival, disease-free survival, and distant metastases development. | Stage III NSCLC. |
Oikonomou et al. [38] 2018 | 150 | SABR Total dose: 48–56 Gy | Prognostics models predictive for the following were studied:
| Radiomics applied on PET/CT. Four predictional models including different radiomics features, including or excluding the SUV value. |
Lou et al. [39] 2019 | 849 | SABR 50–60 Gy in 3–5 fractions | Deep profiler score generated from deep profiler signatures. Predictive for 3-year local failure: 5.7% in low-risk group vs. 20% in high-risk group (p < 0.001). | Multivariable models including deep profiler and clinical variables predicted treatment failures with a C-index of 0.72 (95% CI: 0.67–0.77), which was a significant improvement when compared to classical radiomics (p = <0.001) or 3D volume (p = <0.001). |
Nemoto et al. [40] 2022 | 692 (study group) + 100 external validation set | Predictions of SBRT outcomes using artificial neural networks | The survival and cumulative incidence curves were significantly stratified in Tis-4N0M0 NSCLC patients who underwent SBRT for curative intent. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lococo, F.; Ghaly, G.; Chiappetta, M.; Flamini, S.; Evangelista, J.; Bria, E.; Stefani, A.; Vita, E.; Martino, A.; Boldrini, L.; et al. Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. Cancers 2024, 16, 1832. https://doi.org/10.3390/cancers16101832
Lococo F, Ghaly G, Chiappetta M, Flamini S, Evangelista J, Bria E, Stefani A, Vita E, Martino A, Boldrini L, et al. Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. Cancers. 2024; 16(10):1832. https://doi.org/10.3390/cancers16101832
Chicago/Turabian StyleLococo, Filippo, Galal Ghaly, Marco Chiappetta, Sara Flamini, Jessica Evangelista, Emilio Bria, Alessio Stefani, Emanuele Vita, Antonella Martino, Luca Boldrini, and et al. 2024. "Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review" Cancers 16, no. 10: 1832. https://doi.org/10.3390/cancers16101832
APA StyleLococo, F., Ghaly, G., Chiappetta, M., Flamini, S., Evangelista, J., Bria, E., Stefani, A., Vita, E., Martino, A., Boldrini, L., Sassorossi, C., Campanella, A., Margaritora, S., & Mohammed, A. (2024). Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. Cancers, 16(10), 1832. https://doi.org/10.3390/cancers16101832