Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice
Abstract
:Simple Summary
Abstract
1. Introduction
2. CD30 and CD30 Targeted Therapies
Brentuximab Vedotin
3. PD-1/PD-L1 Signaling and PD-1 Checkpoint Inhibitors
3.1. Nivolumab and Pembrolizumab
3.2. Other PD-1 Checkpoint Inhibitors
3.3. Chemotherapy-Resensitization after PD-1 Inhibition
4. Frontline Treatment Reshaping
4.1. BV Plus Chemotherapy Combinations
4.2. PD-1 Checkpoint Inhibitors plus Chemotherapy Combinations
4.3. BV-Nivolumab Combination and Chemo-Free Regimens
5. Regulation of T-Lymphocytes and NK Cells Function
5.1. CD25 Targeting
5.2. Other Immune Checkpoint Pathways and Novel Checkpoint Inhibitors
5.2.1. TIGIT Blockade
5.2.2. LAG-3 Targeting
5.2.3. CD47 Blockade
5.3. NK Targeting and Activation: CD30 × CD16 Bispecific Antibodies
6. Epigenetic Modulation
6.1. DNA Methyltransferase Inhibition
6.2. Histone Deacetylase Inhibition
6.3. Other Epigenetic Modulating Agents
7. JAK/STAT Blockade
8. Chimeric Antigen Receptor T-Cell Therapy
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hodgkin Lymphoma—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/hodg.html (accessed on 18 March 2024).
- Engert, A. ABVD or BEACOPP for Advanced Hodgkin Lymphoma. J. Clin. Oncol. 2016, 34, 1167–1169. [Google Scholar] [CrossRef]
- Bonadonna, G.; Zucali, R.; Monfardini, S.; de Lena, M.; Uslenchi, C. Combination chemotherapy of hodgkin’s disease with adriamycin, bleomycin, vinblastine, and imidazole carboxamide versus mopp. Cancer 1975, 36, 252–259. [Google Scholar] [CrossRef]
- Evens, A.M.; Hutchings, M.; Diehl, V. Treatment of Hodgkin Lymphoma: The Past, Present, and Future. Nat. Clin. Pract. Oncol. 2008, 5, 543–556. [Google Scholar] [CrossRef]
- Küppers, R. New Insights in the Biology of Hodgkin Lymphoma. Hematol. Am. Soc. Hematol. Educ. Program. 2012, 2012, 328–334. [Google Scholar] [CrossRef]
- Mathas, S.; Hartmann, S.; Küppers, R. Hodgkin Lymphoma: Pathology and Biology. Semin. Hematol. 2016, 53, 139–147. [Google Scholar] [CrossRef]
- Fromm, J.R.; Thomas, A.; Wood, B.L. Flow Cytometry Can Diagnose Classical Hodgkin Lymphoma in Lymph Nodes with High Sensitivity and Specificity. Am. J. Clin. Pathol. 2009, 131, 322–332. [Google Scholar] [CrossRef]
- Skinnider, B.F.; Elia, A.J.; Gascoyne, R.D.; Patterson, B.; Trumper, L.; Kapp, U.; Mak, T.W. Signal Transducer and Activator of Transcription 6 Is Frequently Activated in Hodgkin and Reed-Sternberg Cells of Hodgkin Lymphoma. Blood 2002, 99, 618–626. [Google Scholar] [CrossRef]
- Voltin, C.A.; Mettler, J.; van Heek, L.; Goergen, H.; Muller, H.; Baues, C.; Keller, U.; Meissner, J.; Trautmann-Grill, K.; Kerkhoff, A.; et al. Early Response to First-Line Anti-PD-1 Treatment in Hodgkin Lymphoma: A PET-Based Analysis from the Prospective, Randomized Phase II NIVAHL Trial. Clin. Cancer Res. 2021, 27, 402–407. [Google Scholar] [CrossRef]
- van der Weyden, C.A.; Pileri, S.A.; Feldman, A.L.; Whisstock, J.; Prince, H.M. Understanding CD30 Biology and Therapeutic Targeting: A Historical Perspective Providing Insight into Future Directions. Blood Cancer J. 2017, 7, e603. [Google Scholar] [CrossRef]
- Falini, B.; Pileri, S.; Pizzolo, G.; Dürkop, H.; Flenghi, L.; Stirpe, F.; Martelli, M.F.; Stein, H. CD30 (Ki-1) Molecule: A New Cytokine Receptor of the Tumor Necrosis Factor Receptor Superfamily as a Tool for Diagnosis and Immunotherapy. Blood 1995, 85, 1–14. [Google Scholar] [CrossRef]
- Stein, H.; Mason, D.; Gerdes, J.; O’Connor, N.; Wainscoat, J.; Pallesen, G.; Gatter, K.; Falini, B.; Delsol, G.; Lemke, H.; et al. The Expression of the Hodgkin’s Disease Associated Antigen Ki-1 in Reactive and Neoplastic Lymphoid Tissue: Evidence That Reed-Sternberg Cells and Histiocytic Malignancies Are Derived from Activated Lymphoid Cells. Blood 1985, 66, 848–858. [Google Scholar] [CrossRef]
- Zheng, B.; Flumara, P.; Li, Y.V.; Georgakis, G.; Snell, V.; Younes, M.; Vauthey, J.N.; Carbone, A.; Younes, A. MEK/ERK Pathway Is Aberrantly Active in Hodgkin Disease: A Signaling Pathway Shared by CD30, CD40, and RANK That Regulates Cell Proliferation and Survival. Blood 2003, 102, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.S.; Richter, B.W.M.; Duckett, C.S. Differential Effects of CD30 Activation in Anaplastic Large Cell Lymphoma and Hodgkin Disease Cells. Blood 2000, 96, 4307–4312. [Google Scholar] [CrossRef]
- Schirrmann, T.; Steinwand, M.; Wezler, X.; Ten Haaf, A.; Tur, M.K.; Barth, S. CD30 as a Therapeutic Target for Lymphoma. BioDrugs 2014, 28, 181–209. [Google Scholar] [CrossRef]
- Gerber, H.P. Emerging Immunotherapies Targeting CD30 in Hodgkin’s Lymphoma. Biochem. Pharmacol. 2010, 79, 1544–1552. [Google Scholar] [CrossRef]
- Aldinucci, D.; Gloghini, A.; Pinto, A.; De Filippi, R.; Carbone, A. The Classical Hodgkin’s Lymphoma Microenvironment and Its Role in Promoting Tumour Growth and Immune Escape. J. Pathol. 2010, 221, 248–263. [Google Scholar] [CrossRef]
- Rigo, A.; Vinante, F. Flow Cytometry Analysis of Receptor Internalization/Shedding. Cytom. B Clin. Cytom. 2017, 92, 291–298. [Google Scholar] [CrossRef]
- Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas. N. Engl. J. Med. 2010, 363, 1812–1821. [Google Scholar] [CrossRef]
- Younes, A.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Ramchandren, R.; Bartlett, N.L.; Cheson, B.D.; De Vos, S.; et al. Results of a Pivotal Phase II Study of Brentuximab Vedotin for Patients with Relapsed or Refractory Hodgkin’s Lymphoma. J. Clin. Oncol. 2012, 30, 2183–2189. [Google Scholar] [CrossRef]
- Adcetris. European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/adcetris (accessed on 18 March 2024).
- Drug Approval Package: ADCETRIS (Brentuximab Vedotin) NDA #125399. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/125399_adcetris_toc.cfm (accessed on 18 March 2024).
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J. Clin. Oncol. 2014, 32, 3059–3067. [Google Scholar] [CrossRef]
- Onishi, M.; Graf, S.A.; Holmberg, L.; Behnia, S.; Shustov, A.R.; Schiavo, K.; Philip, M.; Libby, E.N.; Cassaday, R.D.; Pagel, J.M.; et al. Brentuximab Vedotin Administered to Platinum-Refractory, Transplant-Naïve Hodgkin Lymphoma Patients Can Increase the Proportion Achieving FDG PET Negative Status. Hematol. Oncol. 2015, 33, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Pellegrini, C.; Cantonetti, M.; Re, A.; Pinto, A.; Pavone, V.; Rigacci, L.; Celli, M.; Broccoli, A.; Argnani, L.; et al. Brentuximab Vedotin in Transplant-Naïve Relapsed/Refractory Hodgkin Lymphoma: Experience in 30 Patients. Oncologist 2015, 20, 1413. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, C.H.; Walewski, J.; Nademanee, A.; Masszi, T.; Agura, E.; Holowiecki, J.; Abidi, M.H.; Chen, A.I.; Stiff, P.; Viviani, S.; et al. Five-Year PFS from the AETHERA Trial of Brentuximab Vedotin for Hodgkin Lymphoma at High Risk of Progression or Relapse. Blood 2018, 132, 2639–2642. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Palmer, J.M.; Thomas, S.H.; Tsai, N.C.; Farol, L.; Nademanee, A.; Forman, S.J.; Gopal, A.K. Brentuximab Vedotin Enables Successful Reduced-Intensity Allogeneic Hematopoietic Cell Transplantation in Patients with Relapsed or Refractory Hodgkin Lymphoma. Blood 2012, 119, 6379–6381. [Google Scholar] [CrossRef] [PubMed]
- Carlo-Stella, C.; Ricci, F.; Dalto, S.; Mazza, R.; Malagola, M.; Patriarca, F.; Viviani, S.; Russo, D.; Giordano, L.; Castagna, L.; et al. Brentuximab Vedotin in Patients with Hodgkin Lymphoma and a Failed Allogeneic Stem Cell Transplantation: Results From a Named Patient Program at Four Italian Centers. Oncologist 2015, 20, 323. [Google Scholar] [CrossRef]
- LaCasce, A.S.; Gregory Bociek, R.; Sawas, A.; Caimi, P.; Agura, E.; Matous, J.; Ansell, S.M.; Crosswell, H.E.; Islas-Ohlmayer, M.; Behler, C.; et al. Brentuximab Vedotin plus Bendamustine: A Highly Active First Salvage Regimen for Relapsed or Refractory Hodgkin Lymphoma. Blood 2018, 132, 40–48. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, O.A.; Lue, J.K.; Sawas, A.; Amengual, J.E.; Deng, C.; Kalac, M.; Falchi, L.; Marchi, E.; Turenne, I.; Lichtenstein, R.; et al. Brentuximab Vedotin plus Bendamustine in Relapsed or Refractory Hodgkin’s Lymphoma: An International, Multicentre, Single-Arm, Phase 1–2 Trial. Lancet Oncol. 2018, 19, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Broccoli, A.; Argnani, L.; Botto, B.; Corradini, P.; Pinto, A.; Re, A.; Vitolo, U.; Fanti, S.; Stefoni, V.; Zinzani, P.L. First Salvage Treatment with Bendamustine and Brentuximab Vedotin in Hodgkin Lymphoma: A Phase 2 Study of the Fondazione Italiana Linfomi. Blood Cancer J. 2019, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, R.J.; Freeman, G.J.; Sharpe, A.H. The B7 Family Revisited. Annu. Rev. Immunol. 2005, 23, 515–548. [Google Scholar] [CrossRef]
- Zou, W.; Chen, L. Inhibitory B7-Family Molecules in the Tumour Microenvironment. Nat. Rev. Immunol. 2008, 8, 467–477. [Google Scholar] [CrossRef]
- Zak, K.M.; Grudnik, P.; Magiera, K.; Dömling, A.; Dubin, G.; Holak, T.A. Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2. Structure 2017, 25, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef]
- Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a Third Member of the B7 Family, Co-Stimulates T-Cell Proliferation and Interleukin-10 Secretion. Nat. Med. 1999, 5, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [PubMed]
- Chemnitz, J.M.; Parry, R.V.; Nichols, K.E.; June, C.H.; Riley, J.L. SHP-1 and SHP-2 Associate with Immunoreceptor Tyrosine-Based Switch Motif of Programmed Death 1 upon Primary Human T Cell Stimulation, but Only Receptor Ligation Prevents T Cell Activation. J. Immunol. 2004, 173, 945–954. [Google Scholar] [CrossRef]
- Yokosuka, T.; Takamatsu, M.; Kobayashi-Imanishi, W.; Hashimoto-Tane, A.; Azuma, M.; Saito, T. Programmed Cell Death 1 Forms Negative Costimulatory Microclusters That Directly Inhibit T Cell Receptor Signaling by Recruiting Phosphatase SHP2. J. Exp. Med. 2012, 209, 1201–1217. [Google Scholar] [CrossRef] [PubMed]
- Carey, C.D.; Gusenleitner, D.; Lipschitz, M.; Roemer, M.G.M.; Stack, E.C.; Gjini, E.; Hu, X.; Redd, R.; Freeman, G.J.; Neuberg, D.; et al. Topological Analysis Reveals a PD-L1-Associated Microenvironmental Niche for Reed-Sternberg Cells in Hodgkin Lymphoma. Blood 2017, 130, 2420–2430. [Google Scholar] [CrossRef] [PubMed]
- Opdivo. European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/opdivo (accessed on 18 March 2024).
- Nivolumab (Opdivo) for Hodgkin Lymphoma. FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/nivolumab-opdivo-hodgkin-lymphoma (accessed on 19 March 2024).
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; et al. Nivolumab for Classical Hodgkin’s Lymphoma after Failure of Both Autologous Stem-Cell Transplantation and Brentuximab Vedotin: A Multicentre, Multicohort, Single-Arm Phase 2 Trial. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef]
- Ansell, S.M.; Bröckelmann, P.J.; von Keudell, G.; Lee, H.J.; Santoro, A.; Zinzani, P.L.; Collins, G.P.; Cohen, J.B.; de Boer, J.P.; Kuruvilla, J.; et al. Nivolumab for Relapsed/Refractory Classical Hodgkin Lymphoma: 5-Year Survival from the Pivotal Phase 2 CheckMate 205 Study. Blood Adv. 2023, 7, 6266–6274. [Google Scholar] [CrossRef]
- Harker-Murray, P.; Mauz-Körholz, C.; Leblanc, T.; Mascarin, M.; Michel, G.; Cooper, S.; Beishuizen, A.; Leger, K.J.; Amoroso, L.; Buffardi, S.; et al. Nivolumab and Brentuximab Vedotin with or without Bendamustine for R/R Hodgkin Lymphoma in Children, Adolescents, and Young Adults. Blood 2023, 141, 2075. [Google Scholar] [CrossRef]
- Keytruda. European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/keytruda (accessed on 18 March 2024).
- FDA Extends Approval of Pembrolizumab for Classical Hodgkin Lymphoma. FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-extends-approval-pembrolizumab-classical-hodgkin-lymphoma (accessed on 19 March 2024).
- Armand, P.; Shipp, M.A.; Ribrag, V.; Michot, J.M.; Zinzani, P.L.; Kuruvilla, J.; Snyder, E.S.; Ricart, A.D.; Balakumaran, A.; Rose, S.; et al. Programmed Death-1 Blockade with Pembrolizumab in Patients with Classical Hodgkin Lymphoma after Brentuximab Vedotin Failure. J. Clin. Oncol. 2016, 34, 3733–3739. [Google Scholar] [CrossRef]
- Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. 2017, 35, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Pembrolizumab in Relapsed or Refractory Hodgkin Lymphoma: 2-Year Follow-up of KEYNOTE-087. Blood 2019, 134, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Herbaux, C.; Gauthier, J.; Brice, P.; Drumez, E.; Ysebaert, L.; Doyen, H.; Fornecker, L.; Bouabdallah, K.; Manson, G.; Ghesquières, H.; et al. Efficacy and Tolerability of Nivolumab after Allogeneic Transplantation for Relapsed Hodgkin Lymphoma. Blood 2017, 129, 2471–2478. [Google Scholar] [CrossRef]
- Shi, Y.; Su, H.; Song, Y.; Jiang, W.; Sun, X.; Qian, W.; Zhang, W.; Gao, Y.; Jin, Z.; Zhou, J.; et al. Safety and Activity of Sintilimab in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma (ORIENT-1): A Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2019, 6, e12–e19. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Gao, Q.; Zhang, H.; Fan, L.; Zhou, J.; Zou, D.; Li, W.; Yang, H.; Liu, T.; Wang, Q.; et al. Treatment of Relapsed or Refractory Classical Hodgkin Lymphoma with the Anti-PD-1, Tislelizumab: Results of a Phase 2, Single-Arm, Multicenter Study. Leukemia 2020, 34, 533. [Google Scholar] [CrossRef]
- Lin, N.; Zhang, M.; Bai, H.; Liu, H.; Cui, J.; Ke, X.; Zhang, H.; Liu, L.; Yan, D.; Jiang, Y.; et al. Efficacy and Safety of GLS-010 (Zimberelimab) in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma: A Multicenter, Single-Arm, Phase II Study. Eur. J. Cancer 2022, 164, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.F.; Burton, C.; Radford, J.; Miall, F.; Townsend, W.; Santoro, A.; Zinzani, P.L.; Lewis, D.; Fowst, C.; Brar, S.; et al. Avelumab in Relapsed/Refractory Classical Hodgkin Lymphoma: Phase 1b Results from the JAVELIN Hodgkins Trial. Blood Adv. 2021, 5, 3387–3396. [Google Scholar] [CrossRef]
- Rossi, C.; Gilhodes, J.; Maerevoet, M.; Herbaux, C.; Morschhauser, F.; Brice, P.; Garciaz, S.; Borel, C.; Ysebaert, L.; Obéric, L.; et al. Efficacy of Chemotherapy or Chemo-Anti-PD-1 Combination after Failed Anti-PD-1 Therapy for Relapsed and Refractory Hodgkin Lymphoma: A Series from Lysa Centers. Am. J. Hematol. 2018, 93, 1042–1049. [Google Scholar] [CrossRef]
- Carreau, N.A.; Diefenbach, C.S. Immune Targeting of the Microenvironment in Classical Hodgkin’s Lymphoma: Insights for the Hematologist. Ther. Adv. Hematol. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Casadei, B.; Argnani, L.; Morigi, A.; Lolli, G.; Broccoli, A.; Pellegrini, C.; Nanni, L.; Stefoni, V.; Coppola, P.E.; Carella, M.; et al. Effectiveness of Chemotherapy after Anti-PD-1 Blockade Failure for Relapsed and Refractory Hodgkin Lymphoma. Cancer Med. 2020, 9, 7830. [Google Scholar] [CrossRef] [PubMed]
- ADCETRIS® (Brentuximab Vedotin)—Seagen. Available online: https://www.seagen.com/medicines/adcetris (accessed on 21 March 2024).
- Straus, D.J.; Długosz-Danecka, M.; Connors, J.M.; Alekseev, S.; Illés, Á.; Picardi, M.; Lech-Maranda, E.; Feldman, T.; Smolewski, P.; Savage, K.J.; et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Classical Hodgkin Lymphoma (ECHELON-1): 5-Year Update of an International, Open-Label, Randomised, Phase 3 Trial. Lancet Haematol. 2021, 8, e410–e421. [Google Scholar] [CrossRef] [PubMed]
- Ramchandren, R.; Advani, R.H.; Ansell, S.M.; Bartlett, N.L.; Chen, R.; Connors, J.M.; Feldman, T.; Forero-Torres, A.; Friedberg, J.W.; Gopal, A.K.; et al. Brentuximab Vedotin plus Chemotherapy in North American Subjects with Newly Diagnosed Stage III or IV Hodgkin Lymphoma. Clin. Cancer Res. 2019, 25, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Suri, A.; Mould, D.R.; Song, G.; Collins, G.P.; Endres, C.J.; Gomez-Navarro, J.; Venkatakrishnan, K. Population Pharmacokinetic Modeling and Exposure-Response Assessment for the Antibody-Drug Conjugate Brentuximab Vedotin in Hodgkin’s Lymphoma in the Phase III ECHELON-1 Study. Clin. Pharmacol. Ther. 2019, 106, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Xia, Y.; Liu, P.; Zhang, Y.; Zou, Q.; Cai, J. Real-World Study Evaluating the Efficacy of Frontline Brentuximab Vedotin Plus Chemotherapy in Newly Diagnosed Patients with Hodgkin Lymphoma: A Retrospective Analysis. Blood 2022, 140, 12035–12036. [Google Scholar] [CrossRef]
- Ansell, S.M.; Radford, J.; Connors, J.M.; Długosz-Danecka, M.; Kim, W.-S.; Gallamini, A.; Ramchandren, R.; Friedberg, J.W.; Advani, R.; Hutchings, M.; et al. Overall Survival with Brentuximab Vedotin in Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2022, 387, 310–320. [Google Scholar] [CrossRef]
- Fornecker, L.M.; Lazarovici, J.; Aurer, I.; Casasnovas, R.O.; Gac, A.C.; Bonnet, C.; Bouabdallah, K.; Feugier, P.; Specht, L.; Molina, L.; et al. Brentuximab Vedotin Plus AVD for First-Line Treatment of Early-Stage Unfavorable Hodgkin Lymphoma (BREACH): A Multicenter, Open-Label, Randomized, Phase II Trial. J. Clin. Oncol. 2023, 41, 327–335. [Google Scholar] [CrossRef]
- Abramson, J.S.; Bengston, E.; Redd, R.; Barnes, J.A.; Takvorian, T.; Sokol, L.; Lansigan, F.; Armand, P.; Shah, B.; Jacobsen, E.; et al. Brentuximab Vedotin plus Doxorubicin and Dacarbazine in Nonbulky Limited-Stage Classical Hodgkin Lymphoma. Blood Adv. 2023, 7, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Casulo, C.; Advani, R.H.; Budde, E.; Barr, P.M.; Batlevi, C.L.; Caron, P.; Constine, L.S.; Dandapani, S.V.; Drill, E.; et al. Brentuximab Vedotin Combined with Chemotherapy in Patients with Newly Diagnosed Early-Stage, Unfavorable-Risk Hodgkin Lymphoma. J. Clin. Oncol. 2021, 39, 2257–2265. [Google Scholar] [CrossRef]
- Rubinstein, P.G.; Moore, P.C.; Rudek, M.A.; Henry, D.H.; Ramos, J.C.; Ratner, L.; Reid, E.; Sharon, E.; Noy, A. Brentuximab Vedotin with AVD Shows Safety, in the Absence of Strong CYP3A4 Inhibitors, in Newly Diagnosed HIV-Associated Hodgkin Lymphoma. Aids 2018, 32, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, P.G.; Moore, P.C.; Bimali, M.; Lee, J.Y.; Rudek, M.A.; Chadburn, A.; Ratner, L.; Henry, D.H.; Cesarman, E.; DeMarco, C.E.; et al. Brentuximab Vedotin with AVD for Stage II-IV HIV-Related Hodgkin Lymphoma (AMC 085): Phase 2 Results from an Open-Label, Single Arm, Multicentre Phase 1/2 Trial. Lancet Haematol. 2023, 10, e624–e632. [Google Scholar] [CrossRef] [PubMed]
- Gibb, A.; Pirrie, S.J.; Linton, K.; Warbey, V.; Paterson, K.; Davies, A.J.; Collins, G.P.; Menne, T.; McKay, P.; Fields, P.A.; et al. Results of a UK National Cancer Research Institute Phase II Study of Brentuximab Vedotin Using a Response-Adapted Design in the First-Line Treatment of Patients with Classical Hodgkin Lymphoma Unsuitable for Chemotherapy Due to Age, Frailty or Comorbidity (BREVITY). Br. J. Haematol. 2021, 193, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Forero-Torres, A.; Holkova, B.; Goldschmidt, J.; Chen, R.; Olsen, G.; Boccia, R.V.; Bordoni, R.E.; Friedberg, J.W.; Sharman, J.P.; Palanca-Wessels, M.C.; et al. Phase 2 Study of Frontline Brentuximab Vedotin Monotherapy in Hodgkin Lymphoma Patients Aged 60 Years and Older. Blood 2015, 126, 2798–2804. [Google Scholar] [CrossRef] [PubMed]
- Yasenchak, C.A.; Bordoni, R.; Patel-Donnelly, D.; Larson, T.; Goldschmidt, J.; Boccia, R.V.; Cline, V.J.M.; Mamidipalli, A.; Liu, J.; Beck, J.T. Brentuximab Vedotin in Frontline Therapy of Hodgkin Lymphoma in Patients with Significant Comorbidities Ineligible for Standard Chemotherapy (SGN35-015 Part E). Blood 2022, 140, 3685–3686. [Google Scholar] [CrossRef]
- Evens, A.M.; Advani, R.H.; Helenowski, I.B.; Jovanovic, B.D.; Winter, J.N.; Gordon, L.I.; Winte, J.N.; Gordon, L.I.; Smith, S.M.; Fanale, M.; et al. Multicenter Phase II Study of Sequential Brentuximab Vedotin and Doxorubicin, Vinblastine, and Dacarbazine Chemotherapy for Older Patients With Untreated Classical Hodgkin Lymphoma. J. Clin. Oncol. 2018, 36, 3015–3022. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, J.W.; Forero-Torres, A.; Bordoni, R.E.; Cline, V.J.M.; Donnelly, D.P.; Flynn, P.J.; Olsen, G.; Chen, R.; Fong, A.; Wang, Y.; et al. Frontline Brentuximab Vedotin in Combination with Dacarbazine or Bendamustine in Patients Aged ≥ 60 Years with HL. Blood 2017, 130, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
- Evens, A.M.; Connors, J.M.; Younes, A.; Ansell, S.M.; Kim, W.S.; Radford, J.; Feldman, T.; Tuscano, J.; Savage, K.J.; Oki, Y.; et al. Older Patients (Aged ≥ 60 Years) with Previously Untreated Advanced-Stage Classical Hodgkin Lymphoma: A Detailed Analysis from the Phase III ECHELON-1 Study. Haematologica 2022, 107, 1086–1094. [Google Scholar] [CrossRef]
- Eichenauer, D.A.; Plütschow, A.; Kreissl, S.; Sökler, M.; Hellmuth, J.C.; Meissner, J.; Mathas, S.; Topp, M.S.; Behringer, K.; Klapper, W.; et al. Incorporation of Brentuximab Vedotin into First-Line Treatment of Advanced Classical Hodgkin’s Lymphoma: Final Analysis of a Phase 2 Randomised Trial by the German Hodgkin Study Group. Lancet Oncol. 2017, 18, 1680–1687. [Google Scholar] [CrossRef]
- Borchmann, P.; Moccia, A.A.; Greil, R.; Schneider, G.; Hertzberg, M.; Schaub, V.; Hüttmann, A.; Keil, F.; Dierlamm, J.; Hänel, M.; et al. Brecadd is non-inferior to ebeacopp in patients with advanced stage classical hodgkin lymphoma: Efficacy results of the GHSG Phase III HD21 trial. Hematol. Oncol. 2023, 41, 881–882. [Google Scholar] [CrossRef]
- Bröckelmann, P.J.; Goergen, H.; Keller, U.; Meissner, J.; Ordemann, R.; Halbsguth, T.V.; Sasse, S.; Sökler, M.; Kerkhoff, A.; Mathas, S.; et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial. JAMA Oncol. 2020, 6, 872–880. [Google Scholar] [CrossRef]
- Bröckelmann, P.J.; Bühnen, I.; Meissner, J.; Trautmann-Grill, K.; Herhaus, P.; Halbsguth, T.V.; Schaub, V.; Kerkhoff, A.; Mathas, S.; Bormann, M.; et al. Nivolumab and Doxorubicin, Vinblastine, and Dacarbazine in Early-Stage Unfavorable Hodgkin Lymphoma: Final Analysis of the Randomized German Hodgkin Study Group Phase II NIVAHL Trial. J. Clin. Oncol. 2023, 41, 1193–1199. [Google Scholar] [CrossRef]
- Ramchandren, R.; Domingo-Domènech, E.; Rueda, A.; Trněný, M.; Feldman, T.A.; Lee, H.J.; Provencio, M.; Sillaber, C.; Cohen, J.B.; Savage, K.J.; et al. Nivolumab for Newly Diagnosed Advanced-Stage Classic Hodgkin Lymphoma: Safety and Efficacy in the Phase II CheckMate 205 Study. J. Clin. Oncol. 2019, 37, 1997. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, S.C.; Li, H.; Herrera, A.F.; Leblanc, M.; Ahmed, S.; Davison, K.L.; Casulo, C.; Bartlett, N.L.; Tuscano, J.M.; Hess, B.; et al. Nivolumab-AVD Is Better Tolerated and Improves Progression-Free Survival Compared to Bv-AVD in Older Patients (Aged ≥ 60 Years) with Advanced Stage Hodgkin Lymphoma Enrolled on SWOG S1826. Blood 2023, 142, 181. [Google Scholar] [CrossRef]
- Allen, P.B.; Savas, H.; Evens, A.M.; Advani, R.H.; Palmer, B.; Pro, B.; Karmali, R.; Mou, E.; Bearden, J.; Dillehay, G.; et al. Pembrolizumab Followed by AVD in Untreated Early Unfavorable and Advanced-Stage Classical Hodgkin Lymphoma. Blood 2021, 137, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.B.; Lu, X.; Chen, Q.; O’Shea, K.; Chmiel, J.S.; Slonim, L.B.; Sukhanova, M.; Savas, H.; Evens, A.M.; Advani, R.; et al. Sequential Pembrolizumab and AVD Are Highly Effective at Any PD-L1 Expression Level in Untreated Hodgkin Lymphoma. Blood Adv. 2023, 7, 2670–2676. [Google Scholar] [CrossRef]
- Lynch, R.C.; Ujjani, C.S.; Poh, C.; Warren, E.H.; Smith, S.D.; Shadman, M.; Till, B.; Raghunathan, V.M.; Alig, S.; Alizadeh, A.A.; et al. Concurrent Pembrolizumab with AVD for Untreated Classic Hodgkin Lymphoma. Blood 2023, 141, 2576–2586. [Google Scholar] [CrossRef]
- Cheson, B.D.; Bartlett, N.L.; LaPlant, B.; Lee, H.J.; Advani, R.J.; Christian, B.; Diefenbach, C.S.; Feldman, T.A.; Ansell, S.M. Brentuximab Vedotin plus Nivolumab as First-Line Therapy in Older or Chemotherapy-Ineligible Patients with Hodgkin Lymphoma (ACCRU): A Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2020, 7, e808–e815. [Google Scholar] [CrossRef]
- Friedberg, J.W.; Bordoni, R.; Patel-Donnelly, D.; Larson, T.; Goldschmidt, J.; Boccia, R.; Cline, V.J.M.; Mamidipalli, A.; Liu, J.; Akyol, A.; et al. Brentuximab Vedotin with Dacarbazine or Nivolumab as Frontline CHL Therapy for Older Patients Ineligible for Chemotherapy. Blood 2024, 143, 786–795. [Google Scholar] [CrossRef]
- Park, S.I.; Ansell, S.M.; Giri, S.; Svoboda, J.; Smith, S.D.; Feldman, T.; Budde, E.L.; Ness, A.J.; Choi, Y.; Bierman, P.J.; et al. Frontline PET-Directed Therapy with Brentuximab Vedotin Plus AVD Followed By Nivolumab Consolidation in Patients with Limited Stage Hodgkin Lymphoma. Blood 2022, 140, 1751–1752. [Google Scholar] [CrossRef]
- Abramson, J.S.; Straus, D.J.; Bartlett, N.L.; Burke, J.M.; Lynch, R.C.; Domingo Domenech, E.; Hess, B.; Schuster, S.R.; Linhares, Y.; Ramchandren, R.; et al. Brentuximab Vedotin, Nivolumab, Doxorubicin, and Dacarbazine (AN+AD) for Early-Stage Classical Hodgkin Lymphoma (SGN35-027 Part C). Blood 2023, 142, 611. [Google Scholar] [CrossRef]
- Lee, H.J.; Flinn, I.W.; Melear, J.; Ramchandren, R.; Friedman, J.; Burke, J.M.; Linhares, Y.; Gonzales, P.A.; Raval, M.; Chintapatla, R.; et al. Brentuximab Vedotin, Nivolumab, Doxorubicin, and Dacarbazine for Advanced Stage Classical Hodgkin Lymphoma: Efficacy and Safety Results from the Single Arm Phase 2 Study. Blood 2023, 142, 608. [Google Scholar] [CrossRef]
- Flynn, M.J.; Hartley, J.A. The Emerging Role of Anti-CD25 Directed Therapies as Both Immune Modulators and Targeted Agents in Cancer. Br. J. Haematol. 2017, 179, 20–35. [Google Scholar] [CrossRef]
- Facciabene, A.; Motz, G.T.; Coukos, G. T Regulatory Cells: Key Players in Tumor Immune Escape and Angiogenesis. Cancer Res. 2012, 72, 2162. [Google Scholar] [CrossRef]
- Zammarchi, F.; Havenith, K.; Bertelli, F.; Vijayakrishnan, B.; Chivers, S.; van Berkel, P.H. CD25-Targeted Antibody-Drug Conjugate Depletes Regulatory T Cells and Eliminates Established Syngeneic Tumors via Antitumor Immunity. J. Immunother. Cancer 2020, 8, e000860. [Google Scholar] [CrossRef]
- Dyczkowski, J.; Herrera, A.F.; Carlo-Stella, C.; Zinzani, P.L.; Toukam, M.; Cruz, H.G.; Havenith, K.; Boni, J.; Wuerthner, J.; Pantano, S. CD25, Soluble CD25, and CCL17 As Potential Predictors of Clinical Response to Camidanlumab Tesirine in Patients with Relapsed/Refractory Classical Hodgkin Lymphoma. Blood 2022, 140, 9306–9308. [Google Scholar] [CrossRef]
- Hamadani, M.; Collins, G.P.; Caimi, P.F.; Samaniego, F.; Spira, A.; Davies, A.; Radford, J.; Menne, T.; Karnad, A.; Zain, J.M.; et al. Camidanlumab Tesirine in Relapsed/Refractory Lymphoma: A Phase 1, Multicenter, Open-Label, Dose-Escalation, Dose-Expansion Study. Lancet Haematol. 2021, 8, e433. [Google Scholar] [CrossRef]
- Herrera, A.F.; Ansell, S.M.; Zinzani, P.L.; Radford, J.; Maddocks, K.J.; Pinto, A.; Collins, G.P.; Bachanova, V.; Bartlett, N.L.; Bence-Bruckler, I.; et al. Exploratory Analysis of Factors Influencing Efficacy and Safety of Camidanlumab Tesirine: Data from the Open-Label, Multicenter, Phase 2 Study of Patients with Relapsed or Refractory Classical Hodgkin Lymphoma (R/R CHL). Blood 2022, 140, 3673–3677. [Google Scholar] [CrossRef]
- Carlo-Stella, C.; Ansell, S.; Zinzani, P.L.; Radford, J.; Maddocks, K.; Pinto, A.; Collins, G.P.; Bachanova, V.; Bartlett, N.; Bence-Bruckler, I.; et al. S201: Camidanlumab tesirine: Updated efficacy and safety in an open-label, multicenter, phase 2 study of patients with relapsed or refractory classical hodgkin lymphoma (R/R CHL). Hemasphere 2022, 6, 102–103. [Google Scholar] [CrossRef]
- Himed, S.; Chung, C.; Dulmage, B.; Jaglowski, S.; Bond, D.; Maddocks, K.; Kaffenberger, B.H. Development of Recalcitrant Cutaneous Eruptions in Patients with Relapsed/Refractory Hodgkin’s Lymphoma Undergoing Treatment with Camidanlumab Tesirine. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e890–e893. [Google Scholar] [CrossRef]
- Jabeen, A.; Huang, S.; Hartley, J.A.; Van Berkel, P.H.; Zammarchi, F. Combination of Camidanlumab Tesirine, a CD25-Targeted ADC, with Gemcitabine Elicits Synergistic Anti-Tumor Activity in Preclinical Tumor Models. Blood 2020, 136, 31–32. [Google Scholar] [CrossRef]
- Rousseau, A.; Parisi, C.; Barlesi, F. Anti-TIGIT Therapies for Solid Tumors: A Systematic Review. ESMO Open 2023, 8, 101184. [Google Scholar] [CrossRef] [PubMed]
- Rui, S.; Kong, X.; Liu, J.; Wang, L.; Wang, X.; Zou, X.; Zheng, X.; Ye, F.; Xu, H.; Li, Z.; et al. The Landscape of TIGIT Target and Clinical Application in Diseases. MedComm Oncol. 2022, 1, e18. [Google Scholar] [CrossRef]
- Yusuf, R.; Jemielita, T.; Marinello, P. Safety and Efficacy of Vibostolimab and Pembrolizumab in Patients with Relapsed or Refractory Hematologic Malignancies: A Multicohort, Open-Label, Phase 2 Study. Blood 2021, 138, 2484. [Google Scholar] [CrossRef]
- Aggarwal, V.; Workman, C.J.; Vignali, D.A.A. LAG-3 as the Third Checkpoint Inhibitor. Nat. Immunol. 2023, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ju, M.; Miao, Y.; Zhao, L.; Xing, L.; Wei, M. Advancement of Anti-LAG-3 in Cancer Therapy. FASEB J. 2023, 37, e23236. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, J.; Lavie, D.; Johnson, N.A.; Avigdor, A.; Borchmann, P.; Andreadis, C.; Bazargan, A.; Gregory, G.P.; Keane, C.; Tzoran, I.; et al. Favezelimab in Combination with Pembrolizumab in Patients with Heavily Pretreated Anti-PD-1-Refractory Classical Hodgkin Lymphoma: Updated Analysis of an Open-Label Phase 1/2 Study. Blood 2023, 142, 4440. [Google Scholar] [CrossRef]
- Johnson, N.A.; Lavie, D.; Borchmann, P.; Gregory, G.P.; Herrera, A.F.; Minuk, L.; Vucinic, V.; Armand, P.; Avigdor, A.; Gasiorowski, R.; et al. Favezelimab in Combination with Pembrolizumab in Patients with Anti-PD-1-Naive Relapsed or Refractory Classical Hodgkin Lymphoma: Updated Analysis of an Open-Label Phase 1/2 Study. Blood 2023, 142, 1693. [Google Scholar] [CrossRef]
- Lavie, D.; Timmerman, J.; García-Sanz, R.; Kim, W.S.; Kim, T.M.; Avigdor, A.; Dierickx, D.; Jagadeesh, D.; Molin, D.L.; Ozcan, M.; et al. Open-Label, Randomized, Phase 3 Study of Coformulated Favezelimab and Pembrolizumab Versus Chemotherapy in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma Refractory to Anti-PD-1 Therapy: Keyform-008. Blood 2023, 142, 3082. [Google Scholar] [CrossRef]
- Jaiswal, S.; Jamieson, C.H.M.; Pang, W.W.; Park, C.Y.; Chao, M.P.; Majeti, R.; Traver, D.; van Rooijen, N.; Weissman, I.L. CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell 2009, 138, 271–285. [Google Scholar] [CrossRef]
- Chao, M.P.; Alizadeh, A.A.; Tang, C.; Myklebust, J.H.; Varghese, B.; Gill, S.; Jan, M.; Cha, A.C.; Chan, C.K.; Tan, B.T.; et al. Anti-CD47 Antibody Synergizes with Rituximab to Promote Phagocytosis and Eradicate Non-Hodgkin Lymphoma. Cell 2010, 142, 699–713. [Google Scholar] [CrossRef] [PubMed]
- López-Pereira, B.; Fernández-Velasco, A.A.; Fernández-Vega, I.; Corte-Torres, D.; Quirós, C.; Villegas, J.A.; Palomo, P.; González, S.; González, A.P.; Payer, Á.; et al. Expression of CD47 Antigen in Reed-Sternberg Cells as a New Potential Biomarker for Classical Hodgkin Lymphoma. Clin. Transl. Oncol. 2020, 22, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Steidl, C.; Lee, T.; Shah, S.P.; Farinha, P.; Han, G.; Nayar, T.; Delaney, A.; Jones, S.J.; Iqbal, J.; Weisenburger, D.D.; et al. Tumor-Associated Macrophages and Survival in Classic Hodgkin’s Lymphoma. N. Engl. J. Med. 2010, 362, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.L.; Scott, D.W.; Hong, F.; Kahl, B.S.; Fisher, R.I.; Bartlett, N.L.; Advani, R.H.; Buckstein, R.; Rimsza, L.M.; Connors, J.M.; et al. Tumor-Associated Macrophages Predict Inferior Outcomes in Classic Hodgkin Lymphoma: A Correlative Study from the E2496 Intergroup Trial. Blood 2012, 120, 3280. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.G.; Vyas, P.; Kambhampati, S.; Al Malki, M.M.; Larson, R.A.; Asch, A.S.; Mannis, G.; Chai-Ho, W.; Tanaka, T.N.; Bradley, T.J.; et al. Tolerability and Efficacy of the Anticluster of Differentiation 47 Antibody Magrolimab Combined with Azacitidine in Patients with Previously Untreated AML: Phase Ib Results. J. Clin. Oncol. 2023, 41, 4893–4904. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; Al Malki, M.M.; Asch, A.S.; Wang, E.S.; Jurcic, J.G.; Bradley, T.J.; Flinn, I.W.; Pollyea, D.A.; Kambhampati, S.; Tanaka, T.N.; et al. Magrolimab in Combination with Azacitidine in Patients with Higher-Risk Myelodysplastic Syndromes: Final Results of a Phase Ib Study. J. Clin. Oncol. 2023, 41, 2815–2826. [Google Scholar] [CrossRef] [PubMed]
- Advani, R.; Flinn, I.; Popplewell, L.; Forero, A.; Bartlett, N.L.; Ghosh, N.; Kline, J.; Roschewski, M.; LaCasce, A.; Collins, G.P.; et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 2018, 379, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Kerbauy, L.N.; Marin, N.D.; Kaplan, M.; Banerjee, P.P.; Berrien-Elliott, M.M.; Becker-Hapak, M.; Basar, R.; Foster, M.; Melo, L.G.; Neal, C.C.; et al. Combining AFM13, a Bispecific CD30/CD16 Antibody, with Cytokine-Activated Blood and Cord Blood-Derived NK Cells Facilitates CAR-like Responses Against CD30+ Malignancies. Clin. Cancer Res. 2021, 27, 3744–3756. [Google Scholar] [CrossRef] [PubMed]
- Pahl, J.H.W.; Koch, J.; Gotz, J.J.; Arnold, A.; Reusch, U.; Gantke, T.; Rajkovic, E.; Treder, M.; Cerwenka, A. CD16A Activation of NK Cells Promotes NK Cell Proliferation and Memory-Like Cytotoxicity against Cancer Cells. Cancer Immunol. Res. 2018, 6, 517–527. [Google Scholar] [CrossRef]
- Moskowitz, A.; Harstrick, A.; Emig, M.; Overesch, A.; Pinto, S.; Ravenstijn, P.; Schlüter, T.; Rubel, J.; Rebscher, H.; Graefe, T.; et al. AFM13 in Combination with Allogeneic Natural Killer Cells (AB-101) in Relapsed or Refractory Hodgkin Lymphoma and CD30 + Peripheral T-Cell Lymphoma: A Phase 2 Study (LuminICE). Blood 2023, 142, 4855. [Google Scholar] [CrossRef]
- Rothe, A.; Sasse, S.; Topp, M.S.; Eichenauer, D.A.; Hummel, H.; Reiners, K.S.; Dietlein, M.; Kuhnert, G.; Kessler, J.; Buerkle, C.; et al. A Phase 1 Study of the Bispecific Anti-CD30/CD16A Antibody Construct AFM13 in Patients with Relapsed or Refractory Hodgkin Lymphoma. Blood 2015, 125, 4024–4031. [Google Scholar] [CrossRef]
- Sasse, S.; Bröckelmann, P.J.; Momotow, J.; Plütschow, A.; Hüttmann, A.; Basara, N.; Koenecke, C.; Martin, S.; Bentz, M.; Grosse-Thie, C.; et al. AFM13 in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma: Final Results of an Open-Label, Randomized, Multicenter Phase II Trial. Leuk. Lymphoma 2022, 63, 1871–1878. [Google Scholar] [CrossRef]
- Bartlett, N.L.; Herrera, A.F.; Domingo-Domenech, E.; Mehta, A.; Forero-Torres, A.; Garcia-Sanz, R.; Armand, P.; Devata, S.; Izquierdo, A.R.; Lossos, I.S.; et al. A Phase 1b Study of AFM13 in Combination with Pembrolizumab in Patients with Relapsed or Refractory Hodgkin Lymphoma. Blood 2020, 136, 2401–2409. [Google Scholar] [CrossRef]
- Chen, R.; Hou, J.; Newman, E.; Kim, Y.; Donohue, C.; Liu, X.; Thomas, S.H.; Forman, S.J.; Kane, S.E. CD30 Downregulation, MMAE Resistance, and MDR1 Upregulation Are All Associated with Resistance to Brentuximab Vedotin. Mol. Cancer Ther. 2015, 14, 1376–1384. [Google Scholar] [CrossRef]
- Reusch, U.; Ellwanger, K.; Fucek, I.; Müller, T.; Schniegler-Mattox, U.; Pahl, J.; Tesar, M.; Koch, J. Cryopreserved CAR-like NK Cells Pre-Complexed with the CD30/CD16A Bispecific Innate Cell Engager (ICE®) AFM13 for the Treatment of CD30 + Malignancies. Blood 2021, 138, 3992. [Google Scholar] [CrossRef]
- Nieto, Y.; Banerjee, P.; Kaur, I.; Griffin, L.; Barnett, M.; Ganesh, C.; Borneo, Z.; Bassett, R.L.; Kerbauy, L.N.; Basar, R.; et al. Innate Cell Engager (ICE®) AFM13 Combined with Preactivated and Expanded (P+E) Cord Blood (CB)-Derived Natural Killer (NK) Cells for Patients with Refractory CD30-Positive Lymphomas: Final Results. Blood 2023, 142, 774. [Google Scholar] [CrossRef]
- Costa, P.M.d.S.; Sales, S.L.A.; Pinheiro, D.P.; Pontes, L.Q.; Maranhão, S.S.; Pessoa, C.d.Ó.; Furtado, G.P.; Furtado, C.L.M. Epigenetic Reprogramming in Cancer: From Diagnosis to Treatment. Front. Cell Dev. Biol. 2023, 11, 1116805. [Google Scholar] [CrossRef]
- Ammerpohl, O.; Haake, A.; Pellissery, S.; Giefing, M.; Richter, J.; Balint, B.; Kulis, M.; Le, J.; Bibikova, M.; Drexler, H.G.; et al. Array-Based DNA Methylation Analysis in Classical Hodgkin Lymphoma Reveals New Insights into the Mechanisms Underlying Silencing of B Cell-Specific Genes. Leukemia 2012, 26, 185–188. [Google Scholar] [CrossRef]
- Kaminskas, E.; Farrell, A.; Abraham, S.; Baird, A.; Hsieh, L.S.; Lee, S.L.; Leighton, J.K.; Patel, H.; Rahman, A.; Sridhara, R.; et al. Approval Summary: Azacitidine for Treatment of Myelodysplastic Syndrome Subtypes. Clin. Cancer Res. 2005, 11, 3604–3608. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- D’Alò, F.; Leone, G.; Hohaus, S.; Teofili, L.; Bozzoli, V.; Tisi, M.C.; Rufini, V.; Calcagni, M.L.; Voso, M.T. Response to 5-Azacytidine in a Patient with Relapsed Hodgkin Lymphoma and a Therapy-Related Myelodysplastic Syndrome. Br. J. Haematol. 2011, 154, 141–143. [Google Scholar] [CrossRef]
- Chiappinelli, K.B.; Strissel, P.L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N.S.; Cope, L.M.; Snyder, A.; et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via DsRNA Including Endogenous Retroviruses. Cell 2015, 162, 974–986. [Google Scholar] [CrossRef]
- Falchi, L.; Sawas, A.; Deng, C.; Amengual, J.E.; Colbourn, D.S.; Lichtenstein, E.A.; Khan, K.A.; Schwartz, L.H.; O’Connor, O.A. High Rate of Complete Responses to Immune Checkpoint Inhibitors in Patients with Relapsed or Refractory Hodgkin Lymphoma Previously Exposed to Epigenetic Therapy. J. Hematol. Oncol. 2016, 9, 132. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Li, X.; Dong, L.; Yang, Q.; Chen, M.; Shi, F.; Brock, M.; Liu, M.; Mei, Q.; et al. Improved Clinical Outcome in a Randomized Phase II Study of Anti-PD-1 Camrelizumab plus Decitabine in Relapsed/Refractory Hodgkin Lymphoma. J. Immunother. Cancer 2021, 9, 2347. [Google Scholar] [CrossRef]
- Mei, M.G.; Chen, L.; Puverel, S.; Budde, L.E.; Kambhampati, S.; Daniels, S.; Dunning, B.; Banez, M.; Kwak, L.W.; Herrera, A.F. The Combination of Nivolumab and CC-486 Is Active in Hodgkin Lymphoma Refractory to PD-1 Blockade. Blood 2023, 142, 1697. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, X.; Sophia, S.; Min, Z.; Liu, X. Clinicopathological Features and Prediction Values of HDAC1, HDAC2, HDAC3, and HDAC11 in Classical Hodgkin Lymphoma. Anticancer Drugs 2018, 29, 364–370. [Google Scholar] [CrossRef]
- Younes, A.; Sureda, A.; Ben-Yehuda, D.; Zinzani, P.L.; Ong, T.C.; Prince, H.M.; Harrison, S.J.; Kirschbaum, M.; Johnston, P.; Gallagher, J.; et al. Panobinostat in Patients with Relapsed/Refractory Hodgkin’s Lymphoma after Autologous Stem-Cell Transplantation: Results of a Phase II Study. J. Clin. Oncol. 2012, 30, 2197–2203. [Google Scholar] [CrossRef]
- Kirschbaum, M.H.; Goldman, B.H.; Zain, J.M.; Cook, J.R.; Rimsza, L.M.; Forman, S.J.; Fisher, R.I. A Phase 2 Study of Vorinostat for Treatment of Relapsed or Refractory Hodgkin Lymphoma: SWOG S0517. Leuk. Lymphoma 2012, 53, 259. [Google Scholar] [CrossRef]
- Janku, F.; Park, H.; Call, S.G.; Madwani, K.; Oki, Y.; Subbiah, V.; Hong, D.S.; Naing, A.; Velez-Bravo, V.M.; Barnes, T.G.; et al. Safety and Efficacy of Vorinostat Plus Sirolimus or Everolimus in Patients with Relapsed Refractory Hodgkin Lymphoma. Clin. Cancer Res. 2020, 26, 5579–5587. [Google Scholar] [CrossRef]
- Chase, A.; Cross, N.C.P. Aberrations of EZH2 in Cancer. Clin. Cancer Res. 2011, 17, 2613–2618. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, Y.; Li, Z.M.; Li, L.; Su, H.; Jin, Z.; Zuo, X.; Wu, J.; Zhou, H.; Li, K.; et al. SHR2554, an EZH2 Inhibitor, in Relapsed or Refractory Mature Lymphoid Neoplasms: A First-in-Human, Dose-Escalation, Dose-Expansion, and Clinical Expansion Phase 1 Trial. Lancet Haematol. 2022, 9, e493–e503. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Tiacci, E.; Ladewig, E.; Schiavoni, G.; Penson, A.; Fortini, E.; Pettirossi, V.; Wang, Y.; Rosseto, A.; Venanzi, A.; Vlasevska, S.; et al. Pervasive Mutations of JAK-STAT Pathway Genes in Classical Hodgkin Lymphoma. Blood 2018, 131, 2454–2465. [Google Scholar] [CrossRef]
- Weniger, M.A.; Melzner, I.; Menz, C.K.; Wegener, S.; Bucur, A.J.; Dorsch, K.; Mattfeldt, T.; Barth, T.F.E.; Möller, P. Mutations of the Tumor Suppressor Gene SOCS-1 in Classical Hodgkin Lymphoma Are Frequent and Associated with Nuclear Phospho-STAT5 Accumulation. Oncogene 2006, 25, 2679–2684. [Google Scholar] [CrossRef]
- Fernández, S.; Solórzano, J.L.; Díaz, E.; Menéndez, V.; Maestre, L.; Palacios, S.; López, M.; Colmenero, A.; Estévez, M.; Montalbán, C.; et al. JAK/STAT Blockade Reverses the Malignant Phenotype of Hodgkin and Reed-Sternberg Cells. Blood Adv. 2023, 7, 4135–4147. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, D.H.; Kang, H.J.; Hong, J.Y.; Lee, H.S.; Oh, S.Y.; Shin, H.J.; Kong, J.H.; Yi, J.H.; Sakamoto, K.; et al. Ruxolitinib Shows Activity against Hodgkin Lymphoma but Not Primary Mediastinal Large B-Cell Lymphoma. BMC Cancer 2019, 19, 1080. [Google Scholar] [CrossRef]
- Van Den Neste, E.; André, M.; Gastinne, T.; Stamatoullas, A.; Haioun, C.; Belhabri, A.; Reman, O.; Casasnovas, O.; Ghesquieres, H.; Verhoef, G.; et al. A Phase II Study of the Oral JAK1/JAK2 Inhibitor Ruxolitinib in Advanced Relapsed/Refractory Hodgkin Lymphoma. Haematologica 2018, 103, 840–848. [Google Scholar] [CrossRef]
- Gillessen, S.; Pluetschow, A.; Vucinic, V.; Ostermann, H.; Kobe, C.; Bröckelmann, P.J.; Böll, B.; Eichenauer, D.A.; Heger, J.M.; Borchmann, S.; et al. JAK Inhibition with Ruxolitinib in Relapsed or Refractory Classical Hodgkin Lymphoma: Final Results of a Phase II, Open Label, Multicentre Clinical Trial (JeRiCHO). Eur. J. Haematol. 2022, 109, 728–735. [Google Scholar] [CrossRef]
- Bachanova, V.; Hegerova, L.; Cao, Q.; Janakiram, M.; Maakaron, J.; Ayyappan, S.; Weisdorf, D.J.; Zak, J.; Farooq, U.; Kenkre, V.P. Ruxolitinib Plus Nivolumab in Patients with R/R Hodgkin Lymphoma after Failure of Check-Point Inhibitors: Preliminary Report on Safety and Efficacy. Blood 2021, 138, 230. [Google Scholar] [CrossRef]
- Svoboda, J.; Barta, S.K.; Landsburg, D.J.; Dwivedy Nasta, S.; Hwang, W.-T.; Delp, G.; Amundsen, B.; Ballard, H.J.; Gerson, J.N.; Chong, E.A.; et al. Everolimus Plus Itacitinib in Relapsed/Refractory Classical Hodgkin Lymphoma: Results of a Phase I/II Investigator Initiated Trial (EVITA Study). Blood 2020, 136, 20–21. [Google Scholar] [CrossRef]
- Cappell, K.M.; Kochenderfer, J.N. Long-Term Outcomes Following CAR T Cell Therapy: What We Know so Far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef]
- Benevolo Savelli, C.; Clerico, M.; Botto, B.; Secreto, C.; Cavallo, F.; Dellacasa, C.; Busca, A.; Bruno, B.; Freilone, R.; Cerrano, M.; et al. Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions. Cancers 2023, 16, 46. [Google Scholar] [CrossRef]
- Wang, C.M.; Wu, Z.Q.; Wang, Y.; Guo, Y.L.; Dai, H.R.; Wang, X.H.; Li, X.; Zhang, Y.J.; Zhang, W.Y.; Chen, M.X.; et al. Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase I Trial. Clin. Cancer Res. 2017, 23, 1156–1166. [Google Scholar] [CrossRef]
- Ramos, C.A.; Grover, N.S.; Beaven, A.W.; Lulla, P.D.; Wu, M.F.; Ivanova, A.; Wang, T.; Shea, T.C.; Rooney, C.M.; Dittus, C.; et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J. Clin. Oncol. 2020, 38, 3794–3804. [Google Scholar] [CrossRef]
- Ahmed, S.; Flinn, I.W.; Mei, M.; Riedell, P.A.; Armand, P.; Grover, N.S.; Balyan, R.; Ding, C.; Myo, A.; Horak, I.D.; et al. Updated Results and Correlative Analysis: Autologous CD30.CAR-T-Cell Therapy in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma (CHARIOT Trial). Blood 2022, 140, 7496–7497. [Google Scholar] [CrossRef]
- Voorhees, T.J.; Zhao, B.; Oldan, J.; Hucks, G.; Khandani, A.; Dittus, C.; Smith, J.; Morrison, J.K.; Cheng, C.J.; Ivanova, A.; et al. Pretherapy Metabolic Tumor Volume Is Associated with Response to CD30 CAR T Cells in Hodgkin Lymphoma. Blood Adv. 2022, 6, 1255–1263. [Google Scholar] [CrossRef]
- Voorhees, T.J.; Beaven, A.W.; Dittus, C.; Hucks, G.E.; Morrison, J.K.; Cheng, C.J.A.; Cavallo, T.; Park, S.I.; Dotti, G.; Serody, J.S.; et al. Clinical Activity of Anti-PD-1 Therapy Following CD30 CAR-T Cell Therapy in Relapsed Hodgkin Lymphoma. Blood 2022, 140, 12723–12724. [Google Scholar] [CrossRef]
- Dave, H.; Terpilowski, M.; Mai, M.; Toner, K.; Grant, M.; Stanojevic, M.; Lazarski, C.; Shibli, A.; Bien, S.A.; Maglo, P.; et al. Tumor-Associated Antigen-Specific T Cells with Nivolumab Are Safe and Persist in Vivo in Relapsed/Refractory Hodgkin Lymphoma. Blood Adv. 2022, 6, 473–485. [Google Scholar] [CrossRef]
- Jones, R.J.; Gocke, C.D.; Kasamon, Y.L.; Miller, C.B.; Perkins, B.; Barber, J.P.; Vala, M.S.; Gerber, J.M.; Gellert, L.L.; Siedner, M.; et al. Circulating Clonotypic B Cells in Classic Hodgkin Lymphoma. Blood 2009, 113, 5920–5926. [Google Scholar] [CrossRef]
- Beatty, G.L.; Haas, A.R.; Maus, M.V.; Torigian, D.A.; Soulen, M.C.; Plesa, G.; Chew, A.; Zhao, Y.; Levine, B.L.; Albelda, S.M.; et al. Mesothelin-Specific Chimeric Antigen Receptor MRNA-Engineered T Cells Induce Anti-Tumor Activity in Solid Malignancies. Cancer Immunol. Res. 2014, 2, 112–120. [Google Scholar] [CrossRef]
- Svoboda, J.; Rheingold, S.R.; Gill, S.I.; Grupp, S.A.; Lacey, S.F.; Kulikovskaya, I.; Suhoski, M.M.; Joseph Melenhorst, J.; Loudon, B.; Mato, A.R.; et al. Nonviral RNA Chimeric Antigen Receptor-Modified T Cells in Patients with Hodgkin Lymphoma. Blood 2018, 132, 1022–1026. [Google Scholar] [CrossRef]
Title | Identifier | Phase | Regimen |
---|---|---|---|
Nivolumab and Brentuximab Vedotin in Treating Older Patients With Untreated Hodgkin Lymphoma | NCT02758717 | Phase II | BV + N |
PET Adapted Brentuximab Vedotin and Pembrolizumab in Combination With Doxorubicin and Dacarbazine in Classic Hodgkin Lymphoma | NCT05922904 | Phase II | P + BV + AD |
A Frontline Therapy Trial in Participants With Advanced Classical Hodgkin Lymphoma | NCT01712490 | Phase III | BV + AVD vs. ABVD |
Clinical Trial of Brentuximab Vedotin in Classical Hodgkin Lymphoma | NCT03646123 | Phase II | BV + AVD or BV + N + VD |
Fitness-adapted, Pembrolizumab-based Therapy for Untreated Classical Hodgkin Lymphoma Patients 60 Years of Age and Above | NCT05404945 | Phase II | P + AVD vs. P + BV |
Brentuximab Vedotin and Combination Chemotherapy in Treating Patients With Stage II–IV HIV-Associated Hodgkin Lymphoma | NCT01771107 | Phase I–II | BV + AVD |
Brentuximab Vedotin in Early Stage Hodgkin Lymphoma (RADAR) | NCT04685616 | Phase III | BV + AVD vs. PET adapted ABVD ± RT |
Doxorubicin, Vinblastine, Dacarbazine, Brentuximab Vedotin, and Nivolumab in Treating Patients With Stage I-II Hodgkin Lymphoma | NCT03233347 | Phase II | BV + N + AVD |
Very Early PET-response Adapted Targeted Therapy for Advanced Hodgkin Lymphoma: a Single-Arm Phase II Study (COBRA) | NCT03517137 | Phase II | BV + AVD ± BrECADD |
HD21 for Advanced Stages | NCT02661503 | Phase III | BrECADD vs. BEACOPP |
Immunotherapy (Nivolumab or Brentuximab Vedotin) Plus Combination Chemotherapy in Treating Patients With Newly Diagnosed Stage III–IV Classic Hodgkin Lymphoma | NCT03907488 | Phase III | BV-AVD vs. N-AVD |
A Study to Compare Standard Therapy to Treat Hodgkin Lymphoma to the Use of Two Drugs, Brentuximab Vedotin and Nivolumab | NCT05675410 | Phase III | BV and N + standard chemotherapy |
A(B)VD Followed by Nivolumab as Frontline Therapy for Higher Risk Patients With Classical Hodgkin Lymphoma (HL) | NCT03033914 | Phase I–II | ABVD + N |
Lowdose Nivolumab in Combination With AVD as Front Line Therapy for Classic Hodgkin’s Lymphoma | NCT05772624 | Phase II | AVD + Low dose N |
Pembrolizumab in First-Line Treatment of Advanced-Stage Classical Hodgkin Lymphoma (Pembro-FLASH) | NCT06045195 | Phase II | P-EACOPP |
A Phase II Study to Determine Pembrolizumab as Frontline Treatment of Patients With Hodgkin Lymphoma (PLIMATH) | NCT03331731 | Phase II | P |
Fitness-adapted, Pembrolizumab-based Therapy for Untreated Classical Hodgkin Lymphoma Patients 60 Years of Age and Above | NCT05404945 | Phase II | P + AVD vs. BV + P |
Study of Pembrolizumab With Bendamustine in Hodgkin Lymphoma | NCT04510636 | Phase II | P + Bendamustine |
Study of Safety and Efficacy of Pembrolizumab and Chemotherapy in Participants With Newly Diagnosed Classical Hodgkin Lymphoma (cHL) (MK-3475-C11/KEYNOTE-C11) | NCT05008224 | Phase II | Sequential P + chemotherapy |
Doxorubicin Hydrochloride, Pembrolizumab, Vinblastine, and Dacarbazine in Treating Patients With Classical Hodgkin Lymphoma | NCT03331341 | Phase II | P + AVD |
Pembrolizumab Followed by Chemotherapy for the Treatment of Patients With Classical Hodgkin Lymphoma | NCT06164275 | Phase II | P + AVD |
PET-Directed Therapy With Pembrolizumab and Combination Chemotherapy in Treating Patients With Previously Untreated Classical Hodgkin Lymphoma | NCT03226249 | Phase II | P + AVD |
Title | Identifier | Phase | Regimen | Mechanism of Action |
---|---|---|---|---|
A Study of Coformulated Favezelimab/Pembrolizumab (MK-4280A) Versus Physician’s Choice Chemotherapy in PD-(L)1-refractory, Relapsed or Refractory Classical Hodgkin Lymphoma (MK-4280A-008) | NCT05508867 | Phase III | Favezelimab + Pembrolizumab vs. Physician’s choice | Anti-LAG-3 + anti-PD1 |
Study to Evaluate the Safety and Efficacy of a Combination of Favezelimab (MK-4280) and Pembrolizumab (MK-3475) in Participants With Hematologic Malignancies (MK-4280-003) | NCT03598608 | Phase I–II | Favezelimab + Pembrolizumab | Anti-LAG-3 + anti-PD1 |
Phase 2 Study of AFM13 in Combination With AB-101 in Subjects With R/R HL and CD30+ PTCL | NCT05883449 | Phase II | AFM13 + AB101 | CD30xCD16a bsAbs |
Modified Immune Cells (AFM13-NK) and A Monoclonal Antibody (AFM13) in Treating Patients With Recurrent or Refractory CD30 Positive Hodgkin or Non-Hodgkin Lymphomas | NCT04074746 | Phase I–II | AFM13-NK | Cord blood natural killer cells + AFM13 |
A Study of Pembrolizumab/Vibostolimab (MK-7684A) in Relapsed/Refractory Hematological Malignancies (MK-7684A-004, KEYVIBE-004) | NCT05005442 | Phase II | Vibostolimab + Pembrolizumab | Anti-TIGIT + anti-PD1 |
Nivolumab With Ruxolitinib in Relapsed or Refractory Classical Hodgkin Lymphoma | NCT03681561 | Phase I–II | Ruxolitinib + Nivolumab | JAK inhibitor + anti-PD1 |
A Study to Evaluate the Efficacy and Safety of a Sintilimab Plus ICE Regimen Versus ICE Regimen in Classic Hodgkin’s Lymphoma Patients (cHL) Who Have Failed First-line Standard Chemotherapy | NCT04044222 | Phase III | Sintilimab + ICE vs. ICE | Anti-PD1 + Chemotherapy |
Tislelizumab in Participants With Relapsed or Refractory Classical Hodgkin Lymphoma | NCT04318080 | Phase II | Tislelizumab | Anti-PD1 |
Tislelizumab, Gemcitabine and Cisplatin for R/R Hodgkin Lymphoma Followed by Tislelizumab Consolidation in Patients in Metabolic Complete Remission | NCT05502250 | Phase II | Tislelizumab + Gemcitabine + Cisplatin | Anti-PD1 + Chemotherapy |
Tislelizumab Monotherapy Versus Salvage Chemotherapy for Relapsed/Refractory Classical Hodgkin Lymphoma | NCT04486391 | Phase III | Tislelizumab vs. chemotherapy | Anti-PD1 |
PD-1 Inhibitor Combined With Decitabine Followed by ASCT as Second-line Therapy for Relapsed or Refractory Classic Hodgkin’s Lymphoma | NCT05137886 | Phase II | Anti-PD1 + Azacitidine followed by ASCT | Anti-PD1 + hypomethylating agent |
Study of Magrolimab and Pembrolizumab in Relapsed or Refractory Classic Hodgkin Lymphoma | NCT04788043 | Phase II | Magrolimab + Pembrolizumab | Anti-CD47 + anti PD1 |
CC-486 and Nivolumab for the Treatment of Hodgkin Lymphoma Refractory to PD-1 Therapy or Relapsed | NCT05162976 | Phase I | CC-486 (oral azacitidine) + Nivolumab | hypomethylating agent + anti-PD1 |
SHR1701 Alone or in Combination With SHR2554 in Relapsed or Refractory Classical Hodgkin Lymphoma | NCT05896046 | Phase I–II | SHR1701 or SHR2554 + SHR1701 | Anti-PDL1 with or without EZH2 inhibitor |
Pembrolizumab and Vorinostat in Patients With Relapsed or Refractory DLBCL, FCL or HL. | NCT03150329 | Phase I | Pembrolizumab + Vorinostat | HDACi + anti-PD1 |
Addition of Chidamide to the Combination Treatment of Decitabine Plus Camrelizumab in Combination Treatment Resistant/Relapsed Patients With Classical Hodgkin Lymphoma | NCT04233294 | Phase II | Tucidinostat + Azacitidine + Camrelizumab | HDACi + hypometilating agent + anti-PD1 |
The Clinical Trial of Chidamide +Decitabine +Camrelizumab Versus Decitabine+Camrelizumab in Anti-PD-1 Antibody Resistant Patients With Classical Hodgkin Lymphoma. | NCT04514081 | Phase II | Tucidinostat + Azacitidine + Camrelizumab vs. Azacitidine + Camrelizumab | HDACi + hypometilating agent + anti-PD1 |
A Phase II Study of the Combination of Azacitidine and Pembrolizumab for Patients Relapsed/Refractory Hodgkin’s Lymphoma | NCT05355051 | Phase II | Azacitidine + Pembrolizumab | Hypometilating agent + anti-PD1 |
Azacitidine Plus PD-1 Therapy for R/R Hodgkin Lymphoma | NCT06190067 | Phase II | Azacitidine + anti PD1 | Hypometilating agent + anti-PD1 |
SHR-1210 Alone or in Combination With Decitabine in Relapsed or Refractory Hodgkin Lymphoma | NCT03250962 | Phase II | SHR-1210 + Decitabine | Hypometilating agent + anti-PD1 |
Camrelizumab Plus Decitabine in Anti-PD-1 Treatment-nïive Patients With Relapsed/Refractory Classical Hodgkin Lymphoma | NCT04510610 | Phase II–III | Camrelizumab + Decitabine | Hypometilating agent + anti-PD1 |
PD-1 Inhibitor Combined With Decitabine Followed by ASCT as Second-line Therapy for Relapsed or Refractory Classic Hodgkin’s Lymphoma | NCT05137886 | Phase II | Anti PD1 + Decitabine + ASCT | Hypometilating agent + anti-PD1 |
Itacitinib + Everolimus in Hodgkin Lymphoma | NCT03697408 | Phase I–II | Itacitinib + Everolimus | JAK1 inhibitor + mTOR inhibitor |
CD30 CAR T Cells, Relapsed CD30 Expressing Lymphoma (RELY-30) | NCT02917083 | Phase I | CAR T-cells | CD30 CAR T-cells |
A Multicenter Clinical Study on the Safety and Effectiveness of CAR-T in the Treatment of Relapsed/Refractory Hodgkin’s Lymphoma | NCT04665063 | Not applicable | CAR T-cells | CD30 CAR T-cells |
Phase 2 Study Evaluating Autologous CD30.CAR-T Cells in Patients With Relapsed/Refractory Hodgkin Lymphoma (CHARIOT) | NCT04268706 | Phase II | CAR T cells | CD30 CAR T-cells |
Autologous CD30.CAR-T in Combination With Nivolumab in cHL Patients After Failure of Frontline Therapy | NCT05352828 | Phase I | CAR T-cells + Nivolumab | CD30 CAR T-cells + anti-PD1 |
Allogeneic CD30.CAR-EBVSTs in Patients With Relapsed or Refractory CD30-Positive Lymphomas | NCT04288726 | Phase I | CAR T-cells | Allogeneic CD30 EBV-specific CAR T-cells |
Allogeneic CD30 Chimeric Antigen Receptor Epstein-Barr Virus-Specific T Lymphocytes in Relapsed or Refractory CD30-Positive Lymphomas | NCT04952584 | Phase I | CAR T-cells | Allogeneic CD30 EBV-specific CAR T-cells |
Study of PD-1 Inhibitors After CD30.CAR T Cell Therapy in Relapsed/Refractory Hodgkin Lymphoma | NCT04134325 | Early Phase I | Anti-PD1 | Anti-PD1 after CD30 CAR T-cells |
Constitutive IL7R (C7R) Modified Banked Allogeneic CD30.CAR EBVSTs for CD30-Positive Lymphomas | NCT06176690 | Phase I | CAR T-cells | Allogeneic CD30 EBV-specific CAR T-cells |
CD30 Targeted CAR-T in Treating CD30-Expressing Lymphomas | NCT03383965 | Phase I | CAR T-cells | CD30 CAR T-cells |
CD30-directed Chimeric Antigen Receptor T (CART30) Therapy in Relapsed and Refractory CD30 Positive Lymphomas | NCT02259556 | Phase I–II | CAR T-cells | CD30 CAR T-cells |
Study of CD30 CAR for Relapsed/Refractory CD30+ HL and CD30+ NHL | NCT02690545 | Phase I–II | CAR T-cells | CD30 CAR T-cells |
Administration of T Lymphocytes for Prevention of Relapse of Lymphomas | NCT02663297 | Phase I | CAR T-cells | CD30 CAR T-cells |
ATLCAR.CD30.CCR4 for CD30+ HL ATLCAR.CD30.CCR4 Cells | NCT06090864 | Phase I–II | CAR T-cells | CD30 and CCR4 CAR T-cells |
Study of CAR-T Cells Expressing CD30 and CCR4 for r/r CD30+ HL and CTCL | NCT03602157 | Phase I | CAR T-cells | CD30 and CCR4 CAR T-cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benevolo Savelli, C.; Bisio, M.; Legato, L.; Fasano, F.; Santambrogio, E.; Nicolosi, M.; Morra, D.; Boccomini, C.; Freilone, R.; Botto, B.; et al. Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice. Cancers 2024, 16, 1830. https://doi.org/10.3390/cancers16101830
Benevolo Savelli C, Bisio M, Legato L, Fasano F, Santambrogio E, Nicolosi M, Morra D, Boccomini C, Freilone R, Botto B, et al. Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice. Cancers. 2024; 16(10):1830. https://doi.org/10.3390/cancers16101830
Chicago/Turabian StyleBenevolo Savelli, Corrado, Matteo Bisio, Luca Legato, Filippo Fasano, Elisa Santambrogio, Maura Nicolosi, Deborah Morra, Carola Boccomini, Roberto Freilone, Barbara Botto, and et al. 2024. "Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice" Cancers 16, no. 10: 1830. https://doi.org/10.3390/cancers16101830
APA StyleBenevolo Savelli, C., Bisio, M., Legato, L., Fasano, F., Santambrogio, E., Nicolosi, M., Morra, D., Boccomini, C., Freilone, R., Botto, B., & Novo, M. (2024). Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice. Cancers, 16(10), 1830. https://doi.org/10.3390/cancers16101830