FLT3-Mutated Leukemic Stem Cells: Mechanisms of Resistance and New Therapeutic Targets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Mechanisms of Resistance of FLT3mut LSC
2.2. Immunophenotype of FLT3mut LSC
2.3. LSC Metabolism of FLT3mut LSC
2.4. Gene Expression of FLT3mut LSC
2.5. Interaction of FLT3mut LSC with Stroma
2.6. New Approaches to Treatment of FLT3mut LSC Resistance
2.7. Immunotherapy
- −
- Armored CAR-T, characterized by the addition of a cytokine release mechanism, with potential increased efficacy and toxicity (fourth generation CAR-T);
- −
- Multispecific CAR-T with tandem, split, or inducible antigen recognition, the former characterized by increased efficacy and toxicity, the latter by increased specificity and susceptibility to escape.
2.8. New Technologies
3. Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Antibody drug conjugate. |
AXL | Anexelekto. |
BiTEs | Bispecific T cell engager molecules. |
CAR-T | Chimeric antigen receptor T cells. |
DHODH | Dihydroorotate dehydrogenase. |
FLT3i | FLT3 inhibitors. |
FLT3mut | FLT3 mutated AMLs. |
GSK3 | Glycogen synthase kinase 3. |
HSC | Hematopoietic stem cell. |
H3K9 | Hystone 3 Lysin 9. |
IGF2 | Insulin-like growth factor 2. |
LAIR-1 | Leukocyte-associated immunoglobulin-like receptor-1. |
LSC | Leukemic stem cell. |
LSD1 | lysine-specific demethylase 1. |
MRD | Minimal residual disease. |
NKGD2L | Natural killer group 2 member D ligand. |
PDX | Patient-derived xenograft. |
RR | Relapse refractory. |
SD | Signaling domain. |
UniCAR | Universal chimeric antigen receptor. |
References
- Fedorov, K.; Maiti, A.; Konopleva, M. Targeting FLT3 Mutation in Acute Myeloid Leukemia: Current Strategies and Future Directions. Cancers 2023, 15, 2312. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E.; Larson, R.A.; Podoltsev, N.A.; Strickland, S.; Wang, E.S.; Atallah, E.; Schiller, G.J.; Martinelli, G.; Neubauer, A.; Sierra, J.; et al. Follow-up of patients with R/R FLT3-mutation-positive AML treated with gilteritinib in the phase 3 ADMIRAL trial. Blood 2022, 139, 3366–3375. [Google Scholar] [CrossRef]
- Hasegawa, H.; Taniguchi, H.; Nakamura, Y.; Kato, T.; Fujii, S.; Ebi, H.; Shiozawa, M.; Yuki, S.; Masuishi, T.; Kato, K.; et al. FMS-like tyrosine kinase 3 (FLT3) amplification in patients with metastatic colorectal cancer. Cancer Sci. 2021, 112, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, X.; Fu, J.; Liang, M.; Xia, T. High FLT3 expression indicates favorable prognosis and correlates with clinicopathological parameters and immune infiltration in breast cancer. Front. Genet. 2022, 13, 956869. [Google Scholar] [CrossRef] [PubMed]
- Ger, M.; Kaupinis, A.; Petrulionis, M.; Kurlinkus, B.; Cicenas, J.; Sileikis, A.; Valius, M.; Strupas, K. Proteomic Identification of FLT3 and PCBP3 as Potential Prognostic Biomarkers for Pancreatic Cancer. Anticancer Res. 2018, 38, 5759–5765. [Google Scholar] [CrossRef] [PubMed]
- Capelli, D.; Menotti, D.; Fiorentini, A.; Saraceni, F.; Olivieri, A. Overcoming Resistance: FLT3 Inhibitors Past, Present, Future and the Challenge of Cure. Cancers 2022, 14, 4315. [Google Scholar] [CrossRef] [PubMed]
- Stelmach, P.; Trumpp, A. Leukemic stem cells and therapy resistance in acute myeloid leukemia. Haematologica 2023, 108, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, S.; He, F.; Tian, Y.; Hu, H.; Gao, L.; Zhang, L.; Chen, A.; Hu, Y.; Fan, L.; et al. Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML. Genome Biol. 2023, 24, 199. [Google Scholar] [CrossRef] [PubMed]
- Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse, M.; et al. Chemotherapy resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017, 7, 716–735. [Google Scholar] [CrossRef]
- Angelini, D.F.; Ottone, T.; Guerrera, G.; Lavorgna, S.; Cittadini, M.; Buccisano, F.; De Bardi, M.; Gargano, F.; Maurillo, L.; Divona, M.; et al. A Leukemia-Associated CD34/CD123/CD25/CD99+ Immunophenotype Identifies FLT3-Mutated Clones in Acute Myeloid Leukemia. Clin. Cancer Res. 2015, 21, 3977–3985. [Google Scholar] [CrossRef]
- Travaglini, S.; Angelini, D.F.; Alfonso, V.; Guerrera, G.; Lavorgna, S.; Divona, M.; Nardozza, A.M.; Consalvo, M.I.; Fabiani, E.; De Bardi, M.; et al. Characterization of FLT3-ITDmut acute myeloid leukemia: Molecular profiling of leukemic precursor cells. Blood Cancer J. 2020, 10, 85–95. [Google Scholar] [CrossRef]
- Culp-Hill, R.; D’Alessandro, A.; Pietras, E.M. Extinguishing the Embers: Targeting AML Metabolism. Trends Mol. Med. 2021, 27, 332–344. [Google Scholar] [CrossRef]
- Bosc, C.; Broin, N.; Fanjul, M.; Saland, E.; Farge, T.; Courdy, C.; Batut, A.; Masoud, R.; Larrue, C.; Skuli, S.; et al. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat. Commun. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Feng, S.; Zhou, J.; Zhang, L.; Shi, D.; Wang, M.; Zhu, Y.; Bu, C.; Xu, D.; Li, T. GSK3 inhibitor suppresses cell growth and metabolic process in FLT3-ITD leukemia cells. Med. Oncol. 2022, 40, 44. [Google Scholar] [CrossRef]
- Sykes, D.B.; Kfoury, Y.S.; Mercier, F.E.; Wawer, M.J.; Law, J.M.; Haynes, M.K.; Lewis, T.A.; Schajnovitz, A.; Jain, E.; Lee, D.; et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 2016, 167, 171–186. [Google Scholar] [CrossRef] [PubMed]
- van Gastel, N.; Spinelli, J.B.; Sharda, A.; Schajnovitz, A.; Baryawno, N.; Rhee, C.; Oki, T.; Grace, E.; Soled, H.J.; Milosevic, J.; et al. Induction of a timed metabolic collapse to overcome cancer chemoresistance. Cell Metab. 2020, 32, 391–403. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, T.; Ding, X.; Chang, Y.; Liu, C.; Zhang, Y.; Hao, S.; Yin, Q.; Jiang, B. Inhibition of mitochondrial complex III induces differentiation in acute myeloid leukemia. Biochem. Biophys. Res. Commun. 2021, 547, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, P.; Ciesielski, P.; Zakrzewski, P.K.; Kozal, K.; Oracz, J.; Budryn, G.; Żyżelewicz, D.; Flament, S.; Vercoutter-Edouart, A.S.; Bray, F.; et al. Mitochondrial O-GlcNAc Transferase Interacts with and Modifies Many Proteins and Its Up-Regulation Affects Mitochondrial Function and Cellular Energy Homeostasis. Cancers 2021, 13, 2956. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Cui, J.; Liu, Z.; Fang, W.; Lu, S.; Cao, S.; Zhang, Y.; Chen, J.A.; Lu, L.; Xie, Q.; et al. Blockade of de novo pyrimidine biosynthesis triggers autophagic degradation of oncoprotein FLT3-ITD in acute myeloid leukemia. Oncogene 2023, 42, 3331–3343. [Google Scholar] [CrossRef]
- Han, L.; Qiu, P.; Zeng, Z.; Jorgensen, J.L.; Mak, D.H.; Burks, J.K.; Schober, W.; McQueen, T.J.; Cortes, J.; Tanner, S.D.; et al. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytom. Part A 2015, 87, 346–356. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Chen, J. Understanding of leukemic stem cells and their clinical implications. Mol. Cancer 2017, 16, 2. [Google Scholar] [CrossRef]
- Bahr, C.; von Paleske, L.; Uslu, V.V. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature 2018, 553, 515–520. [Google Scholar] [CrossRef]
- Goardon, N.; Marchi, E.; Atzberger, A.; Quek, L.; Schuh, A.; Soneji, S.; Woll, P.; Mead, A.; Alford, K.A.; Rout, R.; et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011, 19, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Larrue, C.; Guiraud, N.; Mouchel, P.L.; Dubois, M.; Farge, T.; Gotanègre, M.; Bosc, C.; Saland, E.; Nicolau-Travers, M.L.; Sabatier, M.; et al. Adrenomedullin-CALCRL axis controls relapse-initiating drug tolerant acute myeloid leukemia cells. Nat. Commun. 2021, 12, 422. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; He, G.; Wang, J.; Guo, X.; Zhao, Z.; Gao, J. Hypoxia induces inflammatory microenvironment by priming specific macrophage polarization and modifies LSC behaviour via VEGF-HIF1α signalling. Transl. Pediatr. 2021, 10, 1792–1804. [Google Scholar] [CrossRef]
- Poggi, A.; Pellegatta, F.; Leone, B.E.; Moretta, L.; Zocchi, M.R. Engagement of the leukocyte-associated Ig-like receptor-1 induces programmed cell death and prevents NF-kappaB nuclear translocation in human myeloid leukemias. Eur. J. Immunol. 2000, 30, 2751–2758. [Google Scholar] [CrossRef]
- Lovewell, R.R.; Hong, J.; Kundu, S.; Fielder, C.M.; Hu, Q.; Kim, K.W.; Ramsey, H.E.; Gorska, A.E.; Fuller, L.S.; Tian, L.; et al. LAIR-1 agonism as a therapy for acute myeloid leukemia. J. Clin. Investig. 2023, 133, e169519. [Google Scholar] [CrossRef] [PubMed]
- Mohle, R.; Bautz, F.; Rafii, S.; Moore, M.A.; Brugger, W.; Kanz, L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998, 91, 4523–4530. [Google Scholar] [CrossRef]
- Sainas, S.; Giorgis, M.; Circosta, P.; Poli, G.; Alberti, M.; Passoni, A.; Gaidano, V.; Pippione, A.C.; Vitale, N.; Bonanni, D.; et al. Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5-a]pyridine Scaffold: SAR of the Aryloxyl Moiety. J. Med. Chem. 2022, 65, 12701–12724. [Google Scholar] [CrossRef] [PubMed]
- So, J.; Lewis, A.C.; Smith, L.K.; Stanley, K.; Franich, R.; Yoannidis, D.; Pijpers, L.; Dominguez, P.; Hogg, S.J.; Vervoort, S.J.; et al. Inhibition of pyrimidine biosynthesis targets protein translation in acute myeloid leukemia. EMBO Mol. Med. 2022, 14, e15203. [Google Scholar] [CrossRef]
- Salamero, O.; Montesinos, P.; Willekens, C.; Pérez-Simón, J.A.; Pigneux, A.; Récher, C.; Popat, R.; Carpio, C.; Molinero, C.; Mascaró, C.; et al. First-in-Human Phase I Study of Iadademstat (ORY-1001): A First-in-Class Lysine-Specific Histone Demethylase 1A Inhibitor, in Relapsed or Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2020, 38, 4260–4273. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.F.; Chu, S.H.; Goldberg, A.D.; Parvin, S.; Koche, R.P.; Glass, J.L.; Stein, E.M.; Tallman, M.S.; Sen, F.; Famulare, C.A.; et al. Leukemia Cell of Origin Influences Apoptotic Priming and Sensitivity to LSD1 Inhibition. Cancer Discov. 2020, 10, 1500–1513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yu, G.; Zhang, H.; Basyal, M.; Ly, C.; Yuan, B.; Ruvolo, V.; Piya, S.; Bhattacharya, S.; Zhang, Q.; et al. Concomitant targeting of FLT3 and BTK overcomes FLT3 inhibitor resistance in acute myeloid leukemia through inhibition of autophagy. Haematologica 2023, 108, 1500–1514. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Zhang, W.; Zhang, H.; Ly, C.; Basyal, M.; Rice, W.G.; Andreeff, M. The multi-kinase inhibitor CG-806 exerts anti-cancer activity against acute myeloid leukemia by co-targeting FLT3, BTK, and Aurora kinases. Res. Sq. 2023. [Google Scholar] [CrossRef] [PubMed]
- Park, I.K.; Mundy-Bosse, B.; Whitman, S.P.; Zhang, X.; Warner, S.L.; Bearss, D.J.; Blum, W.; Marcucci, G.; Caligiuri, M.A. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia 2015, 29, 2382–2389. [Google Scholar] [CrossRef] [PubMed]
- Post, S.M.; Ma, H.; Malaney, P.; Zhang, X.; Aitken, M.J.L.; Mak, P.Y.; Ruvolo, V.R.; Yasuhiro, T.; Kozaki, R.; Chan, L.E.; et al. AXL/MERTK inhibitor ONO-7475 potently synergizes with venetoclax and overcomes venetoclax resistance to kill FLT3-ITD acute myeloid leukemia. Haematologica 2022, 107, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, G.; Popplewell, L.; Boyiadzis, M.; Foran, J.; Platzbecker, U.; Vey, N.; Walter, R.B.; Olin, R.; Raza, A.; Giagounidis, A.; et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer 2016, 122, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Larrue, C.; Saland, E.; Boutzen, H.; Vergez, F.; David, M.; Joffre, C.; Hospital, M.A.; Tamburini, J.; Delabesse, E.; Manenti, S.; et al. Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood 2016, 127, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.R.; Wang, H.; Walsh, K.; Bhatnagar, B.; Vasu, S.; Garzon, R.; Canning, R.; Geyer, S.; Wu, Y.Z.; Devine, S.M.; et al. Midostaurin, bortezomib and MEC in relapsed/refractory acute myeloid leukemia. Leuk. Lymphoma 2016, 57, 2100–2108. [Google Scholar] [CrossRef]
- Nagai, K.; Hou, L.; Li, L.; Shirley, C.; Ma, H.; Levis, M.; Ghiaur, G.; Duffield, A.; Small, D. Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 2018, 9, 68. [Google Scholar] [CrossRef]
- Yu, M.; Fang, Z.X.; Wang, W.W.; Zhang, Y.; Bu, Z.L.; Liu, M.; Xiao, X.H.; Zhang, Z.L.; Zhang, X.M.; Cao, Y.; et al. Wu-5, a novel USP10 inhibitor, enhances crenolanib-induced FLT3-ITD-positive AML cell death via inhibiting FLT3 and AMPK pathways. Acta Pharmacol. Sin. 2021, 42, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zou, F.; Wang, A.; Miao, W.; Liang, Q.; Weisberg, E.L.; Wang, Y.; Liu, J.; Wang, W.; Liu, Q. Targeting chaperon protein HSP70 as a novel therapeutic strategy for FLT3-ITD-positive acute myeloid leukemia. Signal Transduct. Target. Ther. 2021, 6, 334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, F.; Cao, J.; Wang, X.; Cheng, H.; Qi, K.; Wang, G.; Xu, K.; Zheng, J.; Fu, Y.-X.; et al. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci. Transl. Med. 2021, 13, eaba7308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Li, S.; Liu, J.; Xing, Y.; Xing, H.; Tian, Z.; Tang, K.; Rao, Q.; Wang, M.; et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J. Hematol. Oncol. 2018, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, M.; Rettig, M.P.; Ritchey, J.K.; Karpova, D.; Uy, G.L.; Eissenberg, L.G.; Gao, F.; Eades, W.C.; Bonvini, E.; Chichili, G.R.; et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 2016, 127, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; Elmariah, H.; Sweet, K.; Talati, C.; Mishra, A.; Cox, C.A.; Semnani, R.; Shah, R.R.; Sabzevari, H.; Chakiath, M.; et al. Phase 1/1b Safety Study of Prgn-3006 Ultracar-T in Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia and Higher Risk Myelodysplastic Syndromes. Blood 2021, 138 (Suppl. 1), 825. [Google Scholar] [CrossRef]
- Karbowski, C.; Goldstein, R.; Frank, B.; Kim, K.; Li, C.M.; Homann, O.; Hensley, K.; Brooks, B.; Wang, X.; Yan, Q.; et al. Nonclinical Safety Assessment of AMG 553, an Investigational Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Acute Myeloid Leukemia. Toxicol. Sci. 2020, 177, 94–107. [Google Scholar] [CrossRef]
- Loff, S.; Dietrich, J.; Meyer, J.-E.; Spehr, J.; von Bonin, M.; Gründer, C.; Swayampakula, M.; Franke, K.; Feldmann, A.; Bachmann, M.; et al. Rapidly switchable universal CAR-T cells for treatment of CD123-positive leukemia. Mol. Ther. Oncolytics 2020, 17, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.; Cheng, H.Y.; Nguyen, D.; Dettling, D.; Yeung, Y.A.; Sutton, J.; Hamze, M.; Valton, J.; Smith, J.; Djuretic, I.; et al. Allogeneic FLT3 CAR T Cells with an Off-Switch Exhibit Potent Activity against AML and Can Be Depleted to Expedite Bone Marrow Recovery. Mol. Ther. 2020, 28, 2237–2251. [Google Scholar] [CrossRef]
- Li, K.X.; Wu, H.Y.; Pan, W.Y.; Guo, M.Q.; Qiu, D.Z.; He, Y.J.; Li, Y.H.; Yang, D.H.; Huang, Y.X. A novel approach for relapsed/refractory FLT3mut+acute myeloid leukaemia: Synergistic effect of the combination of bispecific FLT3scFv/NKG2D-CAR T cells and gilteritinib. Mol. Cancer 2022, 21, 66. [Google Scholar] [CrossRef]
- Bäumer, N.; Scheller, A.; Wittmann, L.; Faust, A.; Apel, M.; Nimmagadda, S.C.; Geyer, C.; Grunert, K.; Kellmann, N.; Peipp, M.; et al. Electrostatic anti-CD33-antibody-protamine nanocarriers as platform for a targeted treatment of acute myeloid leukemia. J. Hematol. Oncol. 2022, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.G.; Teng, K.Y.; Li, Z.; Zhu, Z.; Chen, H.; Tian, L.; Ali, A.; Zhang, J.; Lu, T.; Ma, S.; et al. Off-the-shelf CAR-engineered natural killer cells targeting FLT3 enhance killing of acute myeloid leukemia. Blood Adv. 2023, 7, 6225–6239. [Google Scholar] [CrossRef] [PubMed]
- Roas, M.; Vick, B.; Kasper, M.A.; Able, M.; Polzer, H.; Gerlach, M.; Kremmer, E.; Hecker, J.S.; Schmitt, S.; Stengl, S.; et al. Targeting FLT3 with a new-generation antibody-drug conjugate in combination with kinase inhibitors for treatment of AML. Blood 2023, 141, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.K.; Pfluegler, M.; Meetze, K.; Li, B.; Sindel, I.; Vogt, F.; Marklin, M.; Heitmann, J.S.; Kauer, J.; Osburg, L.; et al. A novel IgG-based FLT3xCD3 bispecific antibody for the treatment of AML and B-ALL. J. Immunother. Cancer 2022, 10, e003882. [Google Scholar] [CrossRef]
- Heitmann, J.S.; Schlenk, R.F.; Dörfel, D.; Kayser, S.; Döhner, K.; Heuser, M.; Thol, F.; Kapp-Schwoerer, S.; Labrenz, J.; Edelmann, D.; et al. Phase I study evaluating the Fc-optimized FLT3 antibody FLYSYN in AML patients with measurable residual disease. J. Hematol. Oncol. 2023, 16, 96. [Google Scholar] [CrossRef]
(A) | ||||
Phase | NCT Number | ND/RR | Drug/Link | Sponsor/Link |
I | NCT05947344 | RR | STI-8591 (FLT3i) https://clinicaltrials.gov/study/NCT05947344?cond=NCT05947344&rank=1, accessed on 17 March 2024 | Zhejiang ACEA |
I | NCT05918692 | RR | BMF-500 (FLT3i) https://clinicaltrials.gov/study/NCT05918692?cond=NCT05918692&rank=1, accessed on 17 March 2024 | Biomea Fusion Inc. |
III | NCT05586074 | RR | Clifutinib (FLT3i)/LoDAC/Aza https://clinicaltrials.gov/study/NCT05586074?cond=NCT05586074&rank=1, accessed on 17 March 2024 | Sunshine Lake |
II | NCT05241106 | RR | HYML-122 (FLT3i) https://clinicaltrials.gov/study/NCT05241106?cond=NCT05241106&rank=1, accessed on 17 March 2024 | Tarapeutics Science Inc. |
I/II | NCT05241093 | RRt | HYML-122; cytarabine https://clinicaltrials.gov/study/NCT05241093?cond=NCT05241093&rank=1, accessed on 17 March 2024 | Tarapeutics Science Inc. |
III | NCT04716114 | RR | SKLB1028 (EGFR-FLT3-Abli) vs. CHT https://clinicaltrials.gov/study/NCT04716114?cond=NCT04716114&rank=1, accessed on 17 March 2024 | CSPC ZhongQi |
I/II | NCT03922100 | RR | NMS-03592088 (FLT3-KIT-CSF1Ri) https://clinicaltrials.gov/study/NCT03922100?cond=NCT03922100&rank=1, accessed on 17 March 2024 | Nerviano Medical Sciences |
II | NCT05199051 | RR | GO/ID Cytarabine/Gilteritinib https://clinicaltrials.gov/study/NCT05199051?cond=NCT05199051&rank=1, accessed on 17 March 2024 | Centre Antoine Lacassagne |
I | NCT05024552 | RR | Gilteritinib/CPX-351 https://clinicaltrials.gov/study/NCT05024552?cond=NCT05024552&rank=1, accessed on 17 March 2024 | H. Lee Moffitt CCR Institute |
I | NCT04278768 | RR | Emavusertib (IRAK4i)/Ven https://clinicaltrials.gov/study/NCT04278768?cond=NCT04278768&rank=1, accessed on 17 March 2024 | Curis, Inc. |
I | NCT05546580 | RR | Iadademstat (LSD1i)/Gilteritinib https://clinicaltrials.gov/study/NCT05546580?cond=NCT05546580&rank=1, accessed on 17 March 2024 | Oryzon Genomics S.A. |
I | NCT05597306 | RR | Bomedemstat (LSD1i)/Ven https://clinicaltrials.gov/study/NCT05597306?cond=NCT05597306&rank=1, accessed on 17 March 2024 | Terrence J Bradley, MD |
I | NCT03900949 | ND | Midostaurin/Cytarabin/Daunorubicin/GO https://clinicaltrials.gov/study/NCT03900949?cond=NCT03900949&rank=1, accessed on 17 March 2024 | Uma Borate |
I/II | NCT05520567 | ND | Gilteritinib/Ven/Aza https://clinicaltrials.gov/study/NCT05520567?cond=NCT05520567&rank=1, accessed on 17 March 2024 | Astellas Pharma |
I/II | NCT05010122 | RR/ND | Decitabine-Cedazuridine/Gilteritinib/Ven https://clinicaltrials.gov/study/NCT05010122?cond=NCT05010122&rank=1, accessed on 17 March 2024 | M.D.A.C.C |
I/II | NCT04385290 | ND | Midostaurin/Cytarabin/Daunorubicin/GO https://clinicaltrials.gov/study/NCT04385290?cond=NCT04385290&rank=1, accessed on 17 March 2024 | Universität Dresden |
(B) | ||||
Phase | NCT Number | AML ND/RR | Immunotherapy/Link | Sponsor |
I | NCT06201247 | RR CD123pos | Off-the-shelf anti-CD123 CAR-NK https://clinicaltrials.gov/study/NCT06201247?cond=NCT06201247&rank=1, accessed on 17 March 2024 | Peking University |
I | NCT06006403 | RR CD123pos | Anti-CD123 CAR-NK cells https://clinicaltrials.gov/study/NCT06006403?cond=NCT06006403&rank=1, accessed on 17 March 2024 | Chongqing Precision Biotech Co., Ltd. |
I | NCT05574608 | RR CD123pos | Anti-CD123-CAR-NK cells https://clinicaltrials.gov/study/NCT05574608?cond=NCT05574608&rank=1, accessed on 17 March 2024 | Academy of MilitaryMedical Sciences |
I | NCT03190278 | RR CD123pos | Allo UCART anti-123v1.2 https://clinicaltrials.gov/study/NCT03190278?cond=NCT03190278&rank=1, accessed on 17 March 2024 | Cellectis S.A. |
I | NCT05995041 | RR AML | Anti-CLL-1, CD33, CD38 CD123 UCAR-T https://clinicaltrials.gov/study/NCT05995041?cond=NCT05995041&rank=1, accessed on 17 March 2024 | Shenzhen Geno-Immune Medical Institute |
I | NCT05984199 | RR CD33pos | VCAR33, anti-CD33 CAR-T https://clinicaltrials.gov/study/NCT05984199?cond=NCT05984199&rank=1, accessed on 17 March 2024 | Vor Biopharma |
I | NCT05945849 | RR CD33pos | CD33KO-HSPC; anti-CD33 CAR-T https://clinicaltrials.gov/study/NCT05945849?cond=NCT05945849&rank=1, accessed on 17 March 2024 | University of Pennsylvania |
I | NCT05672147 | RR CD33pos | Anti-CD33 CAR T https://clinicaltrials.gov/study/NCT05672147?cond=NCT05672147&rank=1, accessed on 17 March 2024 | City of Hope Medical Center |
I | NCT05105152 | RR CD33pos | SC-DARIC33 CD33 CAR-T https://clinicaltrials.gov/study/NCT05105152?cond=NCT05105152&rank=1, accessed on 17 March 2024 | Seattle Children’s Hospital |
I | NCT05665075 | RR CD33pos | QN-023°anti-CD33 NK https://clinicaltrials.gov/study/NCT05665075?cond=NCT05665075&rank=1, accessed on 17 March 2024 | Zhejiang University |
I/Ib | NCT03927261 | RR CD33 pos | PRGN-3006 anti-CD33 CAR-T https://clinicaltrials.gov/study/NCT03927261?cond=NCT03927261&rank=1, accessed on 17 March 2024 | Precigen, Inc |
I | NCT05445011 | RR FLT3mut | TAA05 anti-FLT3 CAR-T https://clinicaltrials.gov/study/NCT05445011?cond=NCT05445011&rank=1, accessed on 17 March 2024 | Wuhan Union Hospital, China |
I | NCT05432401 | RR FLT3mut | TAA05 anti-FLT3 CAR-T https://clinicaltrials.gov/study/NCT05432401?cond=NCT05432401&rank=1, accessed on 17 March 2024 | PersonGen BioTherapeutics (Suzhou) Co., Ltd. |
I | NCT05023707 | RR FLT3mut | Anti-FLT3 CAR-T https://clinicaltrials.gov/study/NCT05023707?cond=NCT05023707&rank=1, accessed on 17 March 2024 | The First Affiliated Hospital of Soochow University |
I | NCT05143996 | RR FLT3mut | CLN-049, Antibody anti FLT3/CD3 iv/sc https://clinicaltrials.gov/study/NCT05143996?cond=NCT05143996&rank=1, accessed on 17 March 2024 | Cullinan Oncology Inc. |
I | NCT04623944 | RR | NKX101, allogeneic antiNKG2DL CAR NK https://clinicaltrials.gov/study/NCT04623944?cond=NCT04623944&rank=1, accessed on 17 March 2024 | Nkarta Inc. |
I | NCT05734898 | RR | NKG2D CAR-NK https://clinicaltrials.gov/study/NCT05734898?cond=NCT05734898&rank=1, accessed on 17 March 2024 | Zhejiang University |
Name | Characteristics | References in the Text |
---|---|---|
Kasumi-1 | AML, M2, t(8;21), relapse | [5] |
HL-60 | AML, M3 | [5] |
MV4-11 | AML, M5, t(4;11), FLT3ITDmut | [8,24,47,48] |
THP-1 | AML, M4, t(9;11) (p21;q23), (MLL-AF9; MLL-MLLT3) | [24] |
MOLM-13 | AML M5a, FLT3ITDmut | [47,50] |
OCI-AML2 | AML, M4, DNMT3Amut R635W | [48] |
OCI-AML3 | AML, M4, NPM1mut (type A), DNMT3Amut R882C | [48] |
NK-92 | NK lymphoma | [49] |
Ba/F3 | IL-3-dependent murine pro B cell line, FLT3ITDmut | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capelli, D. FLT3-Mutated Leukemic Stem Cells: Mechanisms of Resistance and New Therapeutic Targets. Cancers 2024, 16, 1819. https://doi.org/10.3390/cancers16101819
Capelli D. FLT3-Mutated Leukemic Stem Cells: Mechanisms of Resistance and New Therapeutic Targets. Cancers. 2024; 16(10):1819. https://doi.org/10.3390/cancers16101819
Chicago/Turabian StyleCapelli, Debora. 2024. "FLT3-Mutated Leukemic Stem Cells: Mechanisms of Resistance and New Therapeutic Targets" Cancers 16, no. 10: 1819. https://doi.org/10.3390/cancers16101819
APA StyleCapelli, D. (2024). FLT3-Mutated Leukemic Stem Cells: Mechanisms of Resistance and New Therapeutic Targets. Cancers, 16(10), 1819. https://doi.org/10.3390/cancers16101819