The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View
Abstract
:Simple Summary
Abstract
1. Introduction
2. Identifying the Ideal Target
3. Monoclonal Antibodies, Antibody–Drug Conjugates, and Bispecific T-Cell Engagers
3.1. Monoclonal Antibodies and Antibody–Drug Conjugates (ADC)
- INA03, an anti-CD71 (i.e., the transferrin receptor) ADC composed of a humanized monoclonal IgG4 and monomethyl-auristatin-E. A phase I/II trial on 20 relapsed and/or refractory (R/R) AML/ALL patients (NCT03957915) showed no DLT up to the highest dose of 2 mg/Kg, no grade 2–4 TEAE, and blasts reduction by >50% in 3 of 18 evaluable patients, at doses of >1 mg/Kg [55,56].
- AZD9829, an anti-CD123 antibody (Ab) conjugated to a topoisomerase-I inhibitor. It proved effective in vitro and in vivo on CD123-positive AML cell lines and BM-resident AML cells, with mild myelosuppression; it also showed 100% tumor inhibition in 13 AML patient-derived xenografts (PDX) regardless of the intensity of CD123 expression. It was administered with two weekly doses at 5 mg/Kg, it achieved >50% durable blast reduction in the blood of 7/13 (53.8%) and in the BM of 5/13 (38.5%) treated patients [57].
- Vobramitamab Duocarmazine also showed potent preclinical cytotoxic effects in vitro against CD276-expressing AML cells, even if no data from clinical studies are available yet. CD276 (B7-H3) is a common immune checkpoint inhibitor expressed by many hematologic malignancies, although not by HSC. Its expression was higher in AML cells of pediatric patients clinically considered to have poor prognosis because of the presence of KMT2A fusions (43.7%), KAT6A-CREBBP (91.6%), and CBFA2T3-GLIS2 (56.4%), as well as in AML cells from adult patients (58%). In both cases, CD276 expression correlated with inferior survival (5-yr EFS 35% vs. 44%) [48].
- Mesothelin, a novel LAA in AML, was expressed by 36% of patients in a recent series but not expressed by healthy myeloid cells. It is associated with promoter hypomethylation and has also been addressed as a potential target of ADC therapy by anetumab ravtansine [52].
3.2. Bispecific Immune Cell Engagers
- The existence of relevant on-target, off-tumor effects, determining myelotoxicity, and the occurrence of cytokine release syndrome (CRS), with a small therapeutic window [27,67]; differently from CD19 bispecific antibodies and CAR-T, though, immune-cell-associated neurotoxicity syndromes (ICANS) do not appear common with AML T-cell engagers (or even CAR-T) [27,63,67];
- The clonal selection of AML blasts expressing escape antigenic variants due to AML phenotypic heterogeneity, ultimately making AML eradication impossible;
- The clinical management of heavily pretreated, immunosuppressed patients affected by AML in rapid progression during the step-up phase needed to diminish the occurrence of severe CRS.
- AMG 330: this bispecific antibody was able to elicit the cytotoxicity of AML cell lines and patient-derived blasts and to sustain long-term T-cell stimulation in coculture experiments; in PDX, it managed to suppress AML primary xenografts across a wide range of effector–target (E:T) ratios [25]; in an ongoing phase I clinical trial (NCT02520427), it reached complete remission or complete remission with incomplete hematologic recovery (CR/CRi) in 7/60 treated patients (11.7%), with CR/CRi rates upward of 17% among patients treated with >120 mg/day as continuous IV infusion) [59]. The median duration of response was 58.5 days (range: 14–121). Although higher leukemic burden and lower AMG 330 exposure negatively correlated with outcome, there was no apparent correlation between clinical response and the expression level of CD33. The main toxicity was CRS, in 78% of patients (grade ≥ 3: 11%), and manageable pancytopenia.
- AMG 673: a CD33xCD3 bispecific antibody with extended half-life was developed in order to bypass a major disadvantage of bispecific engagers, that is, the need for continuous infusion due to short half-life. It has shown, so far, an overall response (ORR) rate of 18.5%, including 1 CRi, in an ongoing clinical trial on 27 evaluable patients, with an acceptable toxic profile (CRS rate 63% overall, grade ≥ 3: 18%) [60,61].
- AMV 564: another bivalent CD33xCD3 antibody, administered on 14 days during a 28-day cycle, obtained one CR, one Cri, and one PR among 35 evaluable patients, with anemia as the most common grade ≥ 3 TEAE (11% of series) (NCT03144245) [62].
- Flotetuzumab (MGD006) is a CD123xCD3 DART given through continuous IV infusion in a weekly lead-in step-up dose (up to 500 ng/Kg/day). It led to 5 CR/CRi responses among 27 patients and to CR/CRi in 4/13 patients (31%) with primary chemorefractory AML; on the other hand, none of the 11 patients with relapsed disease achieved CR/CRi [62]. CRS was the most common TEAE, with no reported grade ≥ 3 CRS by prophylaxis with dexamethasone, early Tocolizumab use, and temporary dose interruptions. In the subsequent phase II trial at the recommended dose (500 ng/Kg/day), ORR was 30% (with CR/CRi of 27%), and OS was 10.2 months (range: 1.87–27.27) in patients achieving CR/CRi [63], with 6- and 12-month OSs of 75% (95% CI: 0.45–1.05) and 50% (95%CI: 0.15–0.85), respectively. CRS was 50% (grade ≥ 3: 7%). In a related study, the authors identified an IFN-γ-related gene expression and protein signature that managed to predict both chemotherapy resistance and response to Flotetuzumab, which was suggested as potential biomarker for patient selection [71,72].
- JNJ-63709178, another CD123xCD3 bispecific T-cell engager, has been tested on 62 R/R AML patients so far, with acceptable toxicity (CRS 44%, grade ≥ 3: 15%), but no data have been published yet on clinical results [64].
- Vibecotamab (XmAb 14045) is another CD123xCD3 bispecific antibody currently undergoing a phase I clinical trial. On R/R AML patients (n = 63 + 1 R/R B-ALL), it resulted in two CRs and one CRi when administered weekly at either 1.3 mg/Kg (the recommended dose) or 2.3 mg/Kg. Overall, CRS was 77% (grade ≥ 3: 11%) [65].
- SAR443579 is a trifunctional CD123/NKp46/CD16 NK cell engager currently being tested in a phase I/II clinical trial [73,74,75]. In the most recent report, 59 adult patients across 11 dose levels (range: 0.01–6 mg/Kg/dose) had received treatment. A total of 18 patients (30.5%) had previously been transplanted, and 52 (88.1%) had prior exposure to Venetoclax. A median of 2 cycles, with a median treatment duration of 7.9 weeks (range: 1.0–66.0), has been administered. TEAEs were reported in 35 patients (59.3%), with grade ≥3 in 40 patients (67.8%). CRS was reported in 4 patients (6.8%), but no ICANS occurred. At the dose level of 1 mg/Kg/dose, 5/15 patients (33.3%) achieved CR/CRi, with a median duration of 48 weeks, and one patient was undergoing subsequent allo-HSCT. High variability in E:T ratios was noted, with the best response at 1 mg/Kg/dose. This is paired with preclinical studies showing bell-shaped dose-dependent anti-tumor activity in SCID mice intravenously injected with MOLM-13 AML cells [76].
- Another NK-cell engager, AFM28 (CD123/CD16A), has been successfully tested in PDX mouse models, with a dose-dependent control of tumor growth and improvement in the median life span of the mice by up to 66%. In an in vitro model of the BM niche (HOME), AFM28 in combination with allogeneic NK cells led to an effective reduction in CD123-positive leukemic blasts [77].
- MCLA-117, a CLEC12AxCD3 bispecific antibody: CLEC12A (i.e., CLL-1) has been found in the majority of AML cases, including their LSCs, but has not been detected in healthy HSCs [30,31,78]. Out of 26 evaluable patients, 4 showed ≥50% blast reduction (15.4%), with the main TEAEs being CRS (all grade: 32%; grade ≥ 3:2%) and hepatotoxicity (i.e., elevated liver enzymes, grade ≥ 3:8%) (NCT03038230) [66,79].
- XmAb18968 is a novel CD38xCD3 bispecific T-cell engager with a modified Fc domain. In a phase I study on R/R AML patients, 12 evaluable patients (31% previously allotransplanted, 92% with prior Venetoclax exposure) with high-risk genetic features (mutations of TP53: 31%; RUNX1: 23%; ASXL1: 15%) experienced meaningful responses in two cases that later proceeded to allo-HSCT as consolidation. No DLT, no grade ≥ 3 CRS, and no ICANS were observed [80].
- BOS-371 is an engineered humanized monoclonal antibody (mAb) targeting IL1 receptor accessory protein (IL1RAP). IL1RAP, expressed on the cell surface, is directly linked with FLT3 and c-KIT signaling and is overexpressed on LSC and myeloid progenitors in AML and high-risk MDS. Tested preclinically, BOS-371 has proven effective so far in coculture assays and in PDX mouse models of AML, where a significant in vivo decrease in disease burden (peripheral: >70%; BM: >50%) was observed [81].
- In the first case, AMG 427 is a CD3xFLT3 half-life-extended bispecific antibody tested in preclinical experiments, where it showed T-cell-mediated killing depending on FLT3 surface levels across high (>1:38) E:T ratios [35], and it is currently in a phase I trial (NCT03541369). Another CD3/FLT3 bispecific antibody, CLN-049, is also currently being tested [82].
- Finally, NPM1 is currently being tested as a potential target in a variety of studies [41].
4. CAR-T Cells and Other Cellular Bioengineering
- In one phase I/II trial (NCT03971799) on young R/R AML patients, autologous CD33 CAR-T cells were infused after lymphodepletion in 19 patients. The median time from enrollment to infusion was 47 days (24–242). Transient CD33 CAR-T expansion was detected in 9 subjects overall (47.4%) and in all 6 subjects at the highest dose level (100%). Transient myeloid aplasia occurred in 2 of 5 evaluable subjects (40%). One case of grade 4 DLT (i.e., a grade 4 CRS) was observed. CRS ≥3 occurred in 21% of patients [96].
- In another study (NCT02159495), CD123-specific CAR-T cells have been used against R/R AML (and BPDCN) with prior lymphodepletion and one or two CAR-T infusions [97]. Among seven patients (six post-transplant refractory AML; one BPDCN), one achieved second CR and proceeded to a second allo-HSCT, one remained in CR (acquired by prior bridge-therapy) and proceeded to allo-HSCT, and two more had significant blast reduction. Five of the seven patients (71.4%) had grade 1–2 CRS, and TEAEs were manageable. One patient with BPDCN achieved CR after a single dose of CD123-CAR-T, without CRS. No ICANS were reported [97].
- Another phase I dose-escalation trial is ongoing with CLEC12A/CLL-1 CAR-T cells in adult patients with R/R AML. In the latest report, 30 patients (mean prior therapy lines: 4; patients with prior allo-HSCT: 26.7%) had been treated, with a high CR/CRi rate (73.3%) but significant toxicity. In fact, all patients experienced CRS (grade 3–4: 12/30, 40%), myelosuppression was common (grade 3/4 neutropenia: 96.7%; anemia: 93.3%; thrombocytopenia: 100%), and one patient experienced grade 4 ICANS. When possible, cytopenia was successfully treated with haploidentical HSCT. Patients had a median PFS of 300 days and a median OS of 348 days [98].
- In a fourth phase I study (NCT03018405), twelve patients with various hematological malignancies (eight AML, three MM, and one MDS) received CYAD-01, a NKG2D-specific CAR product with broad specificity against a range of commonly expressed tumor antigens (MICA, MICB, and ULBP1-6). The CR/CRi rate was 42% (three of seven evaluable patients). CRS occurred in five of twelve patients (41.7%; grade 3: 16.7%). One patient, later consolidated with allo-HSCT, experienced long-term OS [99].
- Finally, CAR-T cells have been developed against C-C chemokine receptor 1 (CCR1, CD191), which is expressed on 75% of all AML samples and on HSC and T-cells at a minimal level. All preclinical studies were effective, with cytotoxicity in vitro and enhanced trafficking in the BM and spleen in vivo. Most interestingly, CAR-T expansion was seen in vivo even in the absence of a tumor, hinting at the possibility of activation also by bystander CCR1+ non-leukemic host cells. Signs of mild toxicity potentially caused by this on-target/off-tumor effect were observed. No clinical data are available yet [100].
- CLL-1b/CD33b cCAR consists of two individually complete CARs linked by a self-cleaving peptide. As per the latest report, two advanced R/R AML patients have been tested (NCT03795779); both achieved CR and proceeded to allo-HSCT [101].
- In a different technical approach, a bispecific and split CAR-T (BissCAR) targeting CD13 and TIM-3 was developed through the use of nanobodies (heavy-chain-only antibodies with a small single variable domain) and proved effective in murine PDX models [46].
- Another dual CAR/CCR CAR-T (named ADCLEC.syn1), targeting ADGRE2 (with its CAR) and CLEC12A/CLL-1 (with its CCR), has been developed with the goal to target ADGRE2low AML by the concomitant activation of both CARs while sparing ADGRE2low normal HSC that lack CLL-1. The comparison between ADCLEC.syn1 and a conventional CAR-targeting CD33 in a MOLM13 PDX model has shown how ADCLEC.syn1 was superior in eliminating MOLM13 AML in the presence of bystander cells, thanks to its double CAR/CCR mechanism. In an R/R AML PDX model, both CAR cell types led to CAR-T cell in vivo activation and clonal expansion, but only ADCLEC.syn1 administration resulted in complete remissions; moreover, mice relapsing with AML after CD33-CAR-T treatment were still successfully treated by ADCLEC.syn1, achieving second remission. A clinical first-in-human trial is currently ongoing (NCT05748197) [102].
- A similar approach has been tested using CLL-1/CLEC12A and TIM-3 as target antigens for independent CAR and CCR. Preliminary results are encouraging; the potent inhibition (>95%) of leukemia blast viability and self-renewal was observed in coculture experiments. In vivo, these dual CAR/CCR cells prevented the engraftment of coinjected AML cells in PDX models and showed prolonged persistence up to 20 weeks after injection [103].
- Dual CARs targeting CD33 and TIM-3 were also recently combined by different methods and gating strategies. These were as follows: a. pooled biclonal CAR+CAR; b. compound CAR/CAR, with two independently complete and functional CARs; c. split CAR/CCR, where both stimuli needed to happen simultaneously on the CAR and CCR to activate the T-cells; and d. tandem double-recognizing CARs, with the two antigen-recognizing parts on the same construct [103] (Figure 2). In in vitro experiments with strong clinical implications, all four types of CAR-T cells showed better performance (i.e., higher avidity, enhanced cytotoxicity against AML, and a stronger production of proinflammatory cytokines such as IFN-γ and IL-2) as compared to single-targeting CAR-T cells. Important differences were noted, though: only split CAR/CCR-T cells did not show on-target, off-tumor toxicity against normal HSCs in colony-forming unit assays and thus appeared more specific; and compound CAR-T cells paradoxically expanded less and showed a higher expression of exhaustion markers in comparison to the other three CAR constructs [104].
- Another similar Fragment-antigen-binding (Fab)-based adapter CAR(AdCAR)-T cell platform has also been proposed, alternating between CD33 and CD123 as switchable targets [106]. In preclinical studies, T-cell exhaustion was prevented, and antigen heterogeneity was more efficiently dealt with by the possibility to modulate CAR-T cell activation by means of the infusion of different Fab-based adapters [107].
5. Natural Killer (NK) Cell-Based Immunotherapy
5.1. Combining Ab-Based Immunotherapy and NK Cells
5.2. Use of Bispecific NK-Engagers
5.3. CAR-NK Cells
- In the first-in-human trial of CD33-specific CAR-NK cells, 10 heavily pretreated patients with R/R AML were treated with anti-CD33 allogeneic CAR-NK cells derived from healthy donors. A total of 6/10 patients achieved MRDneg CR at day 28, with favorable toxicity profiles (and only one grade 2 CRS) [146].
- NKX101 is an off-the-shelf CAR-NK cell population expanded from healthy donors and engineered to express a CAR-targeting NKG2D-L and a membrane-bound IL-15, the latter in an attempt to extend in vivo persistence and activity. It proved effective in eliminating target cell lines in preclinical experiments [147]. In a related clinical study, 6 patients with poor risk features were treated with multiple high-CAR-NK cell doses (1.5 billion each): 4/6 (66.6%) achieved CR/CRi, with 3 MRDneg CR, and with 1 patient undergoing subsequent allo-HSCT. Ligand expression level was unrelated to response. NKX101 persisted for up to 3 weeks in pharmakokinetic testing despite being an allogeneic product. Myelosuppression and infections were the highest-grade adverse events. No cases of CRS, neurotoxicity, or GVHD were observed [148].
- CAR technology was also more recently used in combination with CRISPR/CAS9 gene editing to improve the efficacy of NK cells [149,150]. CAR33-NK cells were generated by the lentiviral transduction of NK cells from peripheral blood, CRISPR/CAS9 gene editing was used to knock out the killer cell lectin-like receptor C1 (KLRC1) gene, and cell expansion was conducted by an IL-15/IL-2-based medium. After gene editing, a 50% reduction in NKG2A cell surface expression was demonstrated on CD33-CAR-NK KO cells. These cells proved more efficient than regular CD33-CAR-NK cells in eliminating CD33+/HLA-E+ OCI-AML2 cells in xenograft models. No histologically detectable damage in the analysis of lung, liver, and colon was observed [149].
5.4. Checkpoint Inhibitors for NK Cells
5.5. Allogeneic NK Cell Products
- Allogeneic NK cells were administered in a phase I/II clinical trial with a dose-escalation design to 18 pediatric patients allocated in two groups (allo-NK vs. IL15-NK) according to KIR disparity between donors and recipients [157]. The most prevalent KIR-reactive clone was KIR2DL1 (55.6%), with a tendency to increase during the first year after transplantation. Severe acute GVHD (grade III–IV) manifested in 22.2% of patients, and severe chronic GVHD manifested in one patient (5.6%). The incidence of infection was 72% overall, and the incidence of vascular endothelial complications was 33%. One patient died because of relapse (5.6%), and four (22.2%) died because of transplant-related complications. One-year OS and DFS was 72.2%, with no statistical difference among the study arms [157].
- An NK cell line was generated from CD34+ HSC from umbilical cord blood units and used in a first-in-human trial that demonstrated NK cell expansion and maturation in vivo as well as a reduction in MRD without significant NK cell-related toxicity [158].
- CYNK-001 is an allogeneic NK cell population, enriched in memory-like CD56+CD3- NK cells, obtained from placental CD34+ HSC cells. In a phase I trial (NCT04310592), patients up to very old age (18–80 years) and affected by R/R AML (n = 28) or MRDpos CR (n = 11) were treated with increasing doses. Two out of four patients at the highest dose level achieved a morphologic leukemia-free state on day 28, with one of them lasting up to day 120. One out of three MRDpos CR patients achieved MRD negativity lasting up to day 120. Treatment was well-tolerated without DLT, even at the highest dose (1.8 billion cells × 4). No case of grade ≥ 3 CRS, ICANS (any grade), or GVHD was observed [159].
- Furthermore, another promising allogeneic NK cell product, WU-NK-101 (i.e., W-NK cells) was recently developed. W-NKs express a memory-like phenotype as a result of cytokine programming during an expansion phase in coculture with IL-12/15/18. They show a specific transcriptome characterized by higher expression in genes related to metabolism, cell proliferation, and response to IL-15 activation; higher levels of activating receptors (i.e., 2B4, DNAM-1, NKG2D, NKp30), CXCR4 expression (important for BM homing); higher levels of cytotoxic effector proteins (granzyme B); and lower levels of inhibitory receptors [160,161,162]. Exposed to media from TME, their cytotoxic activity is more preserved than in naïve NK cells, as it is in in vitro hypoxic conditions mimicking the TME [161]. Finally, they discriminate cells from healthy human tissues, including normal blood cells. They are currently being evaluated in a phase I study on R/R AML patients (NCT 05470140), of which only early biological results have been published. In an analysis from 13 treated patients, W-NK cells showed high BM infiltration ability, lower gene signatures of T-cell exhaustion, higher cell cycling marker expression, and a more coordinated involvement of local immune cells in BM samples obtained from responders as compared to non-responders [163].
6. Immune Checkpoint Inhibitors (ICPI)
7. Vaccines
8. Mechanisms of Immune Escape by AML
8.1. INTRINSIC Mechanisms by AML Cells
8.2. Immune Exhaustion
8.3. Immune Modulation by the TME
9. Conclusions
Funding
Conflicts of Interest
References
- Estey, E.H. Acute myeloid leukemia: 2021 update on risk-stratification and management. Am. J. Hematol. 2020, 95, 1368–1398. [Google Scholar] [CrossRef] [PubMed]
- Shimony, S.; Stahl, M.; Stone, R.M. Acute myeloid leukemia: 2023 update on diagnosis risk-stratification and management. Am. J. Hematol. 2023, 98, 502–526. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Cjan, J.K.C.; et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of myeloid neoplasms and acute leukemias: Integrating morphologic, clinical and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Jones, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Dohner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Lachowiez, C.A.; Takahashi, K.; Loghavi, S.; Xiao, L.; Kadia, T.; Daver, N.; Adeoti, M.; Short, N.J.; Sasaki, K.; et al. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed and relapsed or refractory acute myeloid leukemia. J. Clin. Oncol. 2021, 39, 2768–2778. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K.; Goldstone, A.; Hills, R.K.; Milligan, D.; Prentice, A.; Yin, J.; Wheatley, K.; Hunter, A.; Russell, N. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J. Clin. Oncol. 2013, 31, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.J.; Blaise, D. Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood 2016, 127, 62–70. [Google Scholar] [CrossRef]
- Gale, R.P.; Horowitz, M.M.; Ash, R.C.; Champlin, R.E.; Goldman, J.M.; Rimm, A.A.; Ringden, O.; Stone, J.A.; Bortin, M.M. Identical-twin bone marrow transplants for leukemia. Ann. Intern. Med. 1994, 120, 646–652. [Google Scholar] [CrossRef]
- Baron, F.; Labopin, M.; Savani, B.N.; Beohou, E.; Niederwieser, D.; Eder, M.; Potter, V.; Kroger, N.; Beelen, D.; Socie‘, G.; et al. Graft-versus-host disease and graf-versus-leukaemia effects in secondary acute myeloid leukaemia: A retrospective, multicentre registry analysis from the Acute Leukaemia Working Party of the EBMT. Br. J. Haematol. 2020, 188, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Labopin, M.; Schaap, N.; Veelken, H.; Brecht, A.; Stadler, M.; Finke, J.; Baron, F.; Collin, M.; Bug, G.; et al. Long-term results and GvHD after prophylactic and preemptive donor lymphocyte infusion after allogeneic stem cell transplantation for acute leukemia. Bone Marrow Transplant. 2022, 57, 215–223. [Google Scholar] [CrossRef]
- Short, N.J.; Zhou, S.; Fu, C.; Berry, D.A.; Walter, R.B.; Freeman, S.D.; Hourigan, C.S.; Huang, X.; Nogueras Gonzalez, G.; Hwang, H.; et al. Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: A systematic review and meta-analysis. JAMA Oncol. 2020, 6, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of conditioning intensity of allogeneic transplantation for acute myelid leukemia with genomic evidence of residual disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; Stein, A.; Gokbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: Dose expansion in a Phase I/II trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wrobel, T.; Offner, F.; Trneny, M.; et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenleucleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, Q.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukemia: Phase 2 results of a single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021, 398, 491–502. [Google Scholar] [CrossRef]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood 2019, 134, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Atar, D.; Ruoff, L.; Mast, A.S.; Krost, S.; Moustafa-Oglou, M.; Scheuermann, S.; Kristmann, B.; Feige, M.; Canak, A.; Wolsing, K.; et al. Rational combinatorial targeting by adapter CAR T cells (AdCAR-T) prevents antigen escape in acute myeloid leukemia. Blood 2023, 142 (Suppl. 1), 6834. [Google Scholar] [CrossRef]
- Miles, L.A.; Bowman, R.L.; Merlinsky, T.R.; Csete, I.S.; Ooi, A.T.; Durruthy-Durruthy, R.; Bowman, M.; Famulare, C.; Patel, M.A.; Mendez, P.; et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 2020, 587, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Krupka, C.; Kufer, P.; Kischel, R.; Zugmeier, G.; Bogeholz, J.; Kohnke, T.; Lichtenegger, F.S.; Schneider, S.; Metzeler, K.H.; Fiegl, M.; et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell engaging antibody AMG 330. Blood 2014, 123, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.K.; Castaigne, S.H.; Appelbaum, F.R.; Delaunay, J.; Petersdorf, S.; Othus, M.; Estey, E.H.; Dombret, H.; Chevret, S.; Ifrah, N.; et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014, 15, 986–996. [Google Scholar] [CrossRef]
- Haubner, S.; Perna, F.; Kohnke, T.; Schmidt, C.; Berman, S.; Augsberger, C.; Schnorfeil, F.M.; Krupka, C.; Lichtenegger, F.S.; Liu, X.; et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia 2018, 33, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, Y.; Jones, G.E.; Adams, S.; Harvey, L.; Audette, C.A.; Wilhelm, A.; Bai, C.; Rui, L.; Laleau, R.; Liu, F.; et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2018, 2, 848–858. [Google Scholar] [CrossRef]
- Pemmaraju, N.; Lane, A.A.; Sweet, K.L.; Stein, A.S.; Vasu, S.; Blum, W.; Rizzieri, D.A.; Wang, E.S.; Duvic, M.; Sloan, J.M.; et al. Tagraxofusp in Blastic Plasmacytoid Dendritic-cell neoplasm. N. Engl. J. Med. 2019, 380, 1628–1637. [Google Scholar] [CrossRef]
- Morsink, L.M.; Waletr, R.B.; Ossenkoppele, G.J. Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia. Blood Rev. 2018, 34, 26–33. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Chen, W.-L.; Weng, X.-Q.; Sheng, Y.; Wu, J.; Hao, J.; Liu, Z.-Y.; Zhu, Y.-M.; Chen, B.; Xiong, S.-M.; et al. Low CLL-1 expression is a novel adverse predictor in 123 patients with de novo CD34+ acute myeloid leukemia. Stem Cells Dev. 2017, 26, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Scolnik, M.P.; Morilla, R.; de Bracco, M.M.; Catovsky, D.; Matutes, E. CD34 and CD117 are overexpressed in AML and may be valuable to detect minimal residual disease. Leuk. Res. 2022, 26, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Malani, D.; Yadav, B.; Kumar, A.; Potdar, S.; Kontro, M.; Kankainen, M.; Javarappa, K.K.; Porkka, K.; Wolf, M.; Aittokallio, T.; et al. KIT pathway upregulation predicts dasatinib efficacy in acute myeloid leukemia. Leukemia 2020, 34, 2780–2784. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.S. Expanding dasatinib beyond KIT in acute myeloid leukemia. Haematologica 2020, 105, 2708–2710. [Google Scholar] [CrossRef] [PubMed]
- Brauchle, B.; Goldstein, R.L.; Karbowski, C.M.; Henn, A.; Li, C.M.; Bucklein, V.L.; Krupka, C.; Boyle, M.C.; Koppikar, P.; Haubner, S.; et al. Characterization of a novel FLT3 BiTE molecule for the treatment of acute myeloid leukemia. Mol. Cancer Ther. 2020, 19, 1875–1888. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Dohner, K.; Marcucci, D.; et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Erba, H.P.; Montesinos, P.; Kim, H.J.; Patkowska, E.; Vrhovac, R.; Zak, P.; Wang, P.N.; Mitov, T.; Hanyok, J.; Kamel, Y.M.; et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- Askmyr, M.; Agerstam, H.; Hansen, N.; Gordon, S.; Arvanitakis, A.; Rissler, M.; Juliusson, G.; Richter, J.; Jaras, M.; Fioretos, T. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood 2013, 121, 3709–3713. [Google Scholar] [CrossRef]
- Mitchell, K.; Barreyro, L.; Todorova, T.I.; Taylor, S.J.; Antony-Depré, I.; Narayanagari, S.R.; Carvajal, L.A.; Leite, J.; Piperdi, Z.; Pendurti, G.; et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J. Exp. Med. 2018, 215, 1709–1727. [Google Scholar] [CrossRef]
- Forghieri, F.; Riva, G.; Lagreca, I.; Barozzi, P.; Bettelli, F.; Paolini, A.; Nasillo, V.; Lusenti, B.; Pioli, V.; Giusti, D.; et al. Neoantigen-specific T-cell immune responses: The paradigm of NPM1-mutated acute myeloid leukemia. Int. J. Mol. Sci. 2021, 22, 9159. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.P.; et al. Ivosidenib and azacitidine in IDHa-mutated acute myeloid leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, H.S.; Cordon-Cardo, C.; Reuter, V.E.; Singhal, A.K.; Lloyd, K.O.; Livingston, P.O. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int. J. Cancer 1997, 73, 50–56. [Google Scholar] [CrossRef]
- Stroopinsky, D.; Rajabi, H.; Nahas, M.; Rosenblatt, J.; Rahimian, M.; Pyzer, A.; Tagde, A.; Kharbanda, A.; Jain, S.; Kufe, T.; et al. MUC1-C drives myeloid leukaemogenesis and resistance to treatment by a survivin-mediated mechanism. J. Cell. Mol. Med. 2018, 22, 3887–3898. [Google Scholar] [CrossRef] [PubMed]
- Casucci, M.; Nicolis di Robilant, B.; Falcone, L.; Camisa, B.; Norelli, M.; Genovese, P.; Gentner, B.; Gullotta, F.; Ponzoni, M.; Bernardi, M.; et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 2013, 122, 3461–3472. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Feng, Z.; Ma, J.; Ling, S.; Cao, Y.; Gurung, B.; Wu, Y.; Katona, B.W.; O’Dwyer, K.P.; Siegel, D.L.; et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myellid leukemia. Blood 2020, 135, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Kikushige, Y.; Shima, T.; Takayanagi, S.I.; Urata, S.; Miyamoto, T.; Iwasaki, H.; Takenaka, K.; Teshima, T.; Tanaka, T.; Inagaki, Y.; et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 2010, 7, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Kirkey, D.C.; Blankenfeld, M.; Hylkema, T.; Loo, D.; Ward, A.; Robinson, L.; Peplinski, J.H.; Wallace, L.K.; Pardo, L.; Menssen, A.J.; et al. CD276 (B7–H3) is an immunotherapeutic target in acute myeloid leukemia with preclinical efficacy of Vobramitamab Duocarmazine, an investigational CD276 antibody-drug conjugate. Blood 2023, 142 (Suppl. 1), 5958. [Google Scholar] [CrossRef]
- Tawara, I.; Kageyama, S.; Miyahara, Y.; Fujiwara, H.; Nishida, T.; Akutsuka, Y.; Ikeda, H.; Tanimoto, K.; Terakura, S.; Murata, M.; et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood 2017, 130, 1985–1994. [Google Scholar] [CrossRef]
- Ding, K.; Wang, X.M.; Fu, R.; Ruan, E.B.; Liu, H.; Shao, Z.H. PRAME gene expression in acute leukemia and its clinical significance. Cancer Biol. Med. 2012, 9, 73–76. [Google Scholar]
- Greiner, J.; Schmitt, A.; Giannopoulos, K.; Rojewski, M.T.; Gotz, M.; Funk, I.; Ringhoffer, M.; Bunjes, D.; Hofmann, S.; Ritter, G.; et al. High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica 2010, 95, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Kaeding, A.J.; Barwe, S.P.; Gopalakrishnapillai, A.; Ries, R.E.; Alonzo, T.A.; Gerbing, R.B.; Correnti, C.; Loken, M.R.; Broderson, L.E.; Pardo, L.; et al. Mesothelin is a novel cell surface disease marker and potential therapeutic target in acute myeloid leukemia. Blood Adv. 2021, 5, 2350–2361. [Google Scholar] [CrossRef]
- Walter, R.B. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin. Investig. Drugs 2018, 27, 339–348. [Google Scholar] [CrossRef]
- Zeiser, R.; Devillier, R.; Mico’, M.C.; Valcarcel, D.; Call, S.; Niederwieser, C.; Nourry, C.; Xu, Y.; Medts, T.; Guichard, N.; et al. TIM-3 inhibitor Sabatolimab for patients with acute myeloid leukemia (AML) with MRD detected after allo-HSCT: Preliminary findings from the phase Ib/II Stimulus-AML2 study. Blood 2023, 142 (Suppl. 1), 59. [Google Scholar] [CrossRef]
- Garciaz, S.; Bories, P.; Lopez Almeida, L.; Noher, J.M.; Belanger, C.; Recher, C.; Hermine, O.; Vey, N.; Launay, P. Preliminary results of a phase 1, first-in-human study of INA03, an anti-CD71 antibody-drug conjugate in patients with relapse or refractory (R/R) acute leukemias. HemaSphere 2023, 7 (Suppl. 1), 953. [Google Scholar] [CrossRef]
- Garciaz, S.; Bories, P.; Almeida, L.L.; Boher, J.M.; Belanger, C.; Recher, C.; Hermine, O.; Vey, N.; Launay, P. Preliminary results of a phase 1, first-in-human study of INA03, an anti-CD71 antibody-drug conjugate, in patients with relapsed or refractory (R/R) acute leukemias. J. Clin. Oncol. 2023, 41 (Suppl. 1), 7045. [Google Scholar] [CrossRef]
- Dutta, D.; Pan, P.; Fleming, R.; Andrade-Campos, M.; Belova, E.; Wheeler, J.; Cheung, P.; Santacroce, P.; Daniels, C.; Sabol, D.; et al. First disclosure of AZD9829, a TOP1i-ADC targeting CD123: Promising preclinical activity in AML models with minimal effect on healthy progenitors. Blood 2023, 142 (Suppl. 1), 5957. [Google Scholar] [CrossRef]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef]
- Ravandi, F.; Walter, R.B.; Subklewe, M.; Bucklein, V.; Jongen-Lavrencic, M.; Paschka, P.; Ossenkoppele, G.J.; Kantarjian, H.M.; Hindovan, A.; Agarwal, S.K.; et al. Updated results from phase-I dose escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). J. Clin. Oncol. 2020, 38 (Suppl. 1), 7508. [Google Scholar] [CrossRef]
- Subklewe, M.; Stein, M.; Walter, R.B.; Bhatia, R.; Wei, A.H.; Ritchie, D.; Bucklein, V.; Vachhani, P.; Dai, T.; Hindoyan, A.; et al. Preliminary results from phase-I first-in-human study of AMG 673, a novel half-life extended (HLE) anti-CD33/CD3 BiTE (bispecific T-cell engager) in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML). Blood 2019, 134 (Suppl. 1), 833. [Google Scholar] [CrossRef]
- Subklewe, M.; Stein, M.; Walter, R.B.; Bhatia, R.; Wei, A.H.; Ritchie, D.; Bucklein, V.; Vachhani, P.; Dai, T.; Hindoyan, A.; et al. Updated results from phase-I first-in-human dose escalation study of AMG 673, a novel anti-CD33/CD3 BiTE (bispecific T-cell engager) in patients with relapsed/refractory acute myeloid leukemia. HemaSphere 2020, 4 (Suppl. 1), 226. [Google Scholar]
- Westervelt, P.; Cortes, J.E.; Altman, J.K.; Long, M.; Oehler, V.G.; Gojo, I.; Guenot, J.; Chun, P.; Roboz, G.J. Phase 1 first-in-human trial of AMV564, a bivalent bispecific (2:2) CD33/CD3 T-cell engager, in patients with relapsed/refractory acute myeloid leukemia (AML). Blood 2019, 134 (Suppl. 1), 834. [Google Scholar] [CrossRef]
- Uy, G.L.; Aldoss, I.; Foster, M.C.; Sayre, P.H.; Wieduwilt, M.J.; Advani, A.S.; Godwin, J.E.; Arellano, M.L.; Sweet, K.L.; Emadi, A.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021, 137, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Boyiadzis, M.; Desai, P.; Daskalakis, N.; Donnellan, W.; Ferrance, L.; Goldberg, J.D.; Grunwald, M.R.; Guttke, C.; Li, X.; Perez-Simon, J.A.; et al. First-in-human study of JNJ-63709178, a CD123/CD3 targeting antibody, in relapsed/refractory acute myeloid leukemia. Clin. Transl. Sci. 2023, 16, 429–435. [Google Scholar] [CrossRef]
- Ravandi, F.; Bashey, A.; Foran, J.M.; Stock, W.; Mawad, R.; Blum, W.; Wayne Saville, M.; Johnson, C.M.; Vanasse, G.J.; Ly, T.; et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb 14045, a CD123xCD3 T cell-engaging bispecific antibody: Initial results of a Phase 1 study. Blood 2018, 132 (Suppl. 1), 763. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Cortes, J.; Huls, G.; Venditti, A.; Breems, D.; De Botton, S.; Deangelo, D.; van de Loosdrecht, A.; Jongen-Lavrencic, M.; Borthakur, G.; et al. Update from the ongoing phase I multinational study of MCLA-117, a bispecific CLEC12AxCD3 T-cell engager, in patients (pts) with acute myelogenous leukemia (AML). HemaSphere 2020, 4 (Suppl. 1), 220. [Google Scholar]
- Perna, S.; Berman, S.H.; Soni, R.K.; Mansilla-Soto, J.; Eyquem, J.; Hamieh, M.; Hendrickson, R.C.; Brennan, C.W.; Sadelain, M. Integrating proteonomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 2017, 32, 506–519. [Google Scholar] [CrossRef]
- Knaus, H.A.; Berglung, S.; Hackl, H.; Blackford, A.L.; Zeidner, J.F.; Montiel-Esparza, R.; Mukhopadhyay, R.; Vanura, K.; Blazar, B.R.; Karp, J.E.; et al. Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. J. Clin. Investig. 2018, 3, e120974. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Basu, S.; Garcia-Manero, G.; Hourigan, C.S.; Oetjen, K.A.; Cortes, J.E.; Ravandi, F.; Jabbour, E.J.; Al-Hamal, Z.; Konopleva, M.; et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 2019, 125, 1470–1481. [Google Scholar] [CrossRef]
- Das, R.K.; Vernau, L.; Grupp, S.A.; Barrett, D.M. Naive T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov 2019, 9, 492–499. [Google Scholar] [CrossRef]
- Vadakekolathu, J.; Minden, M.D.; Hood, T.; Church, S.E.; Reeder, S.; Altmann, H.; Sullivan, A.H.; Viboch, E.J.; Patel, T.; Ibrahimova, N.; et al. Immune landscapes predict chemothreapy resistance and immunotherapy response in acute myeloid leukemia. Sci. Transl. Med. 2020, 12, eaaz0463. [Google Scholar] [CrossRef] [PubMed]
- Vadakekolathu, J.; Lai, C.; Reeder, S.; Church, S.E.; Hood, T.; Lourdusamy, A.; Rettig, M.P.; Aldoss, I.; Advani, A.S.; Godwin, J.; et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020, 4, 5011–5024. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.S.; Jongen-Lavrencic, M.; Garcias, S.; Huls, G.A.; Maiti, A.; Boissel, N.; De Botton, S.; Fleming, S.; Zwaan, C.M.; De Leeuw, D.C.; et al. A first-in-human study of CD123 NK cell engager SAR443579 in relapsed or refractory acute myeloid leukemia B-cell acute lymphoblastic leukemia or high risk myelodysplasia. Hemasphere 2023, 7 (Suppl. 1), 836. [Google Scholar] [CrossRef]
- Stein, A.S.; Jongen-Lavrencic, M.; Garciaz, S.; Huls, G.A.; Maiti, A.; Boissel, N.; De Botton, S.; Fleming, S.; Zwaan, C.M.; de Leeuw, D.C.; et al. A first-in-human study of CD123 NK cell engager SAR443579 in relapsed or refractory acute myeloid leukemia, B-cell acute lymphoblastic leukemia, or high-risk myelodysplasia. J. Clin. Oncol. 2023, 41 (Suppl. 1), 7005. [Google Scholar] [CrossRef]
- Garciaz, S.; Bajel, A.; Maiti, A.; Desai, P.; Huls, G.; Boissel, N.; Jongen-Lavrencic, M.; Mantzaris, I.; De Botton, S.; De Leeuw, D.; et al. Completed dose escalation from the first-in-human, phase 1/2 study of CD123 NK cell engager, SAR443579, in relapsed or refractory acute myeloid leukemia or high risk myelodysplasia. HemaSphere 2024, 7 (Suppl. 1), S146. [Google Scholar]
- Meloni, M.; Nouguier, C.; Nicolazzi, C.; Rettmann, P.; L’Hermitte, A.; Jensen, K.; Cooley, S.; Ziti-Ljajic, S.; Sidhu, S.; Fantin, V.; et al. Exploring dose-response relationship of a novel CD123 NK cell engager SAR443579 in acute myeloid leukemia models. HemaSphere 2024, 7 (Suppl. 1), P475. [Google Scholar]
- Tsoukala, I.; Medina Echeverz, J.; Schaffer, A.; Tirado-Gonzalez, I.; Sanchez Saez, M.; Weitmann, M.; Bonig, H.; Riviere, J.; Gotze, K.; Wehner, R.; et al. The bispecific innate cell engager AFM28 induces potent anti-tumor activity against AML in a xenograft mouse model and in a bone marrow niche in vitro model. HemaSphere 2024, 7 (Suppl. 1), P478. [Google Scholar]
- Van Rhenen, A.; Moshaver, B.; Kelder, A.; Feller, N.; Nieuwint, A.W.M.; Zweegman, S.; Ossenkoppele, G.J.; Schuurhuis, G.J. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malingnant from the normal stem cell compartment both at diagnosis and in remission. Leukemia 2007, 21, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, P.F.; Hangalapura, B.N.; Thordardottir, S.; Gibbins, J.D.; Veninga, H.; Hendriks, L.J.A.; Kramer, A.; Roovers, R.C.; Leenders, M.; de Kruif, J.; et al. MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukaemic stem cella ntigen, indues T cell-mediated AML blast lysis. Expert Opin. Biol. Ther. 2019, 19, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Murthy, G.S.G.; Leonard, J.T.; Badar, T.; Yi, C.Y.A.; Duvall, A.S.; Shah, B.D.; Baim, A.; Kearl, T.; Harrington, A.M.; Szabo, A.; et al. A phase 1 study of CD38-bispecific antibody (XmAb18968) for patients with CD38 expressing relapsed/refractory acute myeloid leukemia. Blood 2023, 142 (Suppl. 1), 1541. [Google Scholar] [CrossRef]
- Est, K.A.; Kumar, S.; Scott, M.; Emery, J.G.; Steidel, U.G.; Narayanagari, S.R.; Mitchell, K.; Ren, F.; Ying, H.; Fei, Q.; et al. BOS-371, a monoclonal antibody against IL1RAP: Characterization in preclinical models of AML. J. Clin. Oncol. 2023, 41 (Suppl. 1), 7030. [Google Scholar]
- Abdul-Hay, M.; Dinardo, C.; Chan, O.; Narayan, R.; Issa, G.; Michaelson, J.; Baeuerle, P.; Meetze, K.; Janik, J.; Shapiro, I.; et al. A phase 1 study to investigate CLN-049, a FLT3/CD3 bispecific T cell engager, in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) of myelodysplastic syndrome (MDS). HemaSphere 2023, 7 (Suppl. 1), 3563. [Google Scholar] [CrossRef]
- Hutchings, M.; Montesinos, P.; Santoro, A.; Hou, H.A.; Martinez-Sanches, M.P.; Vives, S.; Galimberti, S.; Chen, T.Y.; Frigeni, M.; Garciaz, S.; et al. Dose escalation of HLA-A2-WT1 CD3 T-cell bispecific antibody in a phase I study in patients with relapsed/refractory acute myeloid leukemia. Blood 2023, 142 (Suppl. 1), 1537. [Google Scholar] [CrossRef]
- Kang, S.; Li, Y.; Qiao, J.; Meng, X.; He, Z.; Gao, X.; Yu, L. Antigen-specific TCR-T cells for acute myeloid leukemia: State of the art and challenges. Front. Oncol. 2022, 12, 787108. [Google Scholar] [CrossRef] [PubMed]
- Cattaruzza, F.; Nazeer, A.; To, M.; Hammond, M.; Koski, C.; Liu, L.Y.; Yeung, V.P.; Rennerfeldt, D.A.; Henkensiefken, A.; Fox, M.; et al. Precision-activated T-cell engagers targeting HER2 or EGFR and CD3 mitigate on-target, off-tumor toxicity for immunotherapy in solid tumors. Nat. Cancer 2023, 4, 485–501. [Google Scholar] [CrossRef] [PubMed]
- Kamata-Sakurai, M.; Narita, Y.; Hori, Y.; Nemoto, T.; Uchikawa, R.; Honda, M.; Hironiwa, N.; Taniguchi, K.; Shida-Kawazoe, M.; Metsugi, S.; et al. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov. 2021, 11, 158–175. [Google Scholar] [CrossRef] [PubMed]
- Philipp, N.; Kazerani, M.; Nicholls, A.; Vick, B.; Wulf, J.; Straub, T.; Scheurer, M.; Muth, A.; Hanel, G.; Nixdorf, D.; et al. T-cell exhaustion induced by continous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 2022, 140, 1104–1108. [Google Scholar] [CrossRef]
- Claus, C.; Ferrara, C.; Xu, W.; Sam, J.; Lang, S.; Uhlenbrock, F.; Albrecht, R.; Herter, S.; Schlenker, R.; Husser, T.; et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci. Transl. Med. 2019, 11, eaav5989. [Google Scholar] [CrossRef]
- Daver, N.; Alotaibi, A.S.; Bucklein, V.; Subklewe, M. T-cell-based immunotherapy of acute myeloid leukemia: Current concepts and future developments. Leukemia 2021, 35, 1843–1863. [Google Scholar] [CrossRef]
- Fan, M.; Li, M.; Gao, L.; Geng, S.; Wang, J.; Wang, Y.; Yan, Z.; Yu, L. Chimeric antigen receptor for adoptive T cell therapy in acute myeloid leukemia. J. Hematol. Oncol. 2017, 10, 151. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef]
- Qin, H.; Yang, L.; Chukinas, J.A.; Shah, N.; Tarun, S.; Pouzolles, M.; Chien, C.D.; Niswander, L.M.; Welch, A.R.; Taylor, N.; et al. Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T ell immunotherapy for acute myeloid leukemia defines optimized construct design. J. Immunother. Cancer 2021, 9, e003149. [Google Scholar] [CrossRef] [PubMed]
- Pei, K.; Xu, H.; Wang, P.; Gan, W.; Hu, Z.; Su, X.; Zhang, H.; He, Y. Anti-CLL1-based CAR T-cells with 4-1BB or CD28/CD27 stimulatory domains in treating childhood refractory/relapsed acute myeloid leukemia. Cancer Med. 2023, 12, 9655–9661. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; Kerre, T.; Havelange, V.; Poiré, X.; Lewalle, P.; Wang, E.S.; Brayer, J.B.; Davila, M.L.; Moors, I.; Machiels, J.P.; et al. CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): Haematological cohorts of the dose escalation segment of a phase 1 trial. Lancet Haematol. 2023, 10, e191–e202. [Google Scholar] [CrossRef] [PubMed]
- Stornaiuolo, A.; Valentinis, B.; Sirini, C.; Scavullo, C.; Asperti, C.; Zhou, D.; Martinez de La Torre, Y.; Corna, S.; Casucci, M.; Porcellini, S.; et al. Characterization and functional analysis of CD44v6.CAR T cells endowed with a new low-affinity nerve growth factor receptor-based spacer. Hum. Gene Ther. 2021, 32, 744–760. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Tasian, S.K.; Kohler, M.E.; Hsieh, E.M.; Baumeister, S.H.C.; Summers, C.; Shalabi, H.; Pollard, J.A.; Yates, B.; Brazauskas, R.; et al. CD33 CAR T-cells (CD33CART) for children and young adults with R/R AML: Dose-escalation results from a phase I/II multicenter trial. Blood 2023, 142 (Suppl. 1), 771. [Google Scholar] [CrossRef]
- Budde, L.; Song, J.Y.; Kim, Y.; Blanchard, S.; Wagner, J.; Stein, A.S.; Weng, L.; Del Real, M.; Hernandez, R.; Marcucci, E.; et al. Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: A first-in-human clinical trial. Blood 2017, 130 (Suppl. 1), 811. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, H.; Xiao, X.; Bai, X.; Liu, P.; Pu, Y.; Meng, J.; Zhu, H.; Wang, Z.; Zhang, H.; et al. A phase I clinical trial of CLL-1 CAR-T cells for the treatment of relapsed/refractory acute myeloid leukemia in adults. Blood 2023, 142 (Suppl. 1), 2106. [Google Scholar] [CrossRef]
- Sallman, D.A.; Kerre, T.; Poire, X.; Havelange, V.; Lewalle, P.; Davila, M.L.; Wang, E.S.; Dekker, D.; Snykers, S.; Sotiropoulou, P.A.; et al. Remissions in relapse/refractory acute myeloid leukemia patients following treatment with NKG2D CAR-T therapy without a prior preconditioning chemotherapy. Blood 2018, 132 (Suppl. 1), 902. [Google Scholar] [CrossRef]
- Chen, S.; Boardman, A.P.; James, S.E.; Van den Brink, M.R.M. CCR1-targeting CAR T cells for acute myeloid leukemia. Blood 2023, 142 (Suppl. 1), 4808. [Google Scholar] [CrossRef]
- Liu, F.; Cao, Y.; Pinz, K.; Ma, Y.; Wada, M.; Chen, K.; Ma, G.; Shen, J.; Tse, C.O.; Su, Y.; et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: Update on phase 1 clinical trial. Blood 2018, 132 (Suppl. 1), 901. [Google Scholar] [CrossRef]
- Haubner, S.; Mansilla-Soto, J.; Natarj, S.; Kogel, F.; Chang, Q.; De Stanchina, E.; Lopez, M.; Fraser, K.; Park, J.; Wang, X.; et al. Differential target profiles and efficacy of ADCLEC.SYN1 and CD33-CARs in humanized AML models. HemaSphere 2023, 7 (Suppl. 1), 14. [Google Scholar]
- Van de Schans, J.; Vishwasrao, P.; Van Gils, N.; Hosny, M.; Wang, Z.; Van Arkel, J.; Zweegman, S.; Themeli, M.; Ossenkoppele, G.; van de Donk, N.W.C.J.; et al. Dual split-signaling TIM3+CLEC12a targeting CAR T-cells with optimized signaling as a safe potential therapy for acute myeloid leukemia. Blood 2023, 142 (Suppl. 1), 883. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, W.; Rohrbacher, L.; Flaswinkel, H.; Emhardt, A.J.; Magno, G.; Haubner, S.; Kobold, S.; Leonhardt, H.; Hopfner, K.P.; et al. CD33-TIM3 dual CAR T cells: Enhancing specificity while maintaining efficacy against AML. Blood 2023, 142 (Suppl. 1), 3449. [Google Scholar] [CrossRef]
- Wermke, M.; Kraus, S.; Ehninger, A.; Bargou, R.C.; Goebeler, M.E.; Middeke, J.M.; Kressig, C.; von Bonin, M.; Koedam, J.; Pehl, M.; et al. Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML. Blood 2021, 137, 3145–3148. [Google Scholar] [CrossRef]
- Wermke, M.; Metzelder, S.; Kraus, S.; Sala, E.; Vucinic, V.; Fiedler, W.; Wetzko, K.; Schaefer, J.; Goebeler, M.-E.; Koedam, J.; et al. Updated results from a phase I dose escalation study of the rapidly-switchable universal CAR-T therapy UniCAR-T-CD123 in relapsed/refractory AML. Blood 2023, 142 (Suppl. 1), 3465. [Google Scholar] [CrossRef]
- Nixdorf, D.; Sponheimer, M.; Berghammer, D.; Engert, F.; Bader, U.; Philipp, N.; Kazerani, M.; Straub, T.; Rohrbacher, L.; Wange, L.; et al. Adapter CAR T cells to counteract T-cell exhaustion and enable flexible targeting in AML. Leukemia 2023, 37, 1298–1301. [Google Scholar] [CrossRef]
- Borot, F.; Wang, H.; Ma, Y.; Jafarov, T.; Raza, A.; Ali, A.M.; Mukherjee, S. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proc. Natl. Acad. Sci. USA 2019, 116, 11978–11987. [Google Scholar] [CrossRef]
- Kim, M.Y.; Yu, K.R.; Kenderian, S.S.; Ruella, M.; Chen, S.; Shin, T.H.; Aljanahi, A.A.; Schreeder, D.; Klichinsky, M.; Shestova, O.; et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 2018, 173, 1439–1453. [Google Scholar] [CrossRef]
- Koehne, G.; Tomlinson, B.; Suh, H.; Koura, D.; Cho, C.; Bambace, N.M.; Bernard, L.; Shah, N.N.; Walter, R.; Dipersio, J.; et al. CD33-deleted hematopoietic stem and progenitor cells display normal engraftment after hematopoietic cell transplant (HCT) and tolerate post-HCT gemtuzumab ozogamicin (GO) without cytopenias. HemaSphere 2023, 7 (Suppl. 1), 2706. [Google Scholar] [CrossRef]
- Xu, J.; Niu, T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J. Hematol. Oncol. 2020, 13, 167–187. [Google Scholar] [CrossRef]
- Waldhauer, I.; Steinle, A. NK cells and cancer immunosurveillance. Oncogene 2008, 27, 5932–5943. [Google Scholar] [CrossRef]
- Smyth, M.J.; Cretney, E.; Kelly, J.M.; Westwood, J.A.; Street, S.E.; Yagita, H.; Takeda, K.; van Dommelen, S.L.; Degli-Esposti, M.A.; Hayakawa, Y. Activation of NK cell cytotoxicity. Mol. Immunol. 2005, 42, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Pende, D.; Falco, M.; Vitale, M.; Cantoni, C.; Vitale, C.; Munari, E.; Bertaina, A.; Moretta, L.; Del Zotto, G.; Pietra, G. Killer Ig-like receptors (KIRs): Their role in NK cell modulation and developments leading to their clinical exploitation. Front. Immunol. 2019, 10, 1179. [Google Scholar] [CrossRef] [PubMed]
- Ljunggren, H.G.; Karre, K. In search of the “missing self”: MHC molecules and NK cell recognition. Immunol. Today 1990, 11, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, L.; Capanni, M.; Casucci, M.; Volpi, I.; Tosti, A.; Perruccio, K.; Urbani, E.; Negrin, R.S.; Martelli, M.F.; Velardi, A. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999, 94, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, L.; Capanni, M.; Urbani, E.; Perruccio, K.; Shlomchik, W.D.; Tosti, A.; Posati, S.; Rogaia, D.; Frassoni, F.; Aversa, F. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002, 295, 2097–2100. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, L.; Mancusi, A.; Capanni, M.; Urbani, E.; Carotti, A.; Aloisi, T.; Stern, M.; Pende, D.; Perruccio, K.; Burchielli, E. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: Challenging its predictive value. Blood 2007, 110, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Cooley, S.; Weisdorf, D.J.; Guethlein, L.A.; Klein, J.P.; Wang, T.; Le, C.T.; Marsh, S.G.; Geraghty, D.; Spellman, S.; Haagenson, M.D.; et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 2010, 116, 2411–2419. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.S.; Cooley, S.; Parham, P.; Farag, S.S.; Verneris, M.R.; McQueen, K.L.; Guethlein, L.A.; Trachtenberg, E.A.; Haagenson, M.; Horowitz, M.M. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) followin unrelated donor allogeneic HCT. Blood 2007, 109, 5058–5061. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.S.; Hasegawa, J. Natural killer cell biology: An update and future directions. J. Allergy Clin. Immunol. 2013, 132, 536–544. [Google Scholar] [CrossRef]
- Handgretinger, R.; Lang, P.; André, M.C. Exploitation of natural killer cells for the treatment of acute leukemia. Blood 2016, 127, 3341–3349. [Google Scholar] [CrossRef]
- Khan, M.; Arooj, S.; Wang, H. NK cell-based immune checkpoint inhibition. Front. Immunol. 2020, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Lion, E.; Willemen, Y.; Berneman, Z.; Van Tendeloo, V.; Smits, E. Natural killer cell immune escape in acute myeloid leukemia. Leukemia 2012, 26, 2019. [Google Scholar] [CrossRef] [PubMed]
- Costello, R.T.; Sivori, S.; Marcenaro, E.; Lafage-Pochitaloff, M.; Mozziconacci, M.J.; Reviron, D.; Gastaut, J.A.; Pende, D.; Olve, D.; Moretta, A. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002, 99, 3661–3667. [Google Scholar] [CrossRef] [PubMed]
- Fauriat, C.; Just-Landi, S.; Mallet, F.; Arnoulet, C.; Sainty, D.; Olive, D.; Costello, R.T. Deficient expression of NCR in NK cells from acute myellid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 2007, 109, 323–330. [Google Scholar] [CrossRef]
- Sandoval-Borrego, D.; Moreno-Lafont, M.C.; Vazquez-Sanchez, E.A.; Gutierrez-Hoya, A.; Lopez-Santiago, R.; Monitel-Cervantes, L.A.; Ramirez-Saldana, M.; Vela-Ojeda, J. Overexpression of CD158 and NKp46 activating receptors on NK cells in acute myeloid leukemia. Arch. Med. Res. 2016, 47, 55–64. [Google Scholar] [CrossRef]
- Stringaris, K.; Sekine, T.; Khoder, A.; Alsuliman, A.; Razzaghi, B.; Sargeant, R.; Pavlu, J.; Brisley, G.; de Lavallade, H.; Sarvaria, A. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica 2014, 99, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Nowbakht, P.; Ionescu, M.C.S.; Rohner, A.; Kalberer, C.P.; Rossy, E.; Mori, L.; Cosman, D.; De Libero, G.; Wodnar-Filipowicz, A. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myellid leukemias. Blood 2005, 105, 3615–3622. [Google Scholar] [CrossRef]
- Passweg, J.R.; Tichelli, A.; Meyer-Monard, S.; Heim, D.; Stern, M.; Kuhner, T.; Favre, G.; Gratwohlt, A. Purified donor NK-lymphocyte infusion to consolidate engrafment after haploidentical stem cell transplantation. Leukemia 2004, 18, 1835–1838. [Google Scholar] [CrossRef]
- Stern, M.; Passweg, J.R.; Meyer-Monard, S.; Esser, R.; Tonn, T.; Soerensen, J.; Paulussen, M.; Gratwohl, A.; Klingebiel, T.; Bader, P. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: A prospective phase II study in two centers. Bone Marrow Transplant. 2013, 48, 433–438. [Google Scholar] [CrossRef]
- Ciurea, S.O.; Schafer, J.R.; Basset, R.; Denman, C.J.; Cao, K.; Willis, D.; Rondon, G.; Chen, J.; Soebbing, D.; Caur, I.; et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood 2017, 130, 1857–1868. [Google Scholar] [CrossRef]
- Choi, I.; Yoon, S.R.; Park, S.Y.; Kim, H.; Jung, S.J.; Kang, Y.L.; Lee, J.H.; Lee, J.H.; Kim, D.Y.; Lee, J.L. Donor-derived natural killer cells infusion after human leukocyte antigen-haploidentical hematopoietic cell transplantation in patients with refractory acute leukemia. Biol. Blood Marrow Transplant. 2016, 22, 2065–2076. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.A.; Denman, C.J.; Rondon, G.; Woodworth, G.; Chen, J.; Fisher, T.; Kaur, I.; Fernandez-Vina, M.; Cao, K.; Ciurea, S. Haploidentical natural killer cells infused before allogeneic stem cell transplantation for myeloid malignancies: A phase I trial. Biol. Blood Marrow Transplant. 2016, 22, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Rubnitz, J.E.; Inaba, H.; Kang, G.; Gan, K.; Hartford, C.; Triplett, B.M.; Dallas, M.; Shook, D.; Gruber, T.; Pui, C.H.; et al. Natural killer cell therapy in children with relapsed leukemia. Peduatr. Blood Cancer 2015, 62, 1468–1472. [Google Scholar] [CrossRef]
- Miller, J.S.; Soignier, Y.; Panoskaltsis-Mortari, A.; McNearney, S.A.; Yun, G.H.; Fautsch, S.K.; McKenna, D.; Le, C.; Defor, T.E.; Burns, L.J. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005, 105, 3051–3057. [Google Scholar] [CrossRef]
- Curti, A.; Ruggeri, L.; D’Addio, A.; Bontadini, A.; Dan, E.; Motta, M.R.; Trabanelli, S.; Giudice, V.; Urbani, E.; Martinelli, G. Successful transfer of alloreactive haploidentical Kir ligand-mismatched natura killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 2011, 118, 3273–3279. [Google Scholar] [CrossRef]
- Bjorklund, A.T.; Carlsten, M.; Sohlberg, E.; Liu, L.L.; Clancy, T.; Karimi, M.; Cooley, S.; Miller, J.S.; Klimkowska, M.; Schaffer, M. Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin. Cancer Res. 2018, 24, 1834–1844. [Google Scholar] [CrossRef]
- Rubnitz, J.E.; Inaba, H.; Ribeiro, R.C.; Pounds, S.; Rooney, B.; Bell, T.; Pui, C.H.; Leung, W. NKAML: A pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol. 2010, 28, 955. [Google Scholar] [CrossRef] [PubMed]
- Curti, A.; Ruggeri, L.; Parisi, S.; Bontadini, A.; Dan, E.; Motta, M.R.; Rizzi, S.; Trabanelli, S.; Ocadlikova, D.; Lecciso, M. Larger size of donor alloreactive NK cell repertoire correlated with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clin. Cancer Res. 2016, 22, 1914–1921. [Google Scholar] [CrossRef]
- Shaffer, B.C.; LeLuduec, J.B.; Forlenza, C.; Jakubowski, A.A.; Perales, M.A.; Young, J.W.; Hsu, K.C. Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 2016, 22, 705–709. [Google Scholar] [CrossRef]
- Nguyen, R.; Wu, H.; Pounds, S.; Inaba, H.; Ribeiro, R.C.; Cullins, D.; Rooney, B.; Bell, T.; Lacayo, N.J.; Heym, K.; et al. A phase II clinical trial of adoptive transfer of haploidentical natural killer cells for consolidation therapy of pediatric acute myeloid leukemia. J. Immunother. Cancer 2019, 7, 81. [Google Scholar] [CrossRef]
- He, S.Z.; Busfield, S.; Ritchie, D.S.; Hertzberg, M.S.; Durrant, S.; Lewis, I.D.; Marlton, P.; McLachlan, A.J.; Kerridge, I.; Bradstock, K.F.; et al. A phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk. Lymph. 2015, 56, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Sekeres, M.A.; Lancet, J.E.; Wood, B.L.; Grove, L.E.; Sandalic, L.; Sievers, L.; Sievers, E.L.; Jurcic, J.G. Randomized phase Iib study of low-dose cytarabine and lintuzumab versus low-dose cytarabine and placebo in older adults with untreated acute myeloid leukemia. Haematologica 2013, 98, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.J.; Brandwein, J.; Stone, R.; Kalaycio, M.; Moore, J.; O’Connor, J.; Wedel, N.; Roboz, G.J.; Miller, C.; Chopra, R.; et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J. Clin. Oncol. 2005, 23, 4110–4116. [Google Scholar] [CrossRef]
- Huang, R.; Wen, Q.; Wang, X.; Yan, H.; Ma, Y.; Wang, M.; Han, X.; Liu, J.; Gao, L.; Zhang, C.; et al. Off-the-shelf CD33 CAR-NK cell therapy for relapse/refractory AML: First-in-human, phase I trial. HemaSphere 2023, 7 (Suppl. 1), 897. [Google Scholar] [CrossRef]
- Cho, C.; Jansen, K.; Kimura, N.; Sood, J.; Juat, D.; Geng, T.; Trager, J. NKX101, an allogeneic off-the-shelf CAR NK cell therapy targeting NKG2D-ligands, has potent anti-leukemic activity alone or in combination with Ara-C. Blood 2023, 142 (Suppl. 1), 6808. [Google Scholar] [CrossRef]
- Sauter, C.S.; Borthakur, G.; Mountjoy, L.; Rotta, M.; Liu, H.; Murthy, H.; Ling, M.; Trager, J.; Chang, C.; Kothari, N.; et al. A phase 1 study of NKX101, a chimeric antigen receptor natura killer (CAR-NK) cell therapy, with fludarabine and cytarabine in patients with acute myeloid leukemia. Blood 2023, 142 (Suppl. 1), 2097. [Google Scholar] [CrossRef]
- Albinger, N.; Bexte, T.; Al-Ajami, A.; Wendel, P.; Buchinger, L.; Gessner, A.; Alzubi, J.; Sarchen, V.; Vogler, M.; Bhayadia, R.; et al. CRISPR/CAS9 gene editing of immune checkpoint receptor NKG2A improves the anti-leukemic efficacy of primary CD33-targeting CAR-NK cells. HemaSphere 2023, 7 (Suppl. 1), 2623. [Google Scholar] [CrossRef]
- Gong, Y.; Germeraad, W.; Li, B.; Zhang, X.; Janssen, L.; He, Z.; Wu, B.; Gijsbers, B.; Olieslagers, T.; Bos, G.; et al. NKG2A deletion in human natural killer cells enhances anti-tumor responses and promotes tumor infiltration. HemaSphere 2023, 7 (Suppl. 1), 2651. [Google Scholar] [CrossRef]
- Vey, N.; Dumas, P.Y.; Recher, C.; Gastaud, L.; Lioure, B.; Bulabois, C.E.; Pautas, C.; Marolleau, J.P.; Lepretre, S.; Raffous, E.; et al. Randomized phase 2 trial of lirilumab (anti-KIR monoclonal antibody, mAb) as maintenance treatment of elderlz patients with acute myeloid leukemia (AML): Results of the Effikir trial. Blood 2017, 130 (Suppl. 1), 889. [Google Scholar] [CrossRef]
- Daver, N.G.; Garcia-Manero, G.; Cortes, J.E.; Basu, S.; Ravandi, E.; Kadia, T.M.; Borthakur, G.; Jabbour, E.; Dinardo, C.D.; Pemmaraju, N. Phase IB/II study of lirilumab with azacytidine in relapsed AML. Blood 2017, 130 (Suppl. 1), 2634. [Google Scholar] [CrossRef]
- Van Hall, T.; André, P.; Horowitz, A.; Ruan, D.F.; Borst, L.; Zerbib, R.; Narni-Mancinelli, E.; van der Burg, S.H.; Vivier, E. Monalizumab: Inhibiting the novel immune checkpoint NKG2A. J. Immunother. Cancer 2019, 7, 263. [Google Scholar] [CrossRef] [PubMed]
- Godal, R.; Bachanova, V.; Gleason, M.; McCullar, V.; Yun, G.H.; Cooley, S.; Vernersi, M.R.; McGlave, P.B.; Miller, J.S. Natural killer cell killing of acute myelogenous leukemia and acute lymphoblastic leukemia blasts by killer cell immunoglobulin-like receptor-negative natural killer cells after NKG2A and LIR-1 blockade. Biol. Blood Marrow Tranplant. 2010, 16, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, L.; Urbani, E.; André, P.; Mancusi, A.; Tosti, A.; Topini, F.; Blery, M.; Animobono, L.; Romagné, F.; Wagtmann, N.; et al. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica 2016, 101, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Kloess, S.; Oberschmidt, O.; Dahlke, J.; Vu, X.K.; Neudoerfl, C.; Kloos, A.; Gardlowski, T.; Matthies, N.; Heuser, M.; Meyer, J. Preclinical assessment of suitable natural killer sources for chimeric antigen receptor natural killer-based “off-the-shelf” acute myeloid leukemia immunotherapies. Hum. Gene Ther. 2019, 30, 281–3401. [Google Scholar] [CrossRef] [PubMed]
- Mestre Duran, C.; Leon Triana, O.; Pertinez, L.; Bueno, D.; Sisinni, L.; Navarro Zapata, A.; Badell, I.; Gonzalez Vicent, M.; Belendez, C.; Palomo Moraleda, P.; et al. Phase I/II study on infusion of alloreactive or ex vivo IL-15 stimulated natural killer cells after haploidentical stem cell transplantation in pediatric patients with acute leukemia (PHINK): A study of the Spanish hematopoietic stem cell transplantation group (GETH). Blood 2023, 142 (Suppl. 1), 6888. [Google Scholar]
- Dolstra, H.; Roeven, M.W.; Spanholtz, J.; Hangalapura, B.N.; Tordoir, M.; Maas, F.; Leenders, M.; Bohme, F.; Kok, N.; Trilsbeek, C. Successful transfer of umbilical cord blood CD34+ hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. Clin. Cancer Res. 2017, 23, 4107–4118. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, J.; Liu, H.; Egan, D.N.; Berdeja, J.G.; Tsai, S.B.; Kilcoyne, A.; Daly, C.; Koppisetti, S.; Krishnan, R.; Hariri, R.; et al. Results of Cynk-001-AML-001: A phase I multi-dose study evaluating the safety, tolerability and persistence of Cynk-001 in adults with de novo or secondary acute myeloid leukemia in morphologic complete remission with minimal residual disease or relapsed/refractory AML. Blood 2023, 142 (Suppl. 1), 2098. [Google Scholar]
- Rutella, S.; Cashen, A.; Muth, J.; Vadakekolathu, J.; Arthur, L.; Mahajan, N.; Berrien-Elliott, M.; Davidson-Moncada, J.; Fehniger, T. Adoptively infused memory-like (ML) natural killer (NK) cells elicit adaptive immune responses in patients with acute myeloid leukemia (AML). HemaSphere 2023, 7 (Suppl. 1), 65. [Google Scholar] [CrossRef]
- Rutella, S.; Muth, J.; Vadakekolathu, J.; Leedom, T.; Hamil, A.; Arthur, L.; Mahajan, N.; Schramm, E.; Warin, R.; Foust, A.M.; et al. WU-NK-101 (W-NK), a memory-like NK cell, intrinsically overcomes factors restricting adoptive cell therapy in AML. Blood 2023, 142 (Suppl. 1), 466. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Petit, V.; Vadakekolathu, J.; Pinset, C.; Mahajan, N.; Dean, J.; Spingola, C.; Arthur, L.; Boocock, D.; Coveney, C.; et al. WU-NK-101 (W-NK) a memory-like NK cell, naturally overcomes tumor microenvironment metabolic challenges, retaining anti-tumor potency. Blood 2023, 142 (Suppl. 1), 4834. [Google Scholar] [CrossRef]
- Rutella, S.; Vadakekolathu, J.; Cashen, A.F.; Mahajan, N.; Ruiz-Heredia, Y.; Martin-Munoz, A.; Barrio, S.; Berrien-Elliott, M.M.; Davidson-Moncada, J.; Fehniger, T.A. Adoptively infused memory-like NK cells impact adaptive immune responses in patients with acute myeloid leukemia. Blood 2023, 142 (Suppl. 1), 4813. [Google Scholar] [CrossRef]
- Boyiadzis, M.; Agha, M.; Redner, R.L.; Sehgal, A.; Im, A.; Hou, J.Z.; Farah, R.; Dorritie, K.A.; Raptis, A.; Lim, S.H.; et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy 2017, 19, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Liao, Y.J.; Fan, T.H.; Chiou, T.J.; Lin, Y.H.; Twu, Y.C. A developed NK-92MI cell line with siglec-7neg phenotype exhibits high and sustainable cytotxicity against leukemia cells. Int. J. Mol. Sci. 2018, 19, 1073. [Google Scholar] [CrossRef] [PubMed]
- Eckstrom, A.; Tyagi, A.; Siddiqui, M.; Mahmood, S.; Wong, L.; Valamehr, B.B.; Daver, N.; Battula, V.L. FT538, iPSC-derived NK cells are potent inducers of apoptosis in AML cells and their effect is synergistic in combination with approved therapeutic strategies. Blood 2023, 142 (Suppl. 1), 4817. [Google Scholar] [CrossRef]
- Gros, F.; Cazaubiel, T.; Forcade, E.; Lechevalier, N.; Leguay, T.; Servant, V.; Tabrizi, R.; Clement, L.; Dumas, S.; Bidet, A. Severe acute GvHD following administration of ipilimumab for early relapse of AML after haploidentical stem cell transplantation. Bone Marrow Transplant. 2017, 52, 1047–1048. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, A.; Khan, A.Y.; Malik, S.U.; Faridi, W.; Fraz, M.A.; Usman, M.; Tariq, M.J.; Durer, S.; Durer, C.; Russ, A. Significant risk of graft-versus-host-disease with exposure to checkpoint inhibitors before and after allogeneic transplantation. Biol. Blood Marrow Transplant. 2019, 25, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Garcia-Manero, G.; Basu, S.; Boddu, P.C.; Alfayez, M.; Cortes, J.E.; Konopleva, M.; Ravandi-Kashani, F.; Jabbour, E.; Kadia, T.; et al. Efficacy, safety, and biomerkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: A nonrandomized, open-label, phase II study. Cancer Discov. 2019, 9, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.G.; Garcia-Manero, G.; Konopleva, M.Y.; Alfayez, M.; Pemmaraju, N.; Kadia, T.M.; DiNardo, C.D.; Cortes, J.E.; Ravandi, F.; Abbas, H.; et al. Azacitidine (AZA) with nivolumab (Nivo), and AZA with Nivo + ipilimumab (Ipi) in relapsed/refractory acute myeloid leukemia: A non-randomized, prospective, phase 2 study. Blood 2019, 134 (Suppl. 1), 830. [Google Scholar] [CrossRef]
- Yang, H.; Bueso-Ramos, C.; DiNardo, C.; Estecio, M.R.; Davanlou, M.; Geng, Q.R. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014, 28, 1280–1288. [Google Scholar] [CrossRef]
- Orskov, A.D.; Treppendahl, M.B.; Skovbo, A.; Holm, M.S.; Friis, L.S.; Hokland, M.; Gronback, K. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: A rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 2015, 6, 9612–9626. [Google Scholar] [CrossRef]
- Daver, N.; Boddu, P.; Garcia-Manero, G.; Singh Yadav, S.; Sharma, P.; Allison, J.; Kantarjian, H. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 2018, 32, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Gojo, I.; Stuart, R.K.; Webster, J.; Blackford, A.; Varela, J.C.; Morrow, J.; DeZern, A.E.; Foster, M.C.; Levis, M.J.; Coombs, C.C.; et al. Multi-center phase 2 study of pembrolizumab (Pembro) and azacitidine (AZA) in patients with relapsed/refractory acute myeloid leukemia (AML) and in newly diagnosed (>65 years) AML patients. Blood 2019, 134 (Suppl. 1), 832. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Cavenagh, J.; Voso, M.T.; Taussig, D.; Tormo, M.; Boss, I.; Copeland, W.B.; Grey, V.E.; Previtali, A.; O’Connor, T.; et al. Efficacy and safety of Azacitidine (AZA) in combination with the anti-PD-L1 durvalumab (durva) for the front-line treatment of older patients (pts) with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy (IC) and pts with higher-risk myelodysplastic syndromes (HR-MDS); results from a large, international, randomized phase 2 study. Blood 2019, 134 (Suppl. 1), 829. [Google Scholar]
- Ravandi, F.; Assi, R.; Daver, N.; Benton, C.B.; Kadia, T.; Thompson, P.A.; Borthakur, G.; Alvarado, Y.; Jabbour, E.J.; Konopleva, M.; et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome: A single-arm, phase 2 study. Lancet Haematol. 2019, 6, e480–e486. [Google Scholar] [CrossRef] [PubMed]
- Zeidner, J.F.; Vincent, B.G.; Esparza, S.; Ivanova, A.; Moore, D.T.; Foster, M.C.; Coombs, C.C.; Jamieson, K.; Van Deventer, H.W.; Blanchard, L.; et al. Final clinical results of a phase II study of high dose cytarabine followed by pembrolizumab in relapsed/refractory AML. Blood 2019, 134 (Suppl. 1), 831. [Google Scholar]
- Davids, M.S.; Kim, H.T.; Bachireddy, P.; Ostello, C.; Liguori, R.; Savell, A.; Lukez, A.P.; Avigan, D.; Chen, Y.B.; McSweeney, P. Ipilimumab for patients with relapse after allogeneic transplantation. N. Engl. J. Med. 2016, 375, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Bashey, A.; Medina, B.; Corringham, S.; Pasek, M.; Carrier, E.; Vrooman, L.; Lowy, I.; Solomon, S.R.; Morris, L.E.; Holland, H.K.; et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic stem cell transplantation. Blood 2009, 113, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Bashey, A.; Zhong, R.; Corringham, S.; Messer, K.; Pu, M.; Ma, W.; Chut, T.; Soiffer, R.; Mitrovich, R.C.; et al. CTLA-4 blockade following relapse of malignancies after allogeneic stem cell transplantation is associated with T-cell activation but not with increased levels of T regulatory cells. Biol. Blood Marrow Transplant. 2011, 17, 682–692. [Google Scholar] [CrossRef]
- Wu, M.; Wang, S.; Chen, J.Y.; Zhou, L.J.; Guo, Z.W.; Li, Y.H. Therapeutic cancer vaccine therapy for acute myeloid leukemia. Immunotherapy 2021, 13, 863–877. [Google Scholar] [CrossRef]
- Floisand, Y.; Remberger, M.; Bigalke, I.; Josefsen, D.; Valerhaugen, H.; Inderberg, E.M.; Olaussen, R.W.; Gjertsen, B.T.; Goedkoop, R.; Geiger, C.; et al. WT1 and PRAME RNA-loaded dendritic cell vaccine as maintenance therapy in de novo AML after intensive induction chemotherapy. Leukemia 2023, 37, 1842–1849. [Google Scholar] [CrossRef]
- Van Zeeburg, H.; Singh, S.K.; Wagner-Drouet, E.; Platzbecker, U.; Holderried, T.; Van Elssen, C.; Giagounidis, A.; Gjertsen, B.T.; Van De Loosdrecht, A.; Rovers, J. Treatment with a leukemia-derived dendritic cell vaccine induces innate and adaptive immune response correlating with clinical response in AML patients in CR1 with measurable residual disease. HemaSphere 2023, 7 (Suppl. 1), 2687. [Google Scholar] [CrossRef]
- Hattori, N.; Nakamaki, T. Natural killer immunotherapy for minimal residual disease eradication following allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Int. J. Mol. Sci. 2019, 20, 2057. [Google Scholar] [CrossRef]
- Tameni, A.; Toffalori, C.; Vago, L. Tricking the trickster: Precision medicine approaches to counteract leukemia immune escape after transplant. Blood, 2024; ahead of print. [Google Scholar] [CrossRef]
- Rimando, J.C.; Chendamarai, E.; Rettig, M.P.; Jayasinghe, R.; Christopher, M.J.; Ritchey, J.K.; Christ, S.; Kim, M.Y.; Bonvini, E.; DiPersio, J.F. Flotetuzumab and other T-cell immunotherapies upregulate MHC class II expression on acute myeloid leukemia cells. Blood 2023, 141, 1718–1723. [Google Scholar] [CrossRef]
- Chan, K.L.; Gomez, J.; Cardinez, C.; Kumari, N.; Sparbier, C.E.; Lam, E.Y.N.; Yeung, M.M.; Garciaz, S.; Kuzich, J.A.; Ong, D.M.; et al. Inhibition of the CtBP complex and FBXO11 enhances MHC class II expression and anti-cancer immune responses. Cancer Cell 2022, 30, 1190–1206. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.N.H.G.; Schmidt, D.; Lowinus, T.; Ryoo, J.; Dopfer, E.P.; Gonzalo Nunez, N.; Costa-Pereira, S.; Toffalori, C.; Punta, M.; Fetsch, V.; et al. Targeting MDM2 enhances antileukemia immunity after allogeneic transplantation via MHC-II and TRAIL-R1/2 upregulation. Blood 2022, 140, 1167–1181. [Google Scholar] [CrossRef]
- Toffalori, C.; Zito, L.; Gambacorta, V.; Riba, M.; Oliveira, F.; Bucci, C.; Barcella, M.; Spinelli, O.; Greco, R.; Crucitti, L.; et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nature Med 2019, 25, 603–611. [Google Scholar] [CrossRef]
- Noviello, M.; Manfredi, F.; Ruggiero, E.; Perini, T.; Oliveira, F.; Cortesi, F.; De Simone, P.; Toffalori, C.; Gambacorta, V.; Greco, R.; et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat. Commun. 2019, 10, 1065. [Google Scholar] [CrossRef]
- Saudemont, A.; Quesnel, B. In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood 2004, 104, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- Rudat, S.; Rosell-Schiess, M.; Keppeler, H.; Katschke, M.T.; Weller, J.; Ramesh, A.; Landerer, H.; Offord, V.; Harle, V.; Adams, D.; et al. Enhancing NKG2DL-mediated immunogenicity of acute myeloid leukemia cells by GATA2 suppression and induction of myeloid differentiation to improve NK cell therapy. HemaSphere 2020, 4 (Suppl. 1), P451. [Google Scholar]
- Mel Garcia, L.; Gangadharan, A.; Banerjee, P.; Lin, P.; Daher, M.; Rafei, H.; Kumar, B.; Rezvani, K. Chimeric antigen receptor-engineered NK cells overcome CD226 downregulation as an immune escape mechanism in acute myeloid leukemia. Blood 2023, 142 (Suppl. 1), 4809. [Google Scholar] [CrossRef]
- Witalisz-Siepracka, A.; Denk, C.M.; Zdarsky, B.; Hofmann, L.; Edtmayer, S.; Harm, T.; Weiss, S.; Heindl, L.; Summer, S.; Dutta, S.; et al. STAT3 in acute myeloid leukemia facilitates natural killer cell-mediated surveillance. HemaSphere 2020, 4 (Suppl. 1), P1753. [Google Scholar]
- Tan, J.; Chen, S.; Lu, Y.; Yao, D.; Xu, L.; Zhang, Y.; Yang, L.; Chen, J.; Lai, J.; Yu, Z.; et al. Higher PD-1 expression concurrent with exhausted CD8+ T cells in patients with de novo acute myeloid leukemia. Chin. J. Cancer Res. 2017, 29, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Mani, R.; Nunes, J.; Chiang, C.L.; Zapolnik, K.; Hu, E.; Frissora, F.; Mo, X.; Walker, L.A.; Yan, P.; et al. PP2A is a therapeutically targetable driver of cell fate decisions via a c-Myc/p21 axis in human and murine acute myeloid leukemia. Blood 2022, 139, 1340–1358. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Ravandi, F. Enhancing cytotoxicity of immunotoxins in AML. Blood 2016, 127, 2787–2788. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Singh, A.; Basar, R.; Uprety, N.; Li, Y.; Fan, H.; Shanley, M.; Acharya, S.; Mendt, M.C.; Lin, P.; et al. Epigenetic scarring leads to irreversible NK cell dysfunction in myeloid malignancies. Blood 2023, 142 (Suppl. 1), 2088. [Google Scholar] [CrossRef]
- Bhagwat, A.S.; Torres, L.; Shestova, O.; Shestov, M.; Frey, N.V.; Hexner, E.O.; Luger, S.M.; Loren, A.W.; Martin, M.E.; McCurdy, S.R.; et al. Cytokine release syndrome results in reduced AML killing by CD123 CAR T cells. Blood 2023, 142 (Suppl. 1), 217. [Google Scholar] [CrossRef]
- Lan, T.; Luo, M.; Wei, X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol. 2021, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, J.; Liu, B.; Shao, C.; Shi, Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022, 29, 1515–1530. [Google Scholar] [CrossRef] [PubMed]
- Corradi, G.; Bassani, B.; Simonetti, G.; Sangaletti, S.; Vadakekolathu, J.; Fontana, M.C.; Pazzaglia, M.; Gulino, A.; Tripodo, C.; Cristiano, G.; et al. Release of IFNγ by acute myeloid leukemia cells remodels bone marrow immune microenvironment by inducing regulatory T cells. Clin. Cancer Res. 2022, 28, 3141–3155. [Google Scholar] [CrossRef]
- Dazzi, F.; Savoldelli, R.; Pievani, A.; Tettamanti, S.; Giacomini, C.; Kozlowska, A.; Serafini, M. Bone Marrow stroma impairs CAR-T cell proliferation and function: Mechanistic insights. Blood 2023, 142 (Suppl. 1), 1017. [Google Scholar] [CrossRef]
- Veglia, F.; Perego, M.; Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 2018, 19, 108–119. [Google Scholar] [CrossRef]
- Sahafnejad, Z.; Ramazi, S.; Allahverdi, A. An Update of epigenetic drugs for the treatment of cancers and brain diseases: A comprehensive review. Genes 2023, 14, 873. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.K.; Hassan, R.; Yaacob, N.S. Hypomethylating agents and immunotherapy: Therapeutic synergism in acute myeloid leukemia and myelodysplastic syndromes. Front. Oncol. 2021, 11, 624742. [Google Scholar] [CrossRef] [PubMed]
- Rutella, S.; Vadakekolathu, J.; Mazziotta, F.; Reeder, S.; Yau, T.O.; Mukhopadhyay, R.; Dickins, B.; Altmann, H.; Kramer, M.; Knaus, H.A.; et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia. J. Clin. Invest. 2022, 132, e159579. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Xie, J.; Fei, T.; Song, Q.; Kim, J.J.; To, C.; van den Brink, M.R.M.; Perales, M.A.; Mattie, M.; Shouval, R. An inflammatory biomarker signature reproducibly predicts CAR-T treatment failure in patients with aggressive lymphoma across the ZUMA trials cohorts. Blood 2023, 142 (Suppl. 1), 224. [Google Scholar] [CrossRef]
Antigen | Type | Expression on AML Blasts | Expression on LSC/HSC | Expression on BM Myeloid Precursors | Expression by Other Cell Types | Physiological Function | Immunotherapeutic Agents under Study | Clinically Approved Drugs | Ref. |
---|---|---|---|---|---|---|---|---|---|
CD33 | LRA | +++ (100%) | +/+ | +++ | M/M system (Kupffer cells; microglia) | Sialic-acid-dependent cellular adhesion component | AMG330/AMG673 AMV-564/ADC/CAR-T | Gemtuzumab Ozogamicin | [25,26] |
CD123 | LRA | +++ (70–80%) | ++/+ | ++ | Gastrointestinal mucous membrane/bronchus | Interleukin-3 receptor | Flotetuzumab JNJ-63709178 Vibecotamab/CAR-T | Tagraxofusp (for BPDCN) | [27,28,29] |
CLEC12A (CLL-1) | LRA | ++ (80–90%) | +/− | − | Not reported | Immunomodulatory inhibitory C-type lectin-like receptor | MCLA-117 CAR-T | - | [30,31] |
CD117 (c-kit) | LRA | ++ (80–90%) | −/+ | - (only in basophilic precursors) | Epithelial skin and breast cells; Cajal cells, melanocytes | KIT (stem cell/mast cell growth factor receptor) | CAR-T | TKI inhibitors (for Ph+ ALL or CML: Dasatinib, Ponatinib) | [32,33,34] |
FLT3 (CD135) | LRA | ++ (50–90%) | ++/+ | ++ | Gastrointestinal mucous membrane; central nervous system | Tyrosine kinase (cytokine receptor) | Bispecific antibody | TKI inhibitors (Midostaurin, Quizartinib, Gilteritinib) | [35,36,37,38] |
IL1RAP | LRA | ++ (80%) | +/− | ++ | Esophagus | IL1-receptor accessory protein | CAR-T | Anakinra | [39,40] |
Mutated NPM1 | LSA | +++ (30%) | ++/+ | ++ | Low tissue specificity | Nuclear chaperon | Preclinical | - | [41] |
Mutated IDH1 (R132H) | LSA | ++ (10–15%) | ++/++ | ++ | Low tissue specificity | Metabolic (Krebs cycle) | Preclinical | Ivosidenib | [42] |
Lewis Y (CD174) | LAA | + | −/− | − | Gastrointestinal mucous membrane; epithelial cells | Unknown (carbohydrate blood antigen) | CAR-T | - | [43] |
MUC1 | LAA | ++ (monocytic AML) | +/− | + | Gastrointestinal mucous membrane; epithelial cells | Mucosal protection | CAR-T | - | [44] |
CD44v6 | LAA | ++ (60–70%) | +/− | + | Keratinocytes | Cellular adhesion component | CAR-T | - | [45] |
CD244/ 2B4 | LAA | ++ | ++/++ | ++ | M/M system | Activating/inhibitory receptor of NK cells | ICPI | - | [27] |
TIM-3 | LAA | ++ (>80%) | ++/- | ++ | M/M system | Immunoinhibitory co-receptor | ICPI/Antibody (Sabatolimab) | - | [46,47] |
CD276 (B7-H3) | LAA | ++ | +/- | ++ | Low tissue specificity | Cell trafficking/immune checkpoint inhibitor | ADC (Vobramitamab Duocarmazine) | - | [48] |
WT1 (Wilms’ tumor gene 1) | LAA | +++ (80–100%) | +/+ | + | M/M system, spleen, kidney, heart, lung, prostate | Transcription factor | Vaccine | - | [49] |
PRAME | LAA | ++ (50%) | +/− | − | Testis | Unknown | Vaccine | - | [50] |
RHAMM | LAA | + | −/+ | + | Colon | Cellular adhesion component | Vaccine | - | [51] |
Mesothelin | LAA | + | −/− | − | Mesothelia | Unknown (possibly cell adhesion) | ADC | - | [52] |
Target | Drug Name | Type of Molecule | Clinicaltrials.gov Identifier | Clinical Phase | Indication | Primary End Points | Sponsor | Ref. |
---|---|---|---|---|---|---|---|---|
CD33 | AMG 330 | Bispecific antibody | NCT02520427 | I | R/R AML | DLT, TEAE | Amgen | [59] |
AMG 673 | Bispecific antibody | NCT03224819 | I | R/R AML | DLT, TEAE | Amgen | [60,61] | |
GEM 333 | Bispecific antibody | NCT03516760 | I | R/R AML | MTD, DLT, TEAE | GEMoab Monoclonals | - | |
AMV-564 | Tandem diabody | NCT03144245 | I | R/R AML | DLT, TEAE | Amphivena | [62] | |
CD123 | Flotetuzumab (MGD006) | DART | NCT02152956 | I | R/R AML, int-2/high-risk MDS | DLT | Macrogenics | [63] |
Flotetuzumab (MGD006) | DART | NCT04158739 | I | R/R AML (children + AYA) | DLT, TEAE | Macrogenics | - | |
JNJ-63709178 | Bispecific antibody | NCT02715011 | I | R/R AML | DLT, TEAE | Janssen R&D | [64] | |
Vibecotamab (XmAb 14045) | Bispecific antibody | NCT02730312 | I | R/R AML | MTD, TEAE | Xencor | [65] | |
CD135 (FLT3) | AMG 427 | Bispecific antibody | NCT03541369 | I | R/R AML | DLT, TEAE | Amgen | - |
CLL-1 | MCLA-117 | Bispecific antibody | NCT03038230 | I | R/R AML, newly diagnosed elderly AML | DLT, TEAE | Merus | [66] |
CD38 | XmAb 18968 | Bispecific antibody | NCT05038644 | I | R/R AML | DLT, TEAE | Med. College of Wisconsin | - |
Target | Drug Name | Type of Construct | Clinicaltrials.gov Identifier | Clinical Phase | Indication | Primary End Points | Sponsor | Ref. |
---|---|---|---|---|---|---|---|---|
CD33 | CD33CART | CAR-T cells (autologous/allogeneic) | NCT03971799 | I/II | R/R AML (children and AYA) | Phase 1: MTD Phase 2: RR | CIBMTR | [92] |
CD33/CLL-1 | CLL-CD33 cCAR T | Dual cCAR-T cells | NCT03795779 | I | R/R high risk hematological malignancies | MTD | iCell Gene Therapeutics | - |
CD123/CLL-1 | CD123/CLL1 CAR-T | Dual CAR-T cells | NCT03631576 | II/III | R/R AML | LFS + TEAE | Fujian Med University | - |
CD123 | UCART123v1.2 | Allogeneic CAR-T cells | NCT03190278 | I | R/R AML | MTD, TEAE | Cellectis S.A. | - |
CD123CAR-41BB-CD3zeta-EGFRt T-cells | CAR-T cells | NCT03114670 | I | R/R AML (after allo-HSCT) | TEAE, CART persistence, RR, OS | Aff. Hospital Academy of Military Med. Sciences | - | |
CD123CART | CAR-T cells | NCT02159495 | I | CD123+ R/R AML and persistent/recurrent BPDCN | TEAE, RR, OS | City of Hope (CA) | - | |
CD123 CAR-T | CAR-T cells | NCT04272125 | I/II | R/R AML | TEAE, RR | Chongqing Precision Biotech Co. Ltd. | - | |
MUC1/CLL-1/CD33/CD38/CD56/CD123 | CLL-1 CAR-T | Multiple gene-engineered T-cells | NCT03222674 | I/II | R/R AML | TEAE, RR, OS | Guangzhou Women and Children’s Med. Center | [93] |
NKG2D | NKR-2 cells | CAR-T cells | NCT03018405 | I/II | Various cancers including R/R AML | MTD, TEAE | Celyad Oncology SA | [94] |
CLL-1, CD33 and/or CD123 | CAR gene-engineered T-cells | CAR-T cells | NCT04010877 | I/II | R/R AML | MTD, TEAE, RR | Shenzhen Geno-Immune Med. Institute | - |
CD44v6 | MLM-CAR44.1 T-cells | CAR-T cells | NCT04097301 | I/II | R/R AML, CD44v6+ myeloma | MTD, TEAE, no vector replication | AGC Biologics | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosna, F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers 2024, 16, 2359. https://doi.org/10.3390/cancers16132359
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers. 2024; 16(13):2359. https://doi.org/10.3390/cancers16132359
Chicago/Turabian StyleMosna, Federico. 2024. "The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View" Cancers 16, no. 13: 2359. https://doi.org/10.3390/cancers16132359
APA StyleMosna, F. (2024). The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers, 16(13), 2359. https://doi.org/10.3390/cancers16132359