Novel HER-2 Targeted Therapies in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. HER-2 Biology and Cellular Mechanisms
2.1. HER-2 Receptor and Signaling Pathway
2.2. HER-2 Pathological Classification
3. Overview of Currently Approved HER-2-Targeted Therapies
3.1. Monoclonal Antibodies
3.1.1. Trastuzumab
- (a)
- In the metastatic setting, in the first line in combination with docetaxel for 6 cycles and then maintenance with pertuzumab until disease progression, regarding its overall survival benefit when compared with trastuzumab only with docetaxel (56.5 versus 40.8 months, hazard ratio (HR) 0.68) [21], or in monotherapy when the patient has contraindication to taxanes and/or pertuzumab [16];
- (b)
- In the neoadjuvant setting in combination with pertuzumab and taxane for locally advanced, inflammatory or early high-risk tumors, regarding its advantage in 5-year progression-free survival (86% versus 81%, HR 0.69) and in 5-year disease-free survival (84% versus 81%), when compared with trastuzumab plus chemotherapy [22];
- (c)
- In the adjuvant setting in combination with a taxane for 12 weeks and then as maintenance to complete 17 cycles, which demonstrated a 3-year invasive disease-free survival of 98,7% [23] or in monotherapy for one year after neoadjuvant therapy in patients achieving pathological complete response (pCR), which showed a 5-year disease-free survival of 84% and a 5-year overall survival of 92% [20].
3.1.2. Pertuzumab
- (a)
- In the metastatic setting, in first line in combination with docetaxel for 6 cycles and maintenance with trastuzumab until disease progression [21], as mentioned above;
- (b)
- In the neoadjuvant setting, in combination with trastuzumab and docetaxel to treat HER-2-positive early breast cancer with ≥2 cm [22];
- (c)
- In the adjuvant setting, in combination with trastuzumab for 1 year after combination with taxane in node-positive or high-risk node-negative disease, in which it demonstrated a 3-year invasive disease-free survival of 92% [25].
3.1.3. Margetuximab
- (a)
- In the metastatic setting, in combination with chemotherapy in third line and beyond, showing a 9-month benefit in progression-free survival, although no benefit in overall survival when compared with trastuzumab [27].
mAb | Target | Approved Use | Reference |
---|---|---|---|
Trastuzumab | HER-2 subdomain IV | Neoadjuvancy (+pertuzumab +ChT) Adjuvancy (+ChT or monotherapy) Palliative (±pertuzumab ±ChT) | [22] [20,23] [21] |
Pertuzumab | HER-2 subdomain II | Neoadjuvancy/Adjuvancy (+trastuzumab ± ChT) Palliative (+trastuzumab ± ChT) in 1L | [22,25] [21] |
Margetuximab | HER-2 subdomain IV | Palliative (+ChT) in ≥3L | [27] |
3.2. Tyrosine Kinase Inhibitors (TKIs)
3.2.1. Lapatinib
- (a)
- In the metastastic setting, in combination with capecitabine, which proved a 4-month benefit in time to progression (8.4 versus 4.4 months, HR 0.49) and/or trastuzumab [30].
3.2.2. Neratinib
- (a)
- In the metastatic setting, in combination with capecitabine, in third line and beyond, showing a 2.2-month benefit in progression free-survival (8.8 versus 6.6 months, HR 0.76) [41].
- (b)
- In the adjuvant setting, for 1 year, after completing 1 year of adjuvant trastuzumab, regarding its 5-year invasive disease-free survival benefit of 2.5% (90.2% versus 87.7%, HR 0.73) [42].
3.2.3. Tucatinib
- (a)
- In the metastatic setting, beyond third-line treatment, in combination with capecitabine and trastuzumab. This combination proved to increase progression-free survival by 2.7 months (7.6 versus 4.9 months, HR 0.57) and overall survival by 5.5 months (24.7 versus 19.2 months, HR 0.73) when compared with trastuzumab plus capecitabine [47].
3.2.4. Pyrotinib
- (a)
TKI | Target | Effect | Approved Use | Reference |
---|---|---|---|---|
Lapatinib | HER-1 and 2 | reversible | Palliative (+capecitabine and/or trastuzumab) | [30] |
Neratinib | HER-1, 2 and 4 | irreversible | Adjuvant (after 1y trastuzumab ±pertuzumab) Palliative (+capecitabine) | [42] [41] |
Tucatinib | HER-2 | irreversible | Palliative (+capecitabine +trastuzumab) | [47] |
Pyrotinib | HER-1, 2 and 4 | irreversible | Palliative (+capecitabine) | [49,50] |
3.3. Antibody-Drug Conjugates (ADCs)
3.3.1. Trastuzumab Emtansine
- (a)
- In the metastatic setting, as second-line treatment for HER-2-overexpressing metastatic breast cancer after trastuzumab therapy, as the EMILIA trial showed a 3.2-month increase in progression-free survival (9.6 versus 6.4 months, HR 0.65) [52] and a 4-month increase in overall survival (29.9 versus 25.9 months, HR 0.75) [55] when compared with lapatinib plus capecitabine;
- (b)
- In the adjuvant setting, for residual disease after neoadjuvant chemotherapy combined with trastuzumab and pertuzumab, showing an increase in invasive disease free survival (88.3% versus 77.0% at 3 years, HR 0.50) when compared with trastuzumab [53].
3.3.2. Trastuzumab Deruxtecan
- (a)
- In the metastatic setting in HER-2-positive breast cancer, in the second line or further, regarding its benefit in delaying disease progression (75.8% of patients had no disease progression at 12 months versus 34.1% with T-DM1, HR 0.28) and delaying death (94.1% were alive at 12 months compared with 85.9%, HR 0.55) [59];
- (b)
- In the metastatic setting in HER-2-low breast cancer, regarding its 4.7-month benefit in progression-free survival when compared with physician’s choice chemotherapy (HR 0.51) and its 6.4-month benefit in overall survival (HR 0.64) [60].
ADC | Cytotoxic | Linker | Drug-to-Antibody Ratio | Approved Use | Reference |
---|---|---|---|---|---|
T-DM1 | Emtansine (DM1) | Non-cleavable | 3.5:1 | Adjuvant HER-2+ EBC HER-2+ MBC ≥ 2L | [53] [52] |
T-DXd | Deruxtecan (DXd) | Cleavable | 8:1 | HER-2+ MBC ≥ 2L HER-2-low MBC | [58,59] [60] |
Anti-HER-2 Agent | Clinical Trials (Phase) | Population | Treatment in Study | Status |
---|---|---|---|---|
Trastuzumab | - | - | - | - |
Pertuzumab | NCT01817452 (II) | HER-2+ EBC | Neoadjuvant P+T ±ChT | Recruiting |
Margetuximab | NCT04262804 (II) NCT04425018 (II) | HER-2+ MBC ≥ 3L HER-2+ EBC | Margetuximab +ChT Neoadj margetuximab +P +ChT | Completed; unpublished Recruiting |
Lapatinib | - | - | - | - |
Neratinib | NCT01042379 (II) NCT04886531 (II) NCT05919108 (II) NCT05388149 (II) | HER-2+ EBC HER-2+ EBC HER-2m EBC HER-2+ EBC | Neoadj neratinib Neoadj neratinib +T +ET Neoadj neratinib Adjuvant neratinib + T-DM1 | Recruiting Recruiting Not yet recruiting Recruiting |
Tucatinib | NCT05132582 (III) NCT05748834 (II) NCT05458674 (II) NCT05583110 (II) NCT05955170 (II) NCT01042379 (II) | HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ EBC | Tucatinib +T+P Tucatinib +ChT Tucatinib +T + ChT Tucatinib +T +ChT Tucatinib +T +ChT Neoadj tucatinib +T+P | Recruiting Recruiting Recruiting Recruiting Not yet recruiting Recruiting |
Pyrotinib | NCT05346861 (III) NCT05255523 (II) NCT04605575 (II) NCT05429294 (II) NCT04246502 (II) NCT04254263 (III) NCT05841381 (III) NCT05861271 (II) NCT04659499 (II) NCT05880927 (II) NCT05834764 (II) NCT04929548 (II) NCT05659056 (II) NCT06000917 (II) NCT04917900 (II) NCT05430347 (II) NCT04900311 (II) NCT04290793 (II/III) | HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC | Pyrotinib rechallenge Pyrotinib +T in ≥2L Pyrotinib +ChT Pyrotinib +T +ChT in 1L Pyrotinib +ChT in 1L Adj pyrotinib +T Adj pyrotinib +T +ChT Adj pyrotinib +ChT Adj pyrotinib +ChT Adj pyrotinib Adj pyrotinib Neoadj pyrotinib +T +P Neoadj pyrotinib +T +ChT Neoadj pyrotinib +T +ChT Neoadj pyrotinib +T +ChT Neoadj pyrotinib +T +ChT Neoadj pyrotinib +T +ChT Neoadj pyrotinib +ChT | Recruiting Not yet recruiting Recruiting Recruiting Not yet recruiting Recruiting Not yet recruiting Not yet recruiting Not yet recruiting Recruiting Recruiting Not yet recruiting Recruiting Recruiting Recruiting Not yet recruiting Not yet recruiting Not yet recruiting |
T-DM1 | NCT01853748 (II) | HER-2+ EBC | Adj T-DM1 | Active, not recruiting |
T-DXd | NCT04784715 (III) NCT05744375 (II) NCT04622319 (III) NCT05113251 (III) NCT05900206 (II) NCT05704829 (II) NCT05953168 (II) | HER-2+ MBC HER-2+ MBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2+ EBC HER-2-low MBC | T-DXd ±P in 1L T-DXd in 1L Adj T-DXd Neoadj T-DXd ±T + P +ChT Neoadj T-DXd Neoadj T-DXd T-DXd in 1L | Recruiting Recruiting Recruiting Recruiting Recruiting Not yet recruiting Not yet recruiting |
4. Novel HER-2-Targeted Therapies
4.1. Novel Monoclonal Antibodies
4.1.1. MM-302
4.1.2. Inetetamab
4.2. Bispecific HER-2-Targeted Antibodies
4.2.1. Zanidatamab
4.2.2. MBS301
4.2.3. Anbenitamab
4.2.4. Zenocutuzumab
4.2.5. HER2(Per)-S-Fab
4.2.6. HER2-2XCD16
4.2.7. Discontinued Bispecific Antibodies
4.3. Novel Tyrosine Kinase Inhibitors (TKIs)
4.3.1. Poziotinib
4.3.2. DZD1516
4.3.3. Discontinued TKIs
4.4. Novel Antibody–Drug Conjugates (ADCs)
4.4.1. Trastuzumab Duocarmycin (SYD985)
4.4.2. Trastuzumab Rezetecan
4.4.3. ARX788
4.4.4. Disitamab Vedotin (RC48)
4.4.5. Zanidatamab Zovodotin (ZW49)
4.4.6. MRG002
4.4.7. A166
4.4.8. ALT-P7
4.4.9. XMT-1522
4.4.10. Discontinued ADCs
4.5. Other Antibody Conjugates
4.5.1. Immune-Stimulating Antibody Conjugates (ISAC)
4.5.2. Radionuclide–Antibody Conjugates
4.6. Combinations of HER-2-Targeted and Other Agents
4.6.1. Combination of HER-2-Targeted and Other Targeted Agents
4.6.2. Combination of HER-2-Targeted Agents and Immunotherapy
5. Other exploratory Therapies in HER-2-Positive Breast Cancer
5.1. PROTACs
5.2. Cell Therapies
5.3. Cancer Vaccines
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Pegram, M.D.; Pauletti, G.; Slamon, D.J. HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res. Treat. 1998, 52, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A.; et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989, 244, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef]
- Mukohara, T. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer. Cancer Sci. 2011, 102, 1–8. [Google Scholar] [CrossRef]
- Garrett, J.T.; Arteaga, C.L. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: Mechanisms and clinical implications. Cancer Biol. Ther. 2011, 11, 793–800. [Google Scholar] [CrossRef]
- Rexer, B.N.; Arteaga, C.L. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: Mechanisms and clinical implications. Crit. Rev. Oncogene 2012, 17, 1–16. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/search?distance=50&cond=Breast%20Cancer&term=HER-2positive%20Breast%20Cancer&aggFilters=ages:adult%20older,status:rec%20act,studyType:int (accessed on 7 November 2023).
- Xia, W.; Mullin, R.J.; Keith, B.R.; Liu, L.H.; Ma, H.; Rusnak, D.W.; Owens, G.; Alligood, K.J.; Spector, N.L. Anti-tumor activity of GW572016: A dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 2002, 21, 6255–6263. [Google Scholar] [CrossRef]
- Franklin, M.C.; Carey, K.D.; Vajdos, F.F.; Leahy, D.J.; de Vos, A.M.; Sliwkowski, M.X. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004, 5, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, H.K.; Wright, B.D.; Burt, A.D.; Quirke, P.; McNicol, A.M.; Dybdal, N.O.; Sliwkowski, M.X.; Hillan, K.J. Overexpression of HER2/neu in solid tumours: An immunohistochemical survey. Histopathology 2001, 38, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Somerfield, M.R.; Dowsett, M.; Hammond, M.E.H.; Hayes, D.F.; McShane, L.M.; Saphner, T.J.; Spears, P.A.; Allison, K.H. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: ASCO-College of American Pathologists Guideline Update. J. Clin. Oncol. 2023, 41, 3867–3872. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J. Clinical trials of Herceptin(R) (trastuzumab). Eur. J. Cancer 2001, 37 (Suppl. S1), 18–24. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jiang, Z.; Mortenson, E.D.; Deng, L.; Radkevich-Brown, O.; Yang, X.; Sattar, H.; Wang, Y.; Brown, N.K.; Greene, M.; et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010, 18, 160–170. [Google Scholar] [CrossRef]
- Shi, Y.; Fan, X.; Deng, H.; Brezski, R.J.; Rycyzyn, M.; Jordan, R.E.; Strohl, W.R.; Zou, Q.; Zhang, N.; An, Z. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcgamma receptors on macrophages. J. Immunol. 2015, 194, 4379–4386. [Google Scholar] [CrossRef]
- Baselga, J.; Norton, L.; Albanell, J.; Kim, Y.M.; Mendelsohn, J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 1998, 58, 2825–2831. [Google Scholar]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant trastuzumab in HER-2 positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef]
- Swain, S.M.; Kim, S.B.; Cortes, J.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.M.; Schneeweiss, A.; Knott, A.; et al. Pertuzumab, trastuzumab, and docetaxel for HER-2 positive metastatic breast cancer (CLEOPATRA study): Overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013, 14, 461–471. [Google Scholar] [CrossRef]
- Gianni, L.; Pienkowski, T.; Im, Y.H.; Roman, L.; Tseng, L.M.; Liu, M.C.; Lluch, A.; Staroslawska, E.; Haba Rodriguez, J.; Im, S.A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER-2 positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tolaney, S.M.; Barry, W.T.; Dang, C.T.; Yardley, D.A.; Moy, B.; Marcom, P.K.; Albain, K.S.; Rugo, H.S.; Ellis, M.; Chir, B.; et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER-2 positive breast cancer. N. Engl. J. Med. 2015, 372, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Llado, A.; Bianchi, G.; Cortes, J.; Kellokumpu-Lehtinen, P.L.; Cameron, D.A.; Miles, D.; Salvagni, S.; Wardley, A.; Goeminne, J.C.; et al. Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of Pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2010, 28, 1131–1137. [Google Scholar] [PubMed]
- Von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER-2 positive Breast Cancer. N. Engl. J. Med. 2017, 377, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, J.L.; Gorlatov, S.; Zhang, W.; Yang, Y.; Huang, L.; Burke, S.; Li, H.; Ciccarone, V.; Zhang, T.; Stavenhagen, J.; et al. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res. 2011, 13, R123. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Im, S.A.; Cardoso, F.; Cortes, J.; Curigliano, G.; Musolino, A.; Pegram, M.D.; Bachelot, T.; Wright, G.S.; Saura, C.; et al. Margetuximab versus Trastuzumab in Patients with Previously Treated HER-2 positive Advanced Breast Cancer (SOPHIA): Final Overall Survival Results From a Randomized Phase 3 Trial. J. Clin. Oncol. 2023, 41, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Traxler, P. Tyrosine kinases as targets in cancer therapy—Successes and failures. Expert Opin. Ther. Targets 2003, 7, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Scaltriti, M.; Chandarlapaty, S.; Prudkin, L.; Aura, C.; Jimenez, J.; Angelini, P.; Sánchez, G.; Guzman, M.; Parra, J.L.; Ellis, C.; et al. Clinical benefit of lapatinib-based therapy in patients with human epidermal growth factor receptor 2–positive breast tumors coexpressing the truncated p95HER2 receptor. Clin. Cancer Res. 2010, 16, 2688–2695. [Google Scholar] [CrossRef]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus capecitabine for HER-2 positive advanced breast cancer. N. Engl. J. Med. 2006, 355, 2733–2743. [Google Scholar] [CrossRef]
- Goss, P.E.; Smith, I.E.; O’Shaughnessy, J.; Ejlertsen, B.; Kaufmann, M.; Boyle, F.; Buzdar, A.U.; Fumoleau, P.; Gradishar, W.; Martin, M.; et al. Adjuvant lapatinib for women with early-stage HER-2 positive breast cancer: A randomised, controlled, phase 3 trial. Lancet Oncol. 2013, 14, 88–96. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.; Holmes, E.; Baselga, J.; de Azambuja, E.; Dueck, A.C.; Viale, G.; Zujewski, J.A.; Goldhirsch, A.; Armour, A.; Pritchard, K.; et al. Adjuvant Lapatinib and Trastuzumab for Early Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Results From the Randomized Phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial. J. Clin. Oncol. 2016, 34, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Untch, M.; Loibl, S.; Bischoff, J.; Eidtmann, H.; Kaufmann, M.; Blohmer, J.U.; Hilfrich, J.; Strumberg, D.; Fasching, P.A.; Kreienberg, R.; et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): A randomised phase 3 trial. Lancet Oncol. 2012, 13, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, V.; Dieci, M.V.; Griguolo, G.; Miglietta, F.; Girardi, F.; Bisagni, G.; Generali, D.G.; Cagossi, K.; Sarti, S.; Frassoldati, A.; et al. Trastuzumab-lapatinib as neoadjuvant therapy for HER-2 positive early breast cancer: Survival analyses of the CHER-Lob trial. Eur. J. Cancer 2021, 153, 133–141. [Google Scholar] [CrossRef] [PubMed]
- De Azambuja, E.; Holmes, A.P.; Piccart-Gebhart, M.; Holmes, E.; Di Cosimo, S.; Swaby, R.F.; Untch, M.; Jackisch, C.; Lang, I.; Smith, I.; et al. Lapatinib with trastuzumab for HER-2 positive early breast cancer (NeoALTTO): Survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014, 15, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.U.; Carey, L.A.; Liu, M.C.; Younger, J.; Come, S.E.; Ewend, M.; Harris, G.J.; Bullitt, E.; Abbeele, A.D.; Henson, J.W.; et al. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 2008, 26, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004, 64, 3958–3965. [Google Scholar] [CrossRef] [PubMed]
- Segovia-Mendoza, M.; Gonzalez-Gonzalez, M.E.; Barrera, D.; Diaz, L.; Garcia-Becerra, R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER-2 positive breast cancer: Preclinical and clinical evidence. Am. J. Cancer Res. 2015, 5, 2531–2561. [Google Scholar]
- Martin, M.; Bonneterre, J.; Geyer, C.E., Jr.; Ito, Y.; Ro, J.; Lang, I.; Kim, S.B.; Germa, C.; Vermette, J.; Wang, K.; et al. A phase two randomised trial of neratinib monotherapy versus lapatinib plus capecitabine combination therapy in patients with HER2+ advanced breast cancer. Eur. J. Cancer 2013, 49, 3763–3772. [Google Scholar] [CrossRef]
- Freedman, R.A.; Gelman, R.S.; Wefel, J.S.; Melisko, M.E.; Hess, K.R.; Connolly, R.M.; Poznak, C.H.; Niravath, P.A.; Puhalla, S.L.; Ibrahim, N.; et al. Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients with Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases. J. Clin. Oncol. 2016, 34, 945–952. [Google Scholar] [CrossRef]
- Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib Plus Capecitabine versus Lapatinib Plus Capecitabine in HER-2 positive Metastatic Breast Cancer Previously Treated with ≥2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef]
- Martin, M.; Holmes, F.A.; Ejlertsen, B.; Delaloge, S.; Moy, B.; Iwata, H.; Minckwitz, G.; Chia, S.K.L.; Mansi, J.; Barrios, C.H.; et al. Neratinib after trastuzumab-based adjuvant therapy in HER-2 positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1688–1700. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Liu, M.C.; Yee, D.; Yau, C.; van ‘t Veer, L.J.; Symmans, W.F.; Paoloni, M.; Perlmutter, J.; Hylton, N.M.; Hogarth, M.; et al. Adaptive Randomization of Neratinib in Early Breast Cancer. N. Engl. J. Med. 2016, 375, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.A.; Robidoux, A.; Abraham, J.; Perez-Garcia, J.M.; La Verde, N.; Orcutt, J.M.; Cazzaniga, M.E.; Piette, F.; Antolín, S.; Aguirre, E.; et al. NSABP FB-7: A phase II randomized neoadjuvant trial with paclitaxel + trastuzumab and/or neratinib followed by chemotherapy and postoperative trastuzumab in HER2(+) breast cancer. Breast Cancer Res. 2019, 21, 133. [Google Scholar] [CrossRef] [PubMed]
- Kulukian, A.; Lee, P.; Taylor, J.; Rosler, R.; de Vries, P.; Watson, D.; Forero-Torres, A.; Peterson, S. Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Models. Mol. Cancer Ther. 2020, 19, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Bhattacharyya, R.; Banerjee, D.; Shukla, J. Application of Tucatinib and Trastuzumab: Dual Anti HER2 Therapy Against HER2 Positive Breast Cancer. Indian J. Clin Biochem. 2021, 36, 124–125. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Mueller, V.; Borges, V.; Hamilton, E.; Hurvitz, S.; Loi, S.; Murthy, R.; Okines, A.; Paplomata, E.; Cameron, D.; et al. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): Final overall survival analysis. Ann. Oncol. 2022, 33, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, C.; Wan, H.; Zhang, G.; Feng, J.; Zhang, L.; Chen, X.; Zhong, D.; Lou, L.; Tao, W.; et al. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci. 2017, 110, 51–61. [Google Scholar] [CrossRef]
- Ma, F.; Ouyang, Q.; Li, W.; Jiang, Z.; Tong, Z.; Liu, Y.; Li, H.; Yu, S.; Feng, J.; Wang, S.; et al. Pyrotinib or Lapatinib Combined with Capecitabine in HER-2 positive Metastatic Breast Cancer with Prior Taxanes, Anthracyclines, and/or Trastuzumab: A Randomized, Phase II Study. J. Clin. Oncol. 2019, 37, 2610–2619. [Google Scholar] [CrossRef]
- Jiang, Z.; Yan, M.; Hu, X.; Zhang, Q.; Ouyang, Q.; Feng, J.; Yin, Y.; Sun, T.; Tong, Z.; Wang, X.; et al. Pyrotinib combined with capecitabine in women with HER2+ metastatic breast cancer previously treated with trastuzumab and taxanes: A randomized phase III study. J. Clin. Oncol. 2019, 37, 1001. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, Z.; He, X.; Cai, L.; Wang, X.; Li, X. Cost-Effectiveness of Pyrotinib Plus Capecitabine versus Lapatinib Plus Capecitabine for the Treatment of HER2-Positive Metastatic Breast Cancer in China: A Scenario Analysis of Health Insurance Coverage. Curr. Oncol. 2022, 29, 6053–6067. [Google Scholar] [CrossRef]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab emtansine for HER-2 positive advanced breast cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER-2 positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blattler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; et al. Targeting HER-2 positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008, 68, 9280–9290. [Google Scholar] [CrossRef] [PubMed]
- Dieras, V.; Miles, D.; Verma, S.; Pegram, M.; Welslau, M.; Baselga, J.; Krop, I.E.; Blackwell, K.; Hoersch, S.; Xu, J.; et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER-2 positive advanced breast cancer (EMILIA): A descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Yver, A.; Agatsuma, T.; Soria, J.C. The art of innovation: Clinical development of trastuzumab deruxtecan and redefining how antibody-drug conjugates target HER-2 positive cancers. Ann. Oncol. 2020, 31, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Tsurutani, J.; Takahashi, S.; Iwata, H.; Krop, I.E.; Redfern, C.; Sagara, Y.; Doi, T.; Park, H.; Murthy, R.K.; et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER-2 positive breast cancer previously treated with trastuzumab emtansine: A dose-expansion, phase 1 study. Lancet Oncol. 2019, 20, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER-2 positive Breast Cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef]
- Cortes, J.; Kim, S.B.; Chung, W.P.; Im, S.A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.M.; Petry, V.; Chung, C.F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER-2 low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Espelin, C.W.; Leonard, S.C.; Geretti, E.; Wickham, T.J.; Hendriks, B.S. Dual HER2 Targeting with Trastuzumab and Liposomal-Encapsulated Doxorubicin (MM-302) Demonstrates Synergistic Antitumor Activity in Breast and Gastric Cancer. Cancer Res. 2016, 76, 1517–1527. [Google Scholar] [CrossRef]
- Miller, K.; Cortes, J.; Hurvitz, S.A.; Krop, I.E.; Tripathy, D.; Verma, S.; Riahi, K.; Reynolds, J.G.; Wickham, T.J.; Molnar, I.; et al. HERMIONE: A randomized Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naive, HER-2 positive, locally advanced/metastatic breast cancer. BMC Cancer 2016, 16, 352. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, P.; Di, L.; Wang, X.; Yang, J.; Tong, Z.; Liu, J.; Feng, J.; Liu, D.; Yu, Q.; et al. Efficacy and safety of inetetamab in combination with chemotherapy as first-line treatment of HER-2 positive metastatic breast cancer: A subgroup analysis in the HOPES study. Transl. Breast Cancer Res. 2022, 3, 1136380. [Google Scholar] [CrossRef]
- Bian, L.; Xu, B.H.; Di, L.J.; Wang, T.; Wang, X.J.; Jiao, S.C.; Yang, J.L.; Tong, Z.S.; Liu, J.; Feng, J.F.; et al. [Phase Ⅲ randomized controlled, multicenter, prospective study of recombinant anti-HER2 humanized monoclonal antibody (Cipterbin) combined with vinorelbine in patients with HER2 positive metastatic breast cancer: The HOPES Study]. Zhonghua Yi Xue Za Zhi 2020, 100, 2351–2357. [Google Scholar] [PubMed]
- Liu, X.; Zhang, P.; Li, C.; Song, X.; Liu, Z.; Shao, W.; Li, S.; Wang, X.; Yu, Z. Efficacy and safety of inetetamab-containing regimens in patients with HER-2 positive metastatic breast cancer: A real-world retrospective study in China. Front. Oncol. 2023, 13, 1136380. [Google Scholar] [CrossRef] [PubMed]
- Weisser, N.E.; Wickman, G.; Abraham, L.; O’Toole, J.; Harbourne, B.; Guedia, J.; Cheng, C.W.; Chan, P.; Browman, D.; Gold, M.R.; et al. The bispecific antibody zanidatamab’s (ZW25’s) unique mechanisms of action and durable anti-tumor activity in HER2-expressing cancers. In Proceedings of the AACR Annual Meeting 2021, Philadelphia, PA, USA, 9–14 July 2021; p. 1005. [Google Scholar]
- Meric-Bernstam, F.; Hanna, D.; Beeram, M.; Lee, K.W.; Kang, Y.K.; Chaves, J.; Lee, J.; Goodwin, R.; Vaklavas, C.; Oh, D.Y.; et al. Safety, anti-tumour activity, and biomarker results of the HER2-targeted bispecific antibody ZW25 in HER2-expressing solid tumours. Ann. Oncol. 2019, 30, v167–v168. [Google Scholar] [CrossRef]
- Bedard, P.L.; Im, S.A.; Elimova, E.; Rha, S.Y.; Goodwin, R.; Ferrario, C.; Lee, K.W.; Hanna, D.; Meric-Bernstam, F.; Mayordomo, J.; et al. Zanidatamab (ZW25), a HER2-targeted bispecific antibody, in combination with chemotherapy (chemo) for HER-2 positive breast cancer (BC): Results from a phase 1 study. In Proceedings of the San Antonio Breast Cancer Symposium 2021, San Antonio, TX, USA, 7–10 December 2021; Cancer Research: San Antonio, TX, USA, 2022. [Google Scholar]
- Huang, S.; Li, F.; Liu, H.; Ye, P.; Fan, X.; Yuan, X.; Wu, Z.; Chen, J.; Jin, C.; Shen, B.; et al. Structural and functional characterization of MBS301, an afucosylated bispecific anti-HER2 antibody. MAbs 2018, 10, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Cai, H.; Jin, Y.; Wang, P.; Zhang, Q.; Lin, Y.; Wang, W.; Cheng, J.; Zeng, N.; Xu, T.; et al. Structural basis of a novel heterodimeric Fc for bispecific antibody production. Oncotarget 2017, 8, 51037–51049. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, D.; Cai, L.; Yao, H.; Yan, M.; Wang, X.; Shen, W.; Du, Y.; Pang, H.; Lai, X.; et al. First-in-human HER2-targeted Bispecific Antibody KN026 for the Treatment of Patients with HER-2 positive Metastatic Breast Cancer: Results from a Phase I Study. Clin. Cancer Res. 2022, 28, 618–628. [Google Scholar] [CrossRef]
- Ji, D.; Zhang, J.; Shen, W.; Du, Y.; Xu, J.; Yang, J.; Luo, X.; Kong, P.; Yang, F.; Hu, X. Preliminary safety, efficacy and pharmacokinetics (PK) results of KN026 (a HER2 bispecific antibody) monotherapy in advanced solid tumor patients with HER2 expression. J. Clin. Oncol. 2020, 38, 1041. [Google Scholar] [CrossRef]
- Geuijen, C.A.W.; De Nardis, C.; Maussang, D.; Rovers, E.; Gallenne, T.; Hendriks, L.J.A.; Visser, T.; Nijhuis, R.; Logtenberg, T.; Kruif, J.; et al. Unbiased Combinatorial Screening Identifies a Bispecific IgG1 that Potently Inhibits HER3 Signaling via HER2-Guided Ligand Blockade. Cancer Cell 2018, 33, 922–936.e10. [Google Scholar] [CrossRef]
- Hamilton, E.P.; Petit, T.; Pistilli, B.; Goncalves, A.; Ferreira, A.; Dalenc, F.; Cardoso, F.; Mita, M.M.; Dezentjé, V.O.; Manso, L.; et al. Clinical activity of MCLA-128 (zenocutuzumab), trastuzumab, and vinorelbine in HER2 amplified metastatic breast cancer (MBC) patients (pts) who had progressed on anti-HER2 ADCs. J. Clin. Oncol. 2020, 38, 3093. [Google Scholar] [CrossRef]
- Schram, A.M.; Goto, K.; Kim, D.; Martin-Romano, P.; Ou, S.I.; O’Kane, G.M.; O’Reilly, E.M.; Umemoto, K.; Duruisseaux, M.; Neuzillet, C.; et al. Efficacy and safety of zenocutuzumab, a HER2 x HER3 bispecific antibody, in advanced NRG1 fusion-positive (NRG1+) cancer. J. Clin. Oncol. 2022, 40, 105. [Google Scholar] [CrossRef]
- Deng, W.; Liu, J.; Pan, H.; Li, L.; Zhou, C.; Wang, X.; Shu, R.; Dong, B.; Cao, D.; Li, Q.; et al. A Bispecific Antibody Based on Pertuzumab Fab Has Potent Antitumor Activity. J. Immunother. 2018, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Oberg, H.H.; Kellner, C.; Gonnermann, D.; Sebens, S.; Bauerschlag, D.; Gramatzki, M.; Kabelitz, D.; Peipp, M.; Wesch, D. Tribody [(HER2)(2)xCD16] Is More Effective Than Trastuzumab in Enhancing gammadelta T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells. Front. Immunol. 2018, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lam, L.; Nagai, Y.; Zhu, Z.; Chen, X.; Ji, M.Q.; Greene, M.I. A targeted immunotherapy approach for HER2/neu transformed tumors by coupling an engineered effector domain with interferon-gamma. Oncoimmunology 2018, 7, e1300739. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, C.F.; Huhalov, A.; Harms, B.D.; Adams, S.; Paragas, V.; Oyama, S.; Zhang, B.; Luss, L.; Overland, R.; Nguyen, S.; et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol. Cancer Ther. 2012, 11, 582–593. [Google Scholar] [CrossRef]
- Kiewe, P.; Hasmuller, S.; Kahlert, S.; Heinrigs, M.; Rack, B.; Marme, A.; Korfel, A.; Jager, M.; Lindhofer, H.; Sommer, H.; et al. Phase I trial of the trifunctional anti-HER2 x anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin. Cancer Res. 2006, 12, 3085–3091. [Google Scholar] [CrossRef]
- Jager, M.; Schoberth, A.; Ruf, P.; Hess, J.; Lindhofer, H. The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res. 2009, 69, 4270–4276. [Google Scholar] [CrossRef]
- Wermke, M.; Alt, J.; Kauh, J.; Back, J.; Salhi, Y.; Reddy, V.; Bayever, E.; Ochsenreither, S. Preliminary biomarker and pharmacodynamic data from a phase I study of single-agent bispecific antibody T-cell engager GBR 1302 in subjects with HER-2 positive cancers. J. Clin. Oncol. 2018, 36, 69. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.P.; Yoon, Y.K.; Kim, M.S.; Lee, G.S.; Han, S.W.; Im, S.A.; Kim, T.Y.; Oh, D.Y.; Bang, Y.J. Antitumor activity of HM781-36B, a pan-HER tyrosine kinase inhibitor, in HER2-amplified breast cancer cells. Anticancer Drugs 2012, 23, 288–297. [Google Scholar] [CrossRef]
- Robichaux, J.P.; Elamin, Y.Y.; Vijayan, R.S.K.; Nilsson, M.B.; Hu, L.; He, J.; He, J.; Zhang, F.; Pisegna, M.; Poteete, A.; et al. Pan-Cancer Landscape and Analysis of ERBB2 Mutations Identifies Poziotinib as a Clinically Active Inhibitor and Enhancer of T-DM1 Activity. Cancer Cell 2020, 37, 420. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.M.; Lee, K.W.; Oh, D.Y.; Lee, J.S.; Im, S.A.; Kim, D.W.; Han, S.W.; Kim, Y.J.; Kim, T.Y.; Kim, J.H.; et al. Phase 1 Studies of Poziotinib, an Irreversible Pan-HER Tyrosine Kinase Inhibitor in Patients with Advanced Solid Tumors. Cancer Res. Treat. 2018, 50, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Lee, K.H.; Sohn, J.H.; Lee, K.S.; Jung, K.H.; Kim, J.H.; Lee, K.H.; Ahn, J.S.; Kim, T.Y.; Kim, G.M.; et al. A phase II trial of the pan-HER inhibitor poziotinib, in patients with HER-2 positive metastatic breast cancer who had received at least two prior HER2-directed regimens: Results of the NOV120101-203 trial. Int. J. Cancer 2018, 143, 3240–3247. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Jung, K.H.; Sohn, J.; Lee, K.S.; Kim, J.H.; Yang, Y.; Beak, E.; Han, H.; Im, S.-A. Poziotinib for HER-2 positive metastatic breast cancer (MBC): Final clinical efficacy and safety results for long-term follow-up of the phase II NOV120101-203 trial. In Annals of Oncology, Proceedings of the ESMO Congress 2022, Berlin, Germany, 3–5 May 2022; Elsevier: Amsterdam, The Netherlands, 2022; pp. S207–S208. [Google Scholar]
- Zhang, J.; McAndrew, N.P.; Wang, X.; Du, Y.; DiCarlo, B.; Wang, M.; Chen, K.; Yu, W.; Hu, X. Preclinical and clinical activity of DZD1516, a full blood-brain barrier-penetrant, highly selective HER2 inhibitor. Breast Cancer Res. 2023, 25, 81. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, J.; McAndrew, N.P. Early Clinical Safety and Pharmacokinetics Data of DZD1516, an BBB-Penetrant Selective HER2 Inhibitor for the Treatment of HER-2 positive Metastatic Breast Cancer. J. Clin. Oncol. 2022, 40, 1038. [Google Scholar] [CrossRef]
- Tanaka, H.; Hirata, M.; Shinonome, S.; Wada, T.; Iguchi, M.; Dohi, K.; Inoue, M.; Ishioka, Y.; Hojo, K.; Yamada, T.; et al. Preclinical antitumor activity of S-222611, an oral reversible tyrosine kinase inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor 2. Cancer Sci. 2014, 105, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Spicer, J.; Baird, R.; Suder, A.; Cresti, N.; Corbacho, J.G.; Hogarth, L.; Frenkel, E.; Matsumoto, S.; Kawabata, I.; Donaldson, K.; et al. Phase 1 dose-escalation study of S-222611, an oral reversible dual tyrosine kinase inhibitor of EGFR and HER2, in patients with solid tumours. Eur. J. Cancer 2015, 51, 137–145. [Google Scholar] [CrossRef]
- Macpherson, I.R.; Spiliopoulou, P.; Rafii, S.; Saggese, M.; Baird, R.D.; Garcia-Corbacho, J.; Italiano, A.; Bonneterre, J.; Campone, M.; Cresti, N.; et al. A phase I/II study of epertinib plus trastuzumab with or without chemotherapy in patients with HER-2 positive metastatic breast cancer. Breast Cancer Res. 2019, 22, 1. [Google Scholar] [CrossRef]
- Schram, A.M.; Ahnert, J.R.; Patel, M.R.; Jauhari, S.; Sachdev, J.C.; Zhu, V.W.; LoRusso, P.; Nguyen, D.; Le, X.; O’Connor, M.; et al. Safety and preliminary efficacy from the phase 1 portion of MasterKey-01: A First-in-human dose-escalation study to determine the recommended phase 2 dose (RP2D), pharmacokinetics (PK) and preliminary antitumor activity of BDTX-189, an inhibitor of allosteric ErbB mutations, in patients (pts) with advanced solid malignancies. J. Clin. Oncol. 2021, 39, 3086. [Google Scholar]
- Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 2019, 20, 1124–1135. [Google Scholar] [CrossRef]
- Dokter, W.; Ubink, R.; van der Lee, M.; van der Vleuten, M.; van Achterberg, T.; Jacobs, D.; Loosveld, E.; van den Dobbelsteen, D.; Egging, D.; Mattaar, E.; et al. Preclinical profile of the HER2-targeting ADC SYD983/SYD985: Introduction of a new duocarmycin-based linker-drug platform. Mol. Cancer Ther. 2014, 13, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Manich, C.S.; O’Shaughnessy, J.; Aftimos, P.G.; van den Tweel, E.; Oesterholt, M.; Escrivá-de-Romaní, S.I.; Tueux, N.Q.; Tan, T.J.; Lim, J.S.; Ladoire, S.; et al. Primary outcome of the phase III SYD985.002/TULIP trial comparing [vic-]trastuzumab duocarmazine to physician’s choice treatment in patients with pre-treated HER-2 positive locally advanced or metastatic breast cancer. Ann. Oncol. 2021, 32, 1283–1346. [Google Scholar]
- Zhang, T.; You, L.; Xu, J.; Yin, J.; Qu, B.; Mao, Y.; Fu, B.; Cao, D.; Zhao, L.; Feng, J.; et al. SHR-A1811, a novel anti-HER2 ADC with superior bystander effect, optimal DAR and favorable safety profiles. Cancer Res. 2023, 83 (Suppl. S8), LB031. [Google Scholar] [CrossRef]
- Yao, H.; Ryu, M.H.; Park, J.; Voskoboynik, M.; Kim, J.H.; Liu, K.; Barve, M.; Acuna-Villaorduna, A.; Im, S.-A.; Roy, A.C.; et al. The HER2-targeting ADC SHR-A1811 in HER2-expressing/mutated advanced non-breast solid tumors (STs): Results from the global phase I study. Ann. Oncol. 2023, 34, S458–S497. [Google Scholar] [CrossRef]
- Skidmore, L.; Sakamuri, S.; Knudsen, N.A.; Hewet, A.G.; Milutinovic, S.; Barkho, W.; Biroc, S.L.; Kirtley, J.; Marsden, R.; Storey, K.; et al. ARX788, a Site-specific Anti-HER2 Antibody-Drug Conjugate, Demonstrates Potent and Selective Activity in HER-2 low and T-DM1-resistant Breast and Gastric Cancers. Mol. Cancer Ther. 2020, 19, 1833–1843. [Google Scholar] [CrossRef]
- Barok, M.; Le Joncour, V.; Martins, A.; Isola, J.; Salmikangas, M.; Laakkonen, P.; Joensuu, H. ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumab emtansine-resistant HER-2 positive breast cancer and gastric cancer. Cancer Lett. 2020, 473, 156–163. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, D.; Shen, W.; Xiao, Q.; Gu, Y.; O’Shaughnessy, J.; Hu, X. Phase I Trial of a Novel Anti-HER2 Antibody-Drug Conjugate, ARX788, for the Treatment of HER-2 positive Metastatic Breast Cancer. Clin. Cancer Res. 2022, 28, OF1–OF10. [Google Scholar]
- Shi, F.; Liu, Y.; Zhou, X.; Shen, P.; Xue, R.; Zhang, M. Disitamab vedotin: A novel antibody-drug conjugates for cancer therapy. Drug Deliv. 2022, 29, 1335–1344. [Google Scholar] [CrossRef]
- Yao, X.; Jiang, J.; Wang, X.; Huang, C.; Li, D.; Xie, K.; Xu, Q.; Li, H.; Li, Z.; Lou, L.; et al. A novel humanized anti-HER2 antibody conjugated with MMAE exerts potent anti-tumor activity. Breast Cancer Res. Treat 2015, 153, 123–133. [Google Scholar] [CrossRef]
- Deeks, E.D. Disitamab Vedotin: First Approval. Drugs 2021, 81, 1929–1935. [Google Scholar] [CrossRef]
- Hamblett, K.J.; Barnscher, S.D.; Davies, R.H.; Hammon, P.W.; Hernandez, A.; Wickman, G.R.; Fung, V.K.; Ding, T.; Garnett, G.; Galey, A.S.; et al. ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers. In Proceedings of the 2018 San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 4–8 December 2018; Cancer Research: San Antonio, TX, USA, 2019. [Google Scholar]
- Jhaveri, K.; Dotan, E.; Oh, D.; Ferrario, C.; Tolcher, A.W.; Lee, K.; Liao, C.; Kang, Y.; Kim, Y.H.; Hamilton, E.P.; et al. Preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Ann. Oncol. 2022, 33, S197–S224. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Xu, Z.; Li, L.; Liu, W.; Dai, Z.; Zhao, Z.; Xiao, L.; Li, H.; Hu, C. Preclinical evaluation of MRG002, a novel HER2-targeting antibody-drug conjugate with potent antitumor activity against HER-2 positive solid tumors. Antib. Ther. 2021, 4, 175–184. [Google Scholar] [PubMed]
- Zhang, J.; Liu, R.; Gao, S.; Li, W.; Chen, Y.; Meng, Y.; Liu, C.; Jin, W.; Wu, J.; Wang, Y.; et al. Phase I study of A166, an antibody–drug conjugate in advanced HER2-expressing solid tumours. NPJ Breast Cancer 2023, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, G.; Gampenrieder, S.P.; Greil, R. HER2 Directed Antibody-Drug-Conjugates beyond T-DM1 in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 1115. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Kim, J.-Y.; Ahn, J.S.; Im, Y.-H.; Kim, S.-H.; Lee, S.; Chung, Y.S.; Park, S.J. First-in-human phase I study of ALT-P7, a HER2-targeting antibody-drug conjugate in patients with HER-2 positive advanced breast cancer. J. Clin. Oncol. 2020, 38, 3551. [Google Scholar] [CrossRef]
- Yurkovetskiy, A.; Ter-Ovanesyan, E.; Conlon, P.; Devit, M.; Bu, C.; Bodyak, N.; Lowinger, T.; Bergstrom, D. Non-clinical pharmacokinetics of XMT-1522, a HER2 targeting auristatin-based antibody drug conjugate. Cancer Res. 2017, 77 (Suppl. S13), 48. [Google Scholar] [CrossRef]
- Le Joncour, V.; Martins, A.; Puhka, M.; Isola, J.; Salmikangas, M.; Laakkonen, P.; Joensuu, H.; Barok, M. A Novel Anti-HER2 Antibody-Drug Conjugate XMT-1522 for HER-2 positive Breast and Gastric Cancers Resistant to Trastuzumab Emtansine. Mol. Cancer Ther. 2019, 18, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Bodyak, N.; Park, P.; Gumerov, D.; DeVit, M.; Yin, M.; Thomas, J.D.; Qin, L.; Lowinger, T.B.; Bergstrom, D.A. Trastuzumab-Dolaflexin, a Highly Potent Fleximer-Based Antibody-Drug Conjugate, Demonstrates a Favorable Therapeutic Index in Exploratory Toxicology Studies in Multiple Species. Cancer Res. 2015, 75, 641. [Google Scholar] [CrossRef]
- Traore, T.; Khattar, M. Synergy of an anti-HER2 ADC TAK-522 (XMT-1522) in combination with anti-PD1 monoclonal antibody (mAb) in a syngeneic breast cancer model expressing human HER2. J. Immunol. 2018, 200, 122–129. [Google Scholar] [CrossRef]
- Hamilton, E.P.; Bardia, A.; Beeram, M.; Bendell, J.; Mosher, R.; Hailman, E.; Bergstrom, D.; Burris, H.; Soliman, H. Phase 1 dose escalation of XMT-1522, a novel HER2-targeting antibody-drug conjugate (ADC), in patients (pts) with HER2-expressing breast, lung and gastric tumors. J. Clin. Oncol. 2018, 36, 2546. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Calvo, E.; Moreno, V.; Chung, H.C.; Park, Y.H.; Bang, Y.-J.; Rosen, L.S.; Mita, M.M.; Garrido-Laguna, I.; Leung, A.C.F.; et al. A phase I dose escalation study evaluating the safety and tolerability of a novel anti-HER2 antibody-drug conjugate (PF-06804103) in patients with HER-2 positive solid tumors. J. Oncol. 2020, 38, 1039. [Google Scholar] [CrossRef]
- Graziani, E.I.; Sung, M.; Ma, D.; Narayanan, B.; Marquette, K.; Puthenveetil, S.; Tumey, L.N.; Bikker, J.; Casavant, J.; Bennett, E.M.; et al. PF-06804103, A Site-specific Anti-HER2 Antibody-Drug Conjugate for the Treatment of HER2-expressing Breast, Gastric, and Lung Cancers. Mol. Cancer Ther. 2020, 19, 2068–2078. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Calvo, E.; Lee, K.S.; Moreno, V.; Park, Y.H.; Rha, S.Y.; Chalasani, P.; Zhong, W.; Zhou, L.; Pirie-Shepherd, S.; et al. Safety and Tolerability of a Novel Anti-HER2 Antibody-Drug Conjugate (PF-06804103) in Patients with HER2-Expressing Solid Tumors: A Phase 1 Dose-Escalation Study. Mol. Cancer Ther. 2023, 22, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.C.; Sun, W.; Khare, P.; Karimi, M.; Wang, X.; Shen, Y.; Ober, R.J.; Ward, E.S. Engineering a HER2-specific antibody-drug conjugate to increase lysosomal delivery and therapeutic efficacy. Nat. Biotechnol. 2019, 37, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Oganesyan, V.; Peng, L.; Bee, J.S.; Li, J.; Perry, S.R.; Comer, F.; Xu, L.; Cook, K.; Senthil, K.; Clarke, L. Structural insights into the mechanism of action of a biparatopic anti-HER2 antibody. J. Biol. Chem. 2018, 293, 8439–8448. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Perry, S.R.; Muniz-Medina, V.; Wang, X.; Wetzel, L.K.; Rebelatto, M.C.; Hinrichs, M.J.; Bezabeh, B.Z.; Fleming, R.L.; Dimasi, N.; et al. A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Cancer Cell 2016, 29, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Pegram, M.D.; Hamilton, E.P.; Tan, A.R.; Storniolo, A.M.; Balic, K.; Rosenbaum, A.I.; Liang, M.; He, P.; Marshall, S.; Scheuber, A.; et al. First-in-Human, Phase 1 Dose-Escalation Study of Biparatopic Anti-HER2 Antibody-Drug Conjugate MEDI4276 in Patients with HER-2 positive Advanced Breast or Gastric Cancer. Mol. Cancer Ther. 2021, 20, 1442–1453. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.; Li, G.; Guo, J.; Yu, S.F.; Lee, G.; Zhang, D.; Dragovich, P.S.; Pillow, T.; Wei, B.; Lee, M.V.; et al. Preclinical development of DHES0815A: A HER2-directed antibody-drug conjugate comprised of a reduced potency PBD dimer linked to a domain I binding HER2 antibody. In Proceedings of the San Antonio Breast Cancer Symposium 2021, San Antonio, TX, USA, 7–10 December 2021; Cancer Research: San Antonio, TX, USA, 2022. [Google Scholar]
- Krop, I.; Hamilton, E.; Jung, K.H.; Modi, S.; Kalinsky, K.M.; Phillips, G. A phase I dose-escalation study of DHES0815A, a HER2-targeting antibody-drug conjugate with a DNA monoalkylator payload, in patients with HER-2 positive breast cancer. In Proceedings of the San Antonio Breast Cancer Symposium 2021, San Antonio, TX, USA, 7–10 December 2021; Cancer Research: San Antonio, TX, USA, 2022. [Google Scholar]
- Pegram, M.; Rasco, D.; Spira, A.; Wang, D.; Weinberg, B.A.; Alonso, M.; Fang, L.; Husain, A.; Kowanetz, M.; Perez, E.A.; et al. Preliminary results from a phase I/II study of BDC-1001, a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), in patients (pts) with advanced HER2-expressing solid tumors. In Annals of Oncology, Proceedings of the ESMO Congress 2021, Online, 16–21 September 2021; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Hagemann, U.B.; Ellingsen, C.; Schuhmacher, J.; Kristian, A.; Mobergslien, A.; Cruciani, V.; Wickstroem, K.; Schatz, C.A.; Kneip, C.; Golfier, S.; et al. Mesothelin-Targeted Thorium-227 Conjugate (MSLN-TTC): Preclinical Evaluation of a New Targeted Alpha Therapy for Mesothelin-Positive Cancers. Clin. Cancer Res. 2019, 25, 4723–4734. [Google Scholar] [CrossRef]
- Karlsson, J. HER2-TTC: A Targeted thorium conjugate to treat HER2 expressing cancers with potent alpha radiation [abstract]. Cancer Res. 2021, 81 (Suppl. S13), ND07. [Google Scholar] [CrossRef]
- Zheng, G.; Guo, Z.; Li, W.; Xi, W.; Zuo, B.; Zhang, R.; Wen, W.; Yang, A.G.; Jia, L. Interaction between HLA-G and NK cell receptor KIR2DL4 orchestrates HER-2 positive breast cancer resistance to trastuzumab. Signal Transduct. Target. Ther. 2021, 6, 236. [Google Scholar] [CrossRef]
- Yang, T.; Kang, L.; Li, D.; Song, Y. Immunotherapy for HER-2 positive breast cancer. Front. Oncol. 2023, 13, 1097983. [Google Scholar] [CrossRef] [PubMed]
- Loi, S.; Giobbie-Hurder, A.; Gombos, A.; Bachelot, T.; Hui, R.; Curigliano, G.; Campone, M.; Biganzoli, L.; Bonnefoi, H.; Jerusalem, G.; et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER-2 positive breast cancer (PANACEA): A single-arm, multicentre, phase 1b-2 trial. Lancet Oncol. 2019, 20, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Huober, J.; Barrios, C.H.; Niikura, N.; Jarzab, M.; Chang, Y.C.; Huggins-Puhalla, S.L.; Pedrini, J.; Zhukova, L.; Graupner, V.; Eiger, D.; et al. Atezolizumab with Neoadjuvant Anti-Human Epidermal Growth Factor Receptor 2 Therapy and Chemotherapy in Human Epidermal Growth Factor Receptor 2-Positive Early Breast Cancer: Primary Results of the Randomized Phase III IMpassion050 Trial. J. Clin. Oncol. 2022, 40, 2946–2956. [Google Scholar] [CrossRef] [PubMed]
- Bekes, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Maneiro, M.A.; Forte, N.; Shchepinova, M.M.; Kounde, C.S.; Chudasama, V.; Baker, J.R.; Tate, E.W. Antibody-PROTAC Conjugates Enable HER2-Dependent Targeted Protein Degradation of BRD4. ACS Chem. Biol. 2020, 15, 1306–1312. [Google Scholar] [CrossRef]
- Sloas, C.; Gill, S.; Klichinsky, M. Engineered CAR-Macrophages as Adoptive Immunotherapies for Solid Tumors. Front. Immunol. 2021, 12, 783305. [Google Scholar] [CrossRef]
- Marofi, F.; Al-Awad, A.S.; Sulaiman Rahman, H.; Markov, A.; Abdelbasset, W.K.; Ivanovna Enina, Y.; Mahmoodi, M.; Hassanzadeh, A.; Yazdanifar, M.; Stanley Chartrand, M.; et al. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front. Oncol. 2021, 11, 673276. [Google Scholar] [CrossRef]
- Al-Awadhi, A.; Lee Murray, J.; Ibrahim, N.K. Developing anti-HER2 vaccines: Breast cancer experience. Int. J. Cancer 2018, 143, 2126–2132. [Google Scholar] [CrossRef]
- Lollini, P.L.; Cavallo, F.; Nanni, P.; Forni, G. Vaccines for tumour prevention. Nat. Rev. Cancer 2006, 6, 204–216. [Google Scholar] [CrossRef]
- Handy, C.E.; Antonarakis, E.S. Sipuleucel-T for the treatment of prostate cancer: Novel insights and future directions. Future Oncol. 2018, 14, 907–917. [Google Scholar] [CrossRef]
- Dillon, P.M.; Brenin, C.M.; Slingluff, C.L., Jr. Evaluating Nelipepimut-S in the Treatment of Breast Cancer: A Short Report on the Emerging Data. Breast Cancer 2020, 12, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.L.; Gillogly, M.E.; Przepiorka, D.; Brewer, H.; Ibrahim, N.K.; Booser, D.J.; Hortobagyi, G.N.; Kudelka, A.P.; Grabstein, K.H.; Cheever, M.A.; et al. Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369–377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin. Cancer Res. 2002, 8, 3407–3418. [Google Scholar] [PubMed]
- Clifton, G.T.; Hale, D.; Vreeland, T.J.; Hickerson, A.T.; Litton, J.K.; Alatrash, G.; Murthy, R.K.; Qiao, N.; Philips, A.; Lukas, J.; et al. Results of a Randomized Phase IIb Trial of Nelipepimut-S + Trastuzumab versus Trastuzumab to Prevent Recurrences in Patients with High-Risk HER2 Low-Expressing Breast Cancer. Clin. Cancer Res. 2020, 26, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Mittendorf, E.A.; Clifton, G.T.; Holmes, J.P.; Schneble, E.; van Echo, D.; Ponniah, S.; Peoples, G.E. Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann. Oncol. 2014, 25, 1735–1742. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Lu, B.; Melisko, M.; Price Hiller, J.; Bondarenko, I.; Brunt, A.M.; Sergii, G.; Petrakova, K.; Peoples, G.E. Efficacy and Safety Analysis of Nelipepimut-S Vaccine to Prevent Breast Cancer Recurrence: A Randomized, Multicenter, Phase III Clinical Trial. Clin. Cancer Res. 2019, 25, 4248–4254. [Google Scholar] [CrossRef]
- Patel, S.; McWilliams, D.; Thompson, J.; Patel, M.; Daugherty, F.J. Evaluation of booster injections in maintaining peak immunity in a phase IIb study evaluating HER2/neu peptide GP2 (GLSI-100) versus GM-CSF alone after adjuvant trastuzumab in women with HER2-positive breast cancer [abstract]. 2022 ASCO Annual Meeting. J. Clin. Oncol. 2022, 40, LBA550. [Google Scholar] [CrossRef]
mAb/bsAb | Ongoing Clinical Trials (Phase) | Population | Treatment in Study | Status |
---|---|---|---|---|
MM-302 | None | - | - | - |
Inetetamab | NCT05749016 (II) NCT05823623 (II) NCT04681911 (II) NCT05823623 (II) NCT05621434 (II) NCT04963595 (II) | HER-2+ EBC HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ MBC | Neoadj inetetamab +P +ChT Inetetamab +pyrotinib +ChT Inetetamab +pyrotinib +ChT Inetetamab +pyrotinib +ChT Inetetamab +pyrotinib +ChT in 1L Inetetamab +pyrotinib +ChT in 1L | Recruiting Recruiting Recruiting Recruiting Recruiting Not yet recruiting |
Zanidatamab (ZW25) | NCT05027139 (I) NCT04224272 (II) NCT05027139 (Ib/II) NCT05035836 (II) NCT01042379 (II) | HER-2+ MBC HER-2+/HR+ MBC HER-2+ MBC HER-2+ EBC HER-2+ EBC | ZW25 ZW25 + palbociclib+fulvestrant ZW25 +ALX148 Neoadj ZW25 Neoadj ZW25 | Concluded; unpublished Concluded; unpublished Recruiting Recruiting Recruiting |
MBS301 | NCT03842085 (I) | HER-2+ MBC | MBS301 | Recruiting |
Anbenitamab (KN026) | NCT03847168 (I) NCT04165993 (II) NCT04881929 (II) | HER-2+ MBC HER-2+/low MBC HER-2+ EBC | KN026 KN026 ±ChT Neoadj KN026 +ChT | Concluded; unpublished Active, not recruiting Recruiting |
Zenocutuzumab (MCLA-128) | NCT02912949 (I) NCT03321981 (II) | HER-2+ HER-2+/HER-2-low/HR+ MBC | MCLA-128 MCLA-128 +T+ChT/+ET | Published Active, not recruiting |
HER(Per)-S-Fab | None | - | - | - |
HER2-2XCD16 | None | - | - | - |
TKI | Target | Effect | Clinical Trials (Phase) | Population | Status |
---|---|---|---|---|---|
Poziotinib | Pan-HER (HER-1,2,4) | Irreversible | NCT02418689 (II) NCT02659514 (II) NCT03429101 (Ib) NCT02544997 (II) | HER2+ MBC HER+ MBC HER2+ MBC HER2m MBC | Published Completed; unpublished Completed; unpublished Completed; unpublished |
DZD1516 | HER-2 | Reversible | NCT04509596 (I) | HER2+ MBC | Ongoing |
ADC/Antibody Conjugates | Payload | Antibody-to-Drug Ratio | Linker | Clinical Trial (Phase) | Setting | Status |
---|---|---|---|---|---|---|
Trastuzumab duocarmycin (SYD985) | Seco-DUBA | 2.8:1 | Cleavable | NCT03262935 (III) NCT01042379 (II) | HER-2+ MBC in ≥3L HER-2+ EBC (neoadj) | Closed; unpublished Recruiting |
Trastuzumab rezetecan (SHR-A1811) | SHR9265 | 5.7:1 | Cleavable | NCT06057610 (III) NCT05814354 (III) NCT05845138 (I/II) NCT05792410 (Ib/II) NCT05635487 (II) | HER-2+ MBC HER-2-low MBC HER-2-low MBC HER-2-low MBC HER-2+ EBC (neoadj) | Recruiting Recruiting Recruiting Recruiting Recruiting |
ARX788 | MMAF | 1.9:1 | Non- cleavable | NCT04829604 (II) NCT04983121 (II) NCT05426486 (II/III) NCT01042379 (II) | HER-2+ MBC HER-2+ EBC (neoadj) HER-2+ EBC (neoadj) HER-2+ EBC (neoadj) | Recruiting Recruiting Recruiting Recruiting |
Disitamab vedotin (RC48) | MMAE | 4:1 | Cleavable | NCT03052634 (I/II) NCT05331326 (II) NCT03500380 (II/III) NCT04400695 (III) NCT05904964 (III) NCT06105008 (II) NCT05134519 (II) NCT05726175 (II) | HER-2+/low MBC HER-2+ MBC HER-2+ MBC HER-2-low MBC HR+/HER-2-low MBC HR+/HER-2-low MBC HER-2+ EBC (neoadj) HER-2+ EBC (neoadj) | Closed; unpublished Recruiting Recruiting Recruiting Recruiting Not yet recruiting Not yet recruiting Not yet recruiting |
Zanidatamab zovodotin (ZW49) | Zovodotin | 2:1 | Cleavable | NCT03821233 (I) | HER-2+ solid tumors | Closed; unpublished |
MRG002 | MMAE | 3.8:1 | Cleavable | NCT05263869 (II) NCT04924699 (II/III) NCT04742153 (II) | HER-2+ MBC HER-2+ MBC HER-2-low MBC | Recruiting Recruiting Recruiting |
A166 | Duostatin-5 | 2:1 | Cleavable | NCT03602079 (I/II) NCT05311397 (I) | HER-2+ solid tumors | Published Recruiting |
ALT-P7 | MMAE | 2:1 | Cleavable | NCT03281824 (I) | HER-2+ MBC | Closed; unpublished |
XMT-1522 | AF-HPA | 12:1 | Cleavable | NCT02952729 (I) | HER-2+ MBC | Closed; unpublished |
BAY2701439 | Thorium-227 | Unknown | Unknown | NCT04147819 (I) | HER-2+ solid tumors | Closed; unpublished |
BDC-1001 | TLR-7/8 agonist | Unknown | Non- cleavable | NCT04278144 (II) | HER-2+ solid tumors Metastatic HER-2+ BC | Recruiting Recruiting |
Combination Agent | Clinical Trials (Phase) | Population | Treatment in Study | Status |
---|---|---|---|---|
CDK4/6 inhibitors | NCT05577442 (II) NCT05969184 (II) NCT03304080 (I/II) NCT02448420 (II) NCT03530696 (II) NCT03054363 (II) NCT05076695 (II) NCT05076695 (II) NCT04858516 (II) NCT03913234 (Ib/II) NCT05319873 (I/II) NCT02657343 (I/II) | HR+/HER-2+ MBC HR+/HER-2+ MBC HR+/HER-2+ MBC HR+/HER-2+ MBC HR+/HER-2+ MBC HR+/HER-2+ MBC HR+/HER-2+ MBC HR+/HER-2+ EBC HR+/HER-2+ MBC HR+/HER-2+ MBC HR+/HER-2+ MBC HR+/HER-2+ MBC | Dalpiciclib +pyrotinib +ET Palbociclib + T +P +ET Palbociclib +T +P +ET Palbociclib +T +ET Palbociclib +T-DM1 Palbociclib +tucatinib +ET Palbociclib +pyrotinib +T +F Neoadj palbociclib +pyrotinib +T +F Neoadj palbociclib +pyrotinib +T +ET Ribociclib +T +ET Ribociclib +tucatinib +T Ribociclib +T/T-DM1 | Not yet recruiting Recruiting Active, not recruiting Active, not recruiting Completed; unpublished Completed; unpublished Recruiting Recruiting Not yet recruiting Recruiting Recruiting Completed; unpublished |
PARP inhibitors | NCT03368729 (I/II) | HER-2+ mBRCA MBC | Niraparib +T | Recruiting |
PIK3CA inhibitors | NCT03765983 (II) NCT04108858 (I/II) NCT02705859 (I) NCT05230810 (I/II) NCT04208178 (III) NCT05063786 (III) | HER-2+ mPIK3CA MBC HER-2+ mPIK3CA MBC HER-2+ mPIK3CA MBC HER-2+ mPIK3CA MBC HER-2+ mPIK3CA MBC HER-2+ mPIK3CA MBC | GDC-0084 +T Copanlisib +T +P Copanlisib +T Alpelisib +tucatinib Alpelisib +P +T in 1L Alpelisib +T ±F | Recruiting Recruiting Completed Recruiting Active, not recruiting Recruiting |
ATK inhibitors | NCT04253561 (I) | HER-2+ mAKT MBC | Ipatasertib +T +P | Recruiting |
Combination Agent | Clinical Trials (Phase) | Population | Treatment in Study | Status |
---|---|---|---|---|
Atezolizumab | NCT03199885 (III) NCT03125928 (II) NCT04759248 (II) NCT04740918 (III) NCT04873362 (III) NCT03595592 (III) | HER-2+ MBC HER-2+ MBC HER-2+ MBC HER-2+ PD-L1+ MBC HER-2+ EBC HER-2+ EBC | Atezolizumab +T +P +ChT Atezolizumab +T +P +ChT Atezolizumab +T +ChT Atezolizumab +T-DM1 Adj atezolizumab +T-DM1 Neoadj atezolizumab +T +P | Active, not recruiting Active, not recruiting Recruiting Recruiting Recruiting Active, not recruiting |
Durvalumab | NCT03820141 (II) NCT05795101 (II) NCT02649686 (I) | HER-2+ MBC HER-2+/low MBC HER-2+ MBC | Durvalumab +T +P in 1L Durvalumab +T-DXd Durvalumab +T | Recruiting Recruiting Completed |
Pembrolizumab | NCT04789096 (II) NCT03032107 (Ib) NCT03988036 (II) NCT03747120 (II) | HER-2+ MBC HER-2+ MBC HER-2+ EBC HER-2+ EBC | Pembrolizumab +tucatinib +T ±ChT Pembrolizumab +T-DM1 Neoadj pembrolizumab +T +P Neoadj pembrolizumab +T +P +ChT | Recruiting Active, not recruiting Completed Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, C.L.; Silva, D.J.; Mesquita, A. Novel HER-2 Targeted Therapies in Breast Cancer. Cancers 2024, 16, 87. https://doi.org/10.3390/cancers16010087
Fernandes CL, Silva DJ, Mesquita A. Novel HER-2 Targeted Therapies in Breast Cancer. Cancers. 2024; 16(1):87. https://doi.org/10.3390/cancers16010087
Chicago/Turabian StyleFernandes, Catarina Lopes, Diogo J. Silva, and Alexandra Mesquita. 2024. "Novel HER-2 Targeted Therapies in Breast Cancer" Cancers 16, no. 1: 87. https://doi.org/10.3390/cancers16010087
APA StyleFernandes, C. L., Silva, D. J., & Mesquita, A. (2024). Novel HER-2 Targeted Therapies in Breast Cancer. Cancers, 16(1), 87. https://doi.org/10.3390/cancers16010087