Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Domain Structures of Striatins
3. Architecture of STRIPAK Complexes
3.1. PP2A
3.2. MOB4/MOB3/Phocein
3.3. CCM3
3.4. GCKs
3.5. STRIP1/2
3.6. SLMAP/TRAF3IP3
3.7. SIKE1/FGFR1OP2
3.8. CTTNBP2/CTTNBP2NL
4. Cell Signalling Events Involved with STRNs and the STRIPAK Complex
4.1. Hippo Signalling Pathway
4.2. Wnt/β-Catenin
4.3. MAPKs
4.4. PIK3/AKT
4.5. NF-κB Signalling
5. Cellular Function of STRNs and the STRIPAK Complex
5.1. Cell Cycle
5.2. Cytoskeleton Remodelling
5.3. Apoptosis and Autophagy
5.4. Cell Adhesion and Migration
5.5. Cell Proliferation
5.6. DNA Damage and Repair
5.7. Immune Regulation
5.8. Therapeutic Drug Responses
5.9. Other Cellular Functions of the STRIPAK Complex
6. STRNs and STRIPAK in Cancer, Cancer Metastasis, Clinical Manifestation and Patients’ Survival
6.1. Overall Involvement in Cancer
6.2. Breast Cancer
6.3. Gastric Cancer
6.4. Pancreatic Cancer
6.5. Oesophageal Cancer
6.6. Thyroid Cancer
6.7. Lung Cancer
6.8. Liver Cancer
6.9. Colorectal Cancer
6.10. Renal Cancer
6.11. Head and Neck
6.12. Cervical Cancer
6.13. Prostate Cancer
6.14. Bladder Cancer
6.15. Other Cancer Types and Cancer-Related Incidences
7. Inhibitors Targeting STRIPAK Constituents
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AKT | AKT Serine/Threonine Kinase 1 |
ALK | Anaplastic Lymphoma Kinase |
APC | Adenomatosis Polyposis Coli Tumour Suppressor |
CCM3 | Cerebral Cavernous Malformations 3; or PDCD10/TFAR15 |
CDK | Cyclin-Dependent Kinase |
CK1 | Casein kinase 1 |
CTTNBP2 | Cortactin binding protein 2, |
EMT | Endothelial-to Mesenchymal Transition |
ERM | Ezrin, Radixin and Moesin protein family |
FAM40 | Family With Sequence Similarity 40 |
FGFR1OP2 | Fibroblast Growth Factor Receptor 1 Oncogene Partner 2, |
FZD | Frizzled Class Receptor |
GCKs | Germinal centre kinases |
GSK3 | Glycogen synthase kinase 3, |
HNSCC | Head and Neck Squamous Cell Carcinoma |
IGFBP3 | Insulin-Like Growth Factor 2 MRNA Binding Protein 3 |
LEF1 | Lymphoid Enhancer Binding Factor |
LATS1/2 | Large tumour suppressor kinase |
MAP4Ks | Mitogen-Activated Protein Kinase Kinase Kinase Kinases |
MINK1 | Misshapen-like kinase 1, or MAP4K6 (Mitogen-Activated Protein Kinase Kinase Kinase Kinase 6) |
MOB4 | Monopolar spindle one binder family member 4 |
MST1 | Mammalian sterile20-like kinases or Ysk1 |
NF-κB | Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B Cells 1 |
NSCLC | Non-Small Cell Lung Cancer |
PDCD10 | Programmed Cell Death 10, or CCM3/TFAR15 |
PI3K | Phosphatidylinositol-4,5-Bisphosphate 3-Kinase or Phosphoinositide-3-Kinase |
PP2A | Protein Phosphatase 2 Phosphatase Activator, or Serine/(PPP2R4)Threonine-Protein Phosphatase 2A Regulatory Subunit 4 |
PP2AC | Serine/Threonine-Protein Phosphatase 2A Catalytic Subunit, or PPP2CA (Protein Phosphatase 2 Catalytic Subunit Alpha) |
RAS | RAS proto-oncogene |
SAV1 | Salvador Family WW-Domain-Containing Protein 1 or Salvador homolog 1, |
SG2NA | Cell Cycle Autoantigen SG2NA, also known as Striatin–3 |
SIKE1 | Suppressor of IKK epsilon-1 |
SLIK | Ste20-like kinase, or KIAA0204 |
SLMAP | Sarcolemmal membrane-associated protein, also known as KIAA1601 |
STRIP1 | striatin interactive protein-1, also known as Family With Sequence Similarity 40, Member A, FAM40A, or KIAA1761 |
STRIP2 | striatin interactive protein-2, also known as Family With Sequence Similarity 40, Member B, FAM40B, or KIAA1761 |
STRIP2 | striatin interactive protein-2, also known as KIAA1170 |
STRIPAK | Striatin-interacting phosphatase and kinase |
STRN | Striatin |
TAZ | WW-Domain-Containing Transcription Regulator 1 or Transcriptional Coactivator with PDZ-Binding Motif |
TCF1 | T-cell factor 1 |
TEAD1 | TEA Domain Family Member 1 (SV40 Transcriptional Enhancer Factor)1, or Transcriptional Enhancer Factor TEF-1, or TEF1 |
TFAR15 | TF-1 Cell Apoptosis-Related Protein 15, CCM3/PDCD10 |
TNIK | TRAF2 And NCK-Interacting Protein Kinase |
TRAF3 | TNF Receptor Associated Factor 3 |
TRAF3IP3 | TRAF3-interacting protein 3 |
VEGF | Vascular-endothelial growth factor |
WNT | Wingless-Type MMTV Integration Site Family |
YSK1 | Sterile 20/Oxidant Stress-Response Kinase 1, or Serine/Threonine Kinase 25 (STK25) |
References
- Muro, Y.; Chan, E.K.; Landberg, G.; Tan, E.M. A cell-cycle nuclear autoantigen containing WD-40 motifs expressed mainly in S and G2 phase cells. Biochem. Biophys. Res. Commun. 1995, 207, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Castets, F.; Bartoli, M.; Barnier, J.V.; Baillat, G.; Salin, P.; Moqrich, A.; Bourgeois, J.P.; Denizot, F.; Rougon, G.; Calothy, G.; et al. A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons. J. Cell Biol. 1996, 134, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Castets, F.; Rakitina, T.; Gaillard, S.; Moqrich, A.; Mattei, M.G.; Monneron, A. Zinedin, SG2NA, and striatin are calmodulin-binding, WD repeat proteins principally expressed in the brain. J. Biol. Chem. 2000, 275, 19970–19977. [Google Scholar] [CrossRef] [PubMed]
- Goudreault, M.; D’Ambrosio, L.M.; Kean, M.J.; Mullin, M.J.; Larsen, B.G.; Sanchez, A.; Chaudhry, S.; Chen, G.I.; Sicheri, F.; Nesvizhskii, A.I.; et al. A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol. Cell. Proteom. 2009, 8, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Pallas, D.C. STRIPAK complexes: Structure, biological function, and involvement in human diseases. Int. J. Biochem. Cell Biol. 2014, 47, 118–148. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Jiao, S.; Zhou, Z. STRIPAK complexes in cell signaling and cancer. Oncogene 2016, 35, 4549–4557. [Google Scholar] [CrossRef]
- Sanghamitra, M.; Talukder, I.; Singarapu, N.; Sindhu, K.V.; Kateriya, S.; Goswami, S.K. WD-40 repeat protein SG2NA has multiple splice variants with tissue restricted and growth responsive properties. Gene 2008, 420, 48–56. [Google Scholar] [CrossRef]
- Bisoyi, P.; Devi, P.; Besra, K.; Prasad, A.; Jain, B.P.; Goswami, S.K. The profile of expression of the scaffold protein SG2NA(s) differs between cancer types and its interactome in normal vis-a-vis breast tumor tissues suggests its wide roles in regulating multiple cellular pathways. Mol. Cell. Biochem. 2022, 477, 1653–1668. [Google Scholar] [CrossRef]
- Bartoli, M.; Monneron, A.; Ladant, D. Interaction of calmodulin with striatin, a WD-repeat protein present in neuronal dendritic spines. J. Biol. Chem. 1998, 273, 22248–22253. [Google Scholar] [CrossRef]
- Bartoli, M.; Ternaux, J.P.; Forni, C.; Portalier, P.; Salin, P.; Amalric, M.; Monneron, A. Down-regulation of striatin, a neuronal calmodulin-binding protein, impairs rat locomotor activity. J. Neurobiol. 1999, 40, 234–243. [Google Scholar] [CrossRef]
- Hyodo, T.; Ito, S.; Hasegawa, H.; Asano, E.; Maeda, M.; Urano, T.; Takahashi, M.; Hamaguchi, M.; Senga, T. Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J. Biol. Chem. 2012, 287, 25019–25029. [Google Scholar] [CrossRef]
- Migliavacca, J.; Zullig, B.; Capdeville, C.; Grotzer, M.A.; Baumgartner, M. Cooperation of Striatin 3 and MAP4K4 promotes growth and tissue invasion. Commun. Biol. 2022, 5, 795. [Google Scholar] [CrossRef]
- Chen, R.; Xie, R.; Meng, Z.; Ma, S.; Guan, K.L. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat. Cell Biol. 2019, 21, 1565–1577. [Google Scholar] [CrossRef]
- De Jamblinne, C.V.; Decelle, B.; Dehghani, M.; Joseph, M.; Sriskandarajah, N.; Leguay, K.; Rambaud, B.; Lemieux, S.; Roux, P.P.; Hipfner, D.R.; et al. STRIPAK regulates Slik localization to control mitotic morphogenesis and epithelial integrity. J. Cell Biol. 2020, 219, e201911035. [Google Scholar] [CrossRef]
- Chen, C.; Shi, Z.; Zhang, W.; Chen, M.; He, F.; Zhang, Z.; Wang, Y.; Feng, M.; Wang, W.; Zhao, Y.; et al. Striatins contain a noncanonical coiled coil that binds protein phosphatase 2A A subunit to form a 2:2 heterotetrameric core of striatin-interacting phosphatase and kinase (STRIPAK) complex. J. Biol. Chem. 2014, 289, 9651–9661. [Google Scholar] [CrossRef]
- Suganuma, M.; Fujiki, H.; Suguri, H.; Yoshizawa, S.; Hirota, M.; Nakayasu, M.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Sugimura, T. Okadaic acid: An additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc. Natl. Acad. Sci. USA 1988, 85, 1768–1771. [Google Scholar] [CrossRef]
- Sablina, A.A.; Hahn, W.C. SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev. 2008, 27, 137–146. [Google Scholar] [CrossRef]
- Kamibayashi, C.; Estes, R.; Lickteig, R.L.; Yang, S.I.; Craft, C.; Mumby, M.C. Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J. Biol. Chem. 1994, 269, 20139–20148. [Google Scholar] [CrossRef]
- Westermarck, J.; Hahn, W.C. Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol. Med. 2008, 14, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Kurppa, K.J.; Westermarck, J. Good Guy in Bad Company: How STRNs Convert PP2A into an Oncoprotein. Cancer Cell 2020, 38, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Baillat, G.; Gaillard, S.; Castets, F.; Monneron, A. Interactions of phocein with nucleoside-diphosphate kinase, Eps15, and Dynamin I. J. Biol. Chem. 2002, 277, 18961–18966. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.; Hwang, J.; Carrier, K.J.; Jones, C.A.; Kern, Q.L.; Moreno, C.S.; Karas, R.H.; Pallas, D.C. Protein phosphatase 2a (PP2A) binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3. BMC Biochem. 2011, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, H.; Shi, Z.; Li, Y.; Zhang, X.; Gao, Z.; Zhou, L.; Ma, J.; Xu, Q.; Guan, J.; et al. The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer. J. Biol. Chem. 2018, 293, 14455–14469. [Google Scholar] [CrossRef] [PubMed]
- Baillat, G.; Moqrich, A.; Castets, F.; Baude, A.; Bailly, Y.; Benmerah, A.; Monneron, A. Molecular cloning and characterization of phocein, a protein found from the Golgi complex to dendritic spines. Mol. Biol. Cell 2001, 12, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Bailly, Y.J.; Castets, F. Phocein: A potential actor in vesicular trafficking at Purkinje cell dendritic spines. Cerebellum 2007, 6, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Bergametti, F.; Denier, C.; Labauge, P.; Arnoult, M.; Boetto, S.; Clanet, M.; Coubes, P.; Echenne, B.; Ibrahim, R.; Irthum, B.; et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am. J. Hum. Genet. 2005, 76, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Dong, L.; Shi, Z.; Jiao, S.; Zhang, Z.; Zhang, W.; Liu, G.; Chen, C.; Feng, M.; Hao, Q.; et al. Structural mechanism of CCM3 heterodimerization with GCKIII kinases. Structure 2013, 21, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Valentino, M.; Dejana, E.; Malinverno, M. The multifaceted PDCD10/CCM3 gene. Genes Dis. 2021, 8, 798–813. [Google Scholar] [CrossRef]
- Sugden, P.H.; McGuffin, L.J.; Clerk, A. SOcK, MiSTs, MASK and STicKs: The GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem. J. 2013, 454, 13–30. [Google Scholar] [CrossRef]
- Bravi, L.; Rudini, N.; Cuttano, R.; Giampietro, C.; Maddaluno, L.; Ferrarini, L.; Adams, R.H.; Corada, M.; Boulday, G.; Tournier-Lasserve, E.; et al. Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc. Natl. Acad. Sci. USA 2015, 112, 8421–8426. [Google Scholar] [CrossRef]
- Stockton, R.A.; Shenkar, R.; Awad, I.A.; Ginsberg, M.H. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J. Exp. Med. 2010, 207, 881–896. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, M.; Zhou, L.; Ma, J.; Li, Y.; Zhang, H.; Shi, Z.; Xu, Q.; Zhang, X.; Gao, Z.; et al. Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discov. 2019, 5, 3. [Google Scholar] [CrossRef]
- Schinkmann, K.; Blenis, J. Cloning and characterization of a human STE20-like protein kinase with unusual cofactor requirements. J. Biol. Chem. 1997, 272, 28695–28703. [Google Scholar] [CrossRef]
- Ura, S.; Masuyama, N.; Graves, J.D.; Gotoh, Y. Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc. Natl. Acad. Sci. USA 2001, 98, 10148–10153. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wu, Y.M.; Hsu, C.Y.; Lee, W.S.; Lai, M.D.; Lu, T.J.; Huang, C.L.; Leu, T.H.; Shih, H.M.; Fang, H.I.; et al. Caspase activation of mammalian sterile 20-like kinase 3 (Mst3). Nuclear translocation and induction of apoptosis. J. Biol. Chem. 2002, 277, 34367–34374. [Google Scholar] [CrossRef]
- Bae, S.J.; Ni, L.; Luo, X. STK25 suppresses Hippo signaling by regulating SAV1-STRIPAK antagonism. Elife 2020, 9, e54863. [Google Scholar] [CrossRef]
- Panneton, V.; Nath, A.; Sader, F.; Delaunay, N.; Pelletier, A.; Maier, D.; Oh, K.; Hipfner, D.R. Regulation of Catalytic and Non-catalytic Functions of the Drosophila Ste20 Kinase Slik by Activation Segment Phosphorylation. J. Biol. Chem. 2015, 290, 20960–20971. [Google Scholar] [CrossRef]
- Suryavanshi, N.; Furmston, J.; Ridley, A.J. The STRIPAK complex components FAM40A and FAM40B regulate endothelial cell contractility via ROCKs. BMC Cell Biol. 2018, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Cupello, C.; Dam, M.; Serini, L.; Wang, S.; Lindgren, D.; Englund, E.; Kjellman, P.; Axelson, H.; Garcia-Mariscal, A.; Madsen, C.D. The STRIPAK Complex Regulates Response to Chemotherapy Through p21 and p27. Front. Cell Dev. Biol. 2020, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Kuck, U.; Radchenko, D.; Teichert, I. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol. Chem. 2019, 400, 1005–1022. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, B.; Wang, L.; Lei, H.; Pulgar Prieto, K.D.; Pan, D. Homeostatic Control of Hpo/MST Kinase Activity through Autophosphorylation-Dependent Recruitment of the STRIPAK PP2A Phosphatase Complex. Cell Rep. 2017, 21, 3612–3623. [Google Scholar] [CrossRef]
- Seo, G.; Han, H.; Vargas, R.E.; Yang, B.; Li, X.; Wang, W. MAP4K Interactome Reveals STRN4 as a Key STRIPAK Complex Component in Hippo Pathway Regulation. Cell Rep. 2020, 32, 107860. [Google Scholar] [CrossRef]
- Bae, S.J.; Ni, L.; Osinski, A.; Tomchick, D.R.; Brautigam, C.A.; Luo, X. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. eLife 2017, 6, e30278. [Google Scholar] [CrossRef]
- Deng, M.; Tam, J.W.; Wang, L.; Liang, K.; Li, S.; Zhang, L.; Guo, H.; Luo, X.; Zhang, Y.; Petrucelli, A.; et al. TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination. Nat. Commun. 2020, 11, 2193. [Google Scholar] [CrossRef]
- Sun, N.; Li, C.; Teng, Y.; Deng, Y.; Shi, L. Pan-Cancer Analysis on the Oncogenic Role of Programmed Cell Death 10. J. Oncol. 2022, 2022, 1242658. [Google Scholar] [CrossRef]
- Chen, Y.K.; Chen, C.Y.; Hu, H.T.; Hsueh, Y.P. CTTNBP2, but not CTTNBP2NL, regulates dendritic spinogenesis and synaptic distribution of the striatin-PP2A complex. Mol. Biol. Cell 2012, 23, 4383–4392. [Google Scholar] [CrossRef]
- Cheung, P.; Xiol, J.; Dill, M.T.; Yuan, W.C.; Panero, R.; Roper, J.; Osorio, F.G.; Maglic, D.; Li, Q.; Gurung, B.; et al. Regenerative Reprogramming of the Intestinal Stem Cell State via Hippo Signaling Suppresses Metastatic Colorectal Cancer. Cell Stem Cell 2020, 27, 590–604.e599. [Google Scholar] [CrossRef]
- Ma, S.; Wu, Z.; Yang, F.; Zhang, J.; Johnson, R.L.; Rosenfeld, M.G.; Guan, K.L. Hippo signalling maintains ER expression and ER+ breast cancer growth. Nature 2021, 591, E1–E10. [Google Scholar] [CrossRef]
- Gundogdu, R.; Hergovich, A. MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer. Cells 2019, 8, 569. [Google Scholar] [CrossRef]
- Kim, J.W.; Berrios, C.; Kim, M.; Schade, A.E.; Adelmant, G.; Yeerna, H.; Damato, E.; Iniguez, A.B.; Florens, L.; Washburn, M.P.; et al. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. eLife 2020, 9, e53003. [Google Scholar] [CrossRef]
- Thompson, J.J.; Williams, C.S. Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer. Genes 2018, 9, 121. [Google Scholar] [CrossRef] [PubMed]
- Schad, E.G.; Petersen, C.P. STRIPAK Limits Stem Cell Differentiation of a WNT Signaling Center to Control Planarian Axis Scaling. Curr. Biol. CB 2020, 30, 254–263.e252. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Menezes, M.E.; Pannell, L.K.; Mulekar, M.S.; Honkanen, R.E.; Shevde, L.A.; Samant, R.S. DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3beta to downregulate beta-catenin transcription target, osteopontin. Oncogene 2012, 31, 4472–4483. [Google Scholar] [CrossRef] [PubMed]
- Lahav-Ariel, L.; Caspi, M.; Nadar-Ponniah, P.T.; Zelikson, N.; Hofmann, I.; Hanson, K.K.; Franke, W.W.; Sklan, E.H.; Avraham, K.B.; Rosin-Arbesfeld, R. Striatin is a novel modulator of cell adhesion. FASEB J. 2019, 33, 4729–4740. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhao, H.; Shan, J.; Long, F.; Chen, Y.; Chen, Y.; Zhang, Y.; Han, X.; Ma, D. PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway. Mol. Biol. Cell 2007, 18, 1965–1978. [Google Scholar] [CrossRef] [PubMed]
- Ory, S.; Zhou, M.; Conrads, T.P.; Veenstra, T.D.; Morrison, D.K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr. Biol. CB 2003, 13, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Horn, T.; Sandmann, T.; Fischer, B.; Axelsson, E.; Huber, W.; Boutros, M. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat. Methods 2011, 8, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Nicke, B.; Bastien, J.; Khanna, S.J.; Warne, P.H.; Cowling, V.; Cook, S.J.; Peters, G.; Delpuech, O.; Schulze, A.; Berns, K.; et al. Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol. Cell 2005, 20, 673–685. [Google Scholar] [CrossRef]
- Chen, W.; White, M.A.; Cobb, M.H. Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J. Biol. Chem. 2002, 277, 49105–49110. [Google Scholar] [CrossRef]
- La Marca, J.E.; Diepstraten, S.T.; Hodge, A.L.; Wang, H.; Hart, A.H.; Richardson, H.E.; Somers, W.G. Strip and Cka negatively regulate JNK signalling during Drosophila spermatogenesis. Development 2019, 146, dev174292. [Google Scholar] [CrossRef]
- Ahmed, M.; Kojima, Y.; Masai, I. Strip1 regulates retinal ganglion cell survival by suppressing Jun-mediated apoptosis to promote retinal neural circuit formation. eLife 2022, 11, e74650. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, D.; Yan, S.; Baumgartner, M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front. Oncol. 2022, 12, 1059513. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhou, J.; Li, T.; Qian, Y.; Jin, L.; Zhu, C.; Li, S. STRIP2 silencing inhibits vascular smooth muscle cell proliferation and migration via P38-AKT-MMP-2 signaling pathway. J. Cell. Physiol. 2019, 234, 22463–22476. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Tian, W.; Xu, Y.; Li, R.; Zhao, K.; You, C.; Zhu, Y.; Bartsch, J.W.; Niu, H.; et al. PDCD10 promotes the aggressive behaviors of pituitary adenomas by up-regulating CXCR2 and activating downstream AKT/ERK signaling. Aging 2022, 14, 6066–6080. [Google Scholar] [CrossRef]
- Gil-Ranedo, J.; Gonzaga, E.; Jaworek, K.J.; Berger, C.; Bossing, T.; Barros, C.S. STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation. Cell Rep. 2019, 27, 2921–2933.e2925. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Talukdar, I.; Jain, B.P.; Tanti, G.K.; Goswami, S.K. GSK3beta and ERK regulate the expression of 78 kDa SG2NA and ectopic modulation of its level affects phases of cell cycle. Sci. Rep. 2017, 7, 7555. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Sun, P.; Liu, H.; Li, R.; Long, L.; Xu, Y.; Chen, S.; Xu, J. 17beta-estradiol upregulates striatin protein levels via Akt pathway in human umbilical vein endothelial cells. PLoS ONE 2018, 13, e0202500. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Osaki, K.; Kanamoto, M.; Nakao, Y.; Takahashi, E.; Higuchi, T.; Kamata, H. Distinct B subunits of PP2A regulate the NF-kappaB signalling pathway through dephosphorylation of IKKbeta, IkappaBalpha and RelA. FEBS Lett. 2017, 591, 4083–4094. [Google Scholar] [CrossRef]
- Bonsignore, G.; Martinotti, S.; Ranzato, E. Endoplasmic Reticulum Stress and Cancer: Could Unfolded Protein Response Be a Druggable Target for Cancer Therapy? Int. J. Mol. Sci. 2023, 24, 1566. [Google Scholar] [CrossRef]
- Kazmierczak-Baranska, J.; Peczek, L.; Przygodzka, P.; Cieslak, M.J. Downregulation of striatin leads to hyperphosphorylation of MAP2, induces depolymerization of microtubules and inhibits proliferation of HEK293T cells. FEBS Lett. 2015, 589, 222–230. [Google Scholar] [CrossRef]
- Vitorino, P.; Yeung, S.; Crow, A.; Bakke, J.; Smyczek, T.; West, K.; McNamara, E.; Eastham-Anderson, J.; Gould, S.; Harris, S.F.; et al. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015, 519, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, M.; Sillman, A.L.; Blackwood, E.M.; Srivastava, J.; Madson, N.; Schilling, J.W.; Wright, J.H.; Barber, D.L. The Nck-interacting kinase phosphorylates ERM proteins for formation of lamellipodium by growth factors. Proc. Natl. Acad. Sci. USA 2006, 103, 13391–13396. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.W.; Herrera-Abreu, M.T.; Rohn, J.L.; Racine, V.; Tajadura, V.; Suryavanshi, N.; Bechtel, S.; Wiemann, S.; Baum, B.; Ridley, A.J. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol. 2011, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo, M.; Guerrero, A.; Fraile, M.; Iglesias, C.; Pombo, C.M.; Zalvide, J. Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress. J. Biol. Chem. 2012, 287, 11556–11565. [Google Scholar] [CrossRef] [PubMed]
- Siva Sankar, D.; Hu, Z.; Dengjel, J. The complex interplay between ULK1 and protein phosphatases in autophagy regulation. Autophagy 2022, 18, 455–456. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, Q.; Brooks, D.; Geisbrecht, E.R. A conserved STRIPAK complex is required for autophagy in muscle tissue. Mol. Biol. Cell 2023, 34, ar91. [Google Scholar] [CrossRef]
- Seo, G.; Yu, C.; Han, H.; Xing, L.; Kattan, R.E.; An, J.; Kizhedathu, A.; Yang, B.; Luo, A.; Buckle, A.L.; et al. The Hippo pathway noncanonically drives autophagy and cell survival in response to energy stress. Mol. Cell 2023, 83, 3155–3170.e3158. [Google Scholar] [CrossRef]
- Nunbhakdi-Craig, V.; Machleidt, T.; Ogris, E.; Bellotto, D.; White, C.L., 3rd; Sontag, E. Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J. Cell Biol. 2002, 158, 967–978. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, G.; Guo, F.; Zhang, H.; Chen, X.; An, L.; Chen, M.; Zhou, L.; Wang, W.; Ye, T.; et al. Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell 2020, 38, 115–128.e119. [Google Scholar] [CrossRef]
- An, L.; Cao, Z.; Nie, P.; Zhang, H.; Tong, Z.; Chen, F.; Tang, Y.; Han, Y.; Wang, W.; Zhao, Z.; et al. Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. J. Clin. Investig. 2022, 132, e155468. [Google Scholar] [CrossRef]
- Mazhar, S.; Taylor, S.E.; Sangodkar, J.; Narla, G. Targeting PP2A in cancer: Combination therapies. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.S.; Mondal, I.; Xu, B.; Das, O.; Sun, R.; Chiou, P.; Cai, X.; Tahmasebinia, F.; McFadden, E.; Wu, C.Y.; et al. PP2Ac/STRN4 negatively regulates STING-type I IFN signaling in tumor-associated macrophages. J. Clin. Investig. 2023, 133, e162139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Q.; He, Y.; Shi, Q.; Yin, C.; Xie, Y.; Yu, H.; Bao, Y.; Wang, X.; Tang, C.; et al. STRIP2 motivates non-small cell lung cancer progression by modulating the TMBIM6 stability through IGF2BP3 dependent. J. Exp. Clin. Cancer Res. 2023, 42, 19. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Roy, R.; Kumar, S.; Srivastava, P.; Jha, S.; Rana, B.; Rana, A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers 2023, 15, 2272. [Google Scholar] [CrossRef] [PubMed]
- Ruvolo, P.P. The broken “Off” switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin. 2016, 6, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Hyodo, T.; Asano, E.; Funasaka, K.; Miyahara, R.; Hirooka, Y.; Goto, H.; Hamaguchi, M.; Senga, T. Silencing of STRN4 suppresses the malignant characteristics of cancer cells. Cancer Sci. 2014, 105, 1526–1532. [Google Scholar] [CrossRef]
- Li, A.X.; Zeng, J.J.; Martin, T.A.; Ye, L.; Ruge, F.; Sanders, A.J.; Khan, E.; Dou, Q.P.; Davies, E.; Jiang, W.G. Striatins and STRIPAK complex partners in clinical outcomes of patients with breast cancer and responses to drug treatment. Chin. J. Cancer Res. 2023, 35, 365–385. [Google Scholar] [CrossRef]
- Jain, B.P.; Pandey, S.; Saleem, N.; Tanti, G.K.; Mishra, S.; Goswami, S.K. SG2NA is a regulator of endoplasmic reticulum (ER) homeostasis as its depletion leads to ER stress. Cell Stress Chaperones 2017, 22, 853–866. [Google Scholar] [CrossRef]
- Nordzieke, S.; Zobel, T.; Franzel, B.; Wolters, D.A.; Kuck, U.; Teichert, I. A fungal sarcolemmal membrane-associated protein (SLMAP) homolog plays a fundamental role in development and localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. Eukaryot. Cell 2015, 14, 345–358. [Google Scholar] [CrossRef]
- Dettmann, A.; Heilig, Y.; Ludwig, S.; Schmitt, K.; Illgen, J.; Fleissner, A.; Valerius, O.; Seiler, S. HAM-2 and HAM-3 are central for the assembly of the Neurospora STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the MAP kinase MAK-1 in a MAK-2-dependent manner. Mol. Microbiol. 2013, 90, 796–812. [Google Scholar] [CrossRef]
- Ito, M.; Hiwasa, T.; Oshima, Y.; Yajima, S.; Suzuki, T.; Nanami, T.; Sumazaki, M.; Shiratori, F.; Funahashi, K.; Takizawa, H.; et al. Identification of serum anti-striatin 4 antibodies as a common marker for esophageal cancer and other solid cancers. Mol. Clin. Oncol. 2021, 15, 237. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, J.; Li, X.; Wang, X.; Qiao, R.; Guo, W.; Ren, Q. LncRNA KTN1-AS1 facilitates esophageal squamous cell carcinoma progression via miR-885-5p/STRN3 axis. Genes Genom. 2023. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Fei, W.; Huo, Z.; Wang, S.; Li, Y.; Yang, G.; Hong, Y. PDCD10 promotes proliferation, migration, and invasion of osteosarcoma by inhibiting apoptosis and activating EMT pathway. Cancer Med. 2023, 12, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, S.; Lin, H. LIMK1 Interacts with STK25 to Regulate EMT and Promote the Proliferation and Metastasis of Colorectal Cancer. J. Oncol. 2022, 2022, 3963883. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Cao, J.; Zhang, W.; Wang, Q.; Zhang, Z.; Gao, Z.; Ye, Y.; Jiang, K.; Wang, S. MicroRNA Profile Identifies miR-6165 Could Suppress Gastric Cancer Migration and Invasion by Targeting STRN4. OncoTargets Ther. 2020, 13, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Chang, C.L.; Li, C.Y.; Song, H.; Shan, Y.S.; Lai, M.D. The oncogenic role of MST3 in human gastric cancer. Am. J. Cancer Res. 2018, 8, 2130–2139. [Google Scholar] [PubMed]
- Li, T.; Deng, L.; He, X.; Jiang, G.; Hu, F.; Ye, S.; You, Y.; Duanmu, J.; Dai, H.; Huang, G.; et al. MST4 Predicts Poor Prognosis And Promotes Metastasis By Facilitating Epithelial-Mesenchymal Transition In Gastric Cancer. Cancer Manag. Res. 2019, 11, 9353–9369. [Google Scholar] [CrossRef]
- Wang, H.; Shen, L.; Li, Y.; Lv, J. Integrated characterisation of cancer genes identifies key molecular biomarkers in stomach adenocarcinoma. J. Clin. Pathol. 2020, 73, 579–586. [Google Scholar] [CrossRef]
- Madsen, C.D.; Hooper, S.; Tozluoglu, M.; Bruckbauer, A.; Fletcher, G.; Erler, J.T.; Bates, P.A.; Thompson, B.; Sahai, E. STRIPAK components determine mode of cancer cell migration and metastasis. Nat. Cell Biol. 2015, 17, 68–80. [Google Scholar] [CrossRef]
- Cho, C.Y.; Lee, K.T.; Chen, W.C.; Wang, C.Y.; Chang, Y.S.; Huang, H.L.; Hsu, H.P.; Yen, M.C.; Lai, M.Z.; Lai, M.D. MST3 promotes proliferation and tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. Oncotarget 2016, 7, 14586–14604. [Google Scholar] [CrossRef]
- Arora, R.; Kim, J.H.; Getu, A.A.; Angajala, A.; Chen, Y.L.; Wang, B.; Kahn, A.G.; Chen, H.; Reshi, L.; Lu, J.; et al. MST4: A Potential Oncogene and Therapeutic Target in Breast Cancer. Cells 2022, 11, 4057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gu, X.; Jiang, F.; Sun, P.; Li, X. Altered expression of striatin-4 is associated with poor prognosis in bladder transitional cell carcinoma. Oncol. Lett. 2021, 21, 331. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Mu, X.Y.; Jiang, J.T.; Tan, M.Y.; Wang, R.J.; Zhou, W.J.; Wang, X.; He, Y.Y.; Li, M.Q.; Liu, Z.H. miRNA-26a-5p and miR-26b-5p inhibit the proliferation of bladder cancer cells by regulating PDCD10. Oncol. Rep. 2018, 40, 3523–3532. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.M.; Sun, Y.H.; Chen, T.T.; Chen, J.J.; Ma, H.T. STRIP2, a member of the striatin-interacting phosphatase and kinase complex, is implicated in lung adenocarcinoma cell growth and migration. FEBS OpenBio 2020, 10, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, Y.; Tang, L.; Zhai, H.; Zhang, D.; Duan, L.; Jiang, X.; Li, C. Long Non-Coding RNA-TMPO-AS1 as ceRNA Binding to let-7c-5p Upregulates STRIP2 Expression and Predicts Poor Prognosis in Lung Adenocarcinoma. Front. Oncol. 2022, 12, 921200. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Lin, W.; Shi, X.; Tao, T. STK24 expression is modulated by DNA copy number/methylation in lung adenocarcinoma and predicts poor survival. Future Oncol. 2018, 14, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, H.; Peng, Y.; Yang, Z.; Gao, S. A four-gene prognostic signature for predicting the overall survival of patients with lung adenocarcinoma. PeerJ 2021, 9, e11911. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.J.; Wang, H.; Rashid, A.; Tan, T.H.; Hwang, R.F.; Hamilton, S.R.; Abbruzzese, J.L.; Evans, D.B.; Wang, H. Expression of MAP4K4 is associated with worse prognosis in patients with stage II pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2008, 14, 7043–7049. [Google Scholar] [CrossRef]
- van Pelt, J.; Meeusen, B.; Derua, R.; Guffens, L.; Van Cutsem, E.; Janssens, V.; Verslype, C. Human pancreatic cancer patients with Epithelial-to-Mesenchymal Transition and an aggressive phenotype show a disturbed balance in Protein Phosphatase Type 2A expression and functionality. J. Transl. Med. 2023, 21, 317. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, X.; Peng, S.; Nan, X.; Zhao, H. Differential expression of MST4, STK25 and PDCD10 between benign prostatic hyperplasia and prostate cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 8105–8111. [Google Scholar]
- Du, Q.Y.; Yao, J.H.; Zhou, Y.C.; Xu, L.J.; Zhao, F.Y.; Yang, Y. High STRN Expression Promotes HCC Invasion and Migration but Not Cell Proliferation or Apoptosis through Facilitating Epithelial-Mesenchymal Transition. BioMed Res. Int. 2020, 2020, 6152925. [Google Scholar] [CrossRef] [PubMed]
- Czauderna, C.; Poplawski, A.; O’Rourke, C.J.; Castven, D.; Perez-Aguilar, B.; Becker, D.; Heilmann-Heimbach, S.; Odenthal, M.; Amer, W.; Schmiel, M.; et al. Epigenetic modifications precede molecular alterations and drive human hepatocarcinogenesis. JCI Insight 2021, 6, e146196. [Google Scholar] [CrossRef]
- Xie, R.; Wen, F.; Qin, Y. The Dysregulation and Prognostic Analysis of STRIPAK Complex Across Cancers. Front. Cell Dev. Biol. 2020, 8, 625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Qiu, Z.; Guan, Y.; Zhang, X.; Zhang, X.; Chai, D.; Chen, C.; Hu, Q.; Wang, W. STK25 enhances hepatocellular carcinoma progression through the STRN/AMPK/ACC1 pathway. Cancer Cell Int. 2022, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Wang, L.; Zhang, J.B.; Liu, Y.; Li, X.Q.; Guo, L.; Zhang, B.; Zhu, W.W.; Ye, Q.H. MST4 promotes hepatocellular carcinoma epithelial-mesenchymal transition and metastasis via activation of the p-ERK pathway. Int. J. Oncol. 2014, 45, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Dian, M.J.; Li, J.; Zhang, X.L.; Li, Z.J.; Zhou, Y.; Zhou, W.; Zhong, Q.L.; Pang, W.Q.; Lin, X.L.; Liu, T.; et al. MST4 negatively regulates the EMT, invasion and metastasis of HCC cells by inactivating PI3K/AKT/Snail1 axis. J. Cancer 2021, 12, 4463–4477. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Fu, S.; Li, Y.; Li, T.; Mei, P.; Feng, L.; Cai, L.; Cheng, Y.; Zhou, C.; Tang, Y.; et al. TCGA and ESTIMATE data mining to identify potential prognostic biomarkers in HCC patients. Aging 2020, 12, 21544–21558. [Google Scholar] [CrossRef]
- Yang, G.; Tang, S.; Zhang, J.; Qin, L. High TRAF3IP3 Level Predicts Poor Prognosis of Patients with Gliomas. World Neurosurg. 2021, 148, e436–e449. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, Z.; Shen, Z.L.; Xue, F.; Qin, J.J.; Kang, X.P.; Chen, Z.R.; Xia, Z.Y.; Gao, L.; Chen, X.Z. TRAF3IP3 promotes glioma progression through the ERK signaling pathway. Front. Oncol. 2022, 12, 776834. [Google Scholar] [CrossRef]
- Das, D.; Maitra, A.; Panda, C.K.; Ghose, S.; Roy, B.; Sarin, R.; Majumder, P.P. Genes and pathways monotonically dysregulated during progression from normal through leukoplakia to gingivo-buccal oral cancer. NPJ Genom. Med. 2021, 6, 32. [Google Scholar] [CrossRef]
- Wan, Z.; Xiong, H.; Tan, X.; Su, T.; Xia, K.; Wang, D. Integrative Multi-Omics Analysis Reveals Candidate Biomarkers for Oral Squamous Cell Carcinoma. Front. Oncol. 2021, 11, 794146. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Guo, J.; Shen, J.; Jin, M.; Xie, S.; Wang, L. The role of estrogen receptor alpha in mediating chemoresistance in breast cancer cells. J. Exp. Clin. Cancer Res. 2012, 31, 42. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, X.; Chen, Q.; Liu, T.; Lu, C.; Yu, J.; Miao, Y.; Wei, J. Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4. J. Exp. Clin. Cancer Res. 2018, 37, 130. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.M.; Barila, G.; Liu, P.; Evdokimova, V.N.; Trivedi, S.; Panebianco, F.; Gandhi, M.; Carty, S.E.; Hodak, S.P.; Luo, J.; et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc. Natl. Acad. Sci. USA 2014, 111, 4233–4238. [Google Scholar] [CrossRef]
- Kusano, H.; Togashi, Y.; Akiba, J.; Moriya, F.; Baba, K.; Matsuzaki, N.; Yuba, Y.; Shiraishi, Y.; Kanamaru, H.; Kuroda, N.; et al. Two Cases of Renal Cell Carcinoma Harboring a Novel STRN-ALK Fusion Gene. Am. J. Surg. Pathol. 2016, 40, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Jiang, Y.; Jiang, W.; Wang, H.; Liu, S.; Shao, Y.; Zhao, W.; Ning, R.; Yu, Q. STRN-ALK Fusion in Lung Adenocarcinoma with Excellent Response Upon Alectinib Treatment: A Case Report and Literature Review. OncoTargets Ther. 2020, 13, 12515–12519. [Google Scholar] [CrossRef]
- Celano, M.; Mignogna, C.; Rosignolo, F.; Sponziello, M.; Iannone, M.; Lepore, S.M.; Lombardo, G.E.; Maggisano, V.; Verrienti, A.; Bulotta, S.; et al. Expression of YAP1 in aggressive thyroid cancer. Endocrine 2018, 59, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Landberg, G.; Tan, E.M. Characterization of a DNA-binding nuclear autoantigen mainly associated with S phase and G2 cells. Exp. Cell Res. 1994, 212, 255–261. [Google Scholar] [CrossRef]
- Pagan, C.; Barua, S.; Hsiao, S.J.; Mansukhani, M.; Saqi, A.; Murty, V.; Fernandes, H. Targeting SLMAP-ALK-a novel gene fusion in lung adenocarcinoma. Cold Spring Harb. Mol. Case Stud. 2019, 5, a003939. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B. CircTNPO3 promotes hepatocellular carcinoma progression by sponging miR-199b-5p and regulating STRN expression. Kaohsiung J. Med. Sci. 2023, 39, 221–233. [Google Scholar] [CrossRef]
- Fan, C.; Lin, B.; Huang, Z.; Cui, D.; Zhu, M.; Ma, Z.; Zhang, Y.; Liu, F.; Liu, Y. MicroRNA-873 inhibits colorectal cancer metastasis by targeting ELK1 and STRN4. Oncotarget 2019, 10, 4192–4204. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, P.M.; Rybarczyk, A. The Hippo pathway in colorectal cancer. Folia Histochem. Cytobiol. 2015, 53, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Kurtzeborn, K.; Kwon, H.N.; Kuure, S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int. J. Mol. Sci. 2019, 20, 1779. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Zhao, X.M.; Wang, D.L.; Chen, K.H.; Sheng, X.; Li, W.B.; Li, M.C.; Liu, W.J.; He, J. YAP is overexpressed in clear cell renal cell carcinoma and its knockdown reduces cell proliferation and induces cell cycle arrest and apoptosis. Oncol. Rep. 2014, 32, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Okamoto, K.; Shintani, T.; Yanamoto, S.; Miyauchi, M.; Gutkind, J.S.; Kajiya, M. Integrating Genetic Alterations and the Hippo Pathway in Head and Neck Squamous Cell Carcinoma for Future Precision Medicine. J. Pers. Med. 2022, 12, 1544. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Zheng, P.S. NEK2 inactivates the Hippo pathway to advance the proliferation of cervical cancer cells by cooperating with STRIPAK complexes. Cancer Lett. 2022, 549, 215917. [Google Scholar] [CrossRef]
- Huang, H.; Han, Q.; Zheng, H.; Liu, M.; Shi, S.; Zhang, T.; Yang, X.; Li, Z.; Xu, Q.; Guo, H.; et al. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis. 2021, 13, 13. [Google Scholar] [CrossRef]
- Mei, J.; Wang, D.H.; Wang, L.L.; Chen, Q.; Pan, L.L.; Xia, L. MicroRNA-200c suppressed cervical cancer cell metastasis and growth via targeting MAP4K4. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 623–631. [Google Scholar] [CrossRef]
- Sung, V.; Luo, W.; Qian, D.; Lee, I.; Jallal, B.; Gishizky, M. The Ste20 kinase MST4 plays a role in prostate cancer progression. Cancer Res. 2003, 63, 3356–3363. [Google Scholar]
- Xiong, W.; Knox, A.J.; Xu, M.; Kiseljak-Vassiliades, K.; Colgan, S.P.; Brodsky, K.S.; Kleinschmidt-Demasters, B.K.; Lillehei, K.O.; Wierman, M.E. Mammalian Ste20-like kinase 4 promotes pituitary cell proliferation and survival under hypoxia. Mol. Endocrinol. 2015, 29, 460–472. [Google Scholar] [CrossRef]
- Ajani, J.A.; Xu, Y.; Huo, L.; Wang, R.; Li, Y.; Wang, Y.; Pizzi, M.P.; Scott, A.; Harada, K.; Ma, L.; et al. YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition. Gut 2021, 70, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Shan, L.; Zhang, M.; Wang, Y.; Zhan, X.; Yin, Y.; Jiang, Z.; Tao, X.; Li, X.; Ye, M.; et al. Inhibition of PP2A by LB100 sensitizes bladder cancer cells to chemotherapy by inducing p21 degradation. Cell Oncol. 2022, 45, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.S.; Ho, W.; Zhang, C.; Yang, C.; Elder, J.B.; Zhuang, Z. LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential. Cancer Biol. Ther. 2015, 16, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Mirzapoiazova, T.; Xiao, G.; Mambetsariev, B.; Nasser, M.W.; Miaou, E.; Singhal, S.S.; Srivastava, S.; Mambetsariev, I.; Nelson, M.S.; Nam, A.; et al. Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer. Mol. Cancer Ther. 2021, 20, 1820–1835. [Google Scholar] [CrossRef]
- Zhang, C.; Hong, C.S.; Hu, X.; Yang, C.; Wang, H.; Zhu, D.; Moon, S.; Dmitriev, P.; Lu, J.; Chiang, J.; et al. Inhibition of protein phosphatase 2A with the small molecule LB100 overcomes cell cycle arrest in osteosarcoma after cisplatin treatment. Cell Cycle 2015, 14, 2100–2108. [Google Scholar] [CrossRef]
- Du, Y.; Luo, L.; Xu, X.; Yang, X.; Yang, X.; Xiong, S.; Yu, J.; Liang, T.; Guo, L. Unleashing the Power of Synthetic Lethality: Augmenting Treatment Efficacy through Synergistic Integration with Chemotherapy Drugs. Pharmaceutics 2023, 15, 2433. [Google Scholar] [CrossRef]
Cancer Type | STRIPAK Complex Members | Methods and Case Number | Expression Pattern in Cancer | Clinical Value | References |
---|---|---|---|---|---|
Oesophageal carcinoma | STRN4 | Cohort study using serum samples (n = 192) | Upregulation | Poor prognostic indicator | [91] |
CCM3 | Online database | Upregulation | Poor prognostic indicator | [45] | |
STRN3 | Online database (n = 40) | Upregulation | Positively associated with TNM stage, lymph node metastasis and pathological differentiation | [92] | |
Osteosarcoma | CCM3 | Online database (n = 117) and IHC (n = 38) | Upregulation | Poor prognostic indicator | [93] |
Colorectal cancer | YSK1 | Online database (n = 230) | Upregulation | Higher expression associated with poor patients survival, TNM stage, and metastasis | [94] |
Gastric cancer | STRN3 | Cohort study (n = 88) | Upregulation | Positively correlated with tumour size, stage, lymphatic invasion, and lymph node metastasis; poor prognostic indicator | [79] |
STRN4 | IHC (n = 30) and multiple online databases; cohort study using serum samples (n = 96) | Upregulation | Poor prognostic indicator | [91,95] | |
MST3 | IHC (n = 103) | Upregulation | Poor prognostic indicator | [96] | |
MST4 | Online database (n = 449) | Upregulation | Poor prognostic indicator; associated with lymph node metastasis, vascular invasion | [97] | |
TRAF3IP3 | Online database (n = 387) | Upregulation | Positively associated with tumour and lymph node stages | [98] | |
CCM3 | Online database | Upregulated | [45] | ||
Brain lower grade glioma | CCM3 | Online database | Upregulation | Poor prognostic indicator | [45] |
Breast cancer | STRIP2 | Cohort study (n = 127) | Upregulation | Higher in higher tumour grades; poor prognostic indicator | [87] |
STRN3 | Multiple online databases and human biospecimens | Upregulation | Higher in tumour tissues; negatively associated with tumour progression; expression associated with cancer subtypes | [8,99] | |
CCM3 | Cohort study (n = 127); online database (n = 1809) | Upregulation | Poor prognostic indicator, expression is subtype dependent and associated with lymph node metastasis | [87,99] | |
MINK1 | Cohort study (n = 127) | Upregulation | Poor prognostic indicator | [87,99] | |
SLMAP | Cohort study (n = 127) | Upregulation | Poor prognostic indicator | [87] | |
MOB4 | Cohort study (n = 127) | Upregulation | Poor prognostic indicator | [87] | |
STRN4 | Cohort study (n = 127); online database (n = 1809); cohort study using serum samples (n = 96) | Upregulation | Poor prognostic indicator, expression associated with cancer subtypes | [87,91,99] | |
STRN1 | Cohort Study (n = 127) | Upregulation | Higher in tumour | [87] | |
MST3 | Immunoblotting (n = 20) and multiple online database | Upregulation | Upregulated in tumour and TNBC subtype of breast cancer patients; poor prognostic indicator | [100] | |
MST4 | Multiple online databases and IHC (93); online database (n = 1089) | Upregulation | Associated with lymph node metastasis; poor prognostic indicator | [99,101] | |
Bladder cancer | STRN4 | IHC (n = 28) | Upregulation | Poor prognostic indicator, positively associated with tumour size, muscle invasion depth, tumour grade | [102] |
CCM3 | Online databases | Upregulation | Poor prognostic indicator | [45,103] | |
Non-small cell lung cancer | STRIP2 | IHC (n = 189) | Upregulation | Poor prognostic indicator; higher in tumour tissues | [83] |
STRIP2 | Clinical cohort (n = 51), IHC (n = 189) and multiple online databases | Upregulation | Poor prognostic indicator; associated with poor tumour differentiation, TNM stage, lymph node metastasis, and cancer thrombus | [83] | |
Lung adenocarcinoma | STRIP2 | Multiple online databases | Upregulation | Poor prognostic indicator; negatively associated with immune response | [83,104,105] |
CCM3 | Online database | Upregulation | Good prognostic indicator, positively correlated with expression of tumour-infiltrating cells | [45] | |
MST3 | Online database (n = 573) | Upregulation | Poor prognostic indicator | [106] | |
TRAF3IP3 | Multiple online databases | Downregulation | Good prognostic indicator | [107] | |
STRN4 | Cohort study using serum samples (n = 96) | Upregulation | Poor prognostic indicator | [91] | |
Pituitary adenomas | CCM3 | Online database (n = 14) | Upregulation | Poor prognostic indicator | [64] |
Pancreatic cancer | CCM3 | Multiple online databases | Upregulation | Higher expression associated with unfavourable outcome | [45] |
MAP4K4 | Multiple datasets and IHC (n = 52; n = 66) | Upregulation | Positively associated with tumour stage; poor prognostic indicator, associated with metastasis, tumour size, and lymph node positivity | [84,108] | |
PPP2R1B (PP2A subunit A Beta isoform) | Multiple online databases | Downregulation | Good prognostic indicator | [109] | |
STRN1 | Multiple online databases | Upregulation | Poor prognostic indicator | [109] | |
STRN3 | Multiple online databases | Upregulation | Poor prognostic indicator | [109] | |
Prostate cancer | CCM3 | IHC (n = 160) | Upregulation | Positively associated with age | [110] |
MST4 | IHC (n = 160) | Upregulation | Positively associated with age | [110] | |
YSK1 | IHC (n = 160) | Upregulation | Higher expression is tumour with grades 3–5 compared with grade 1–2 | [110] | |
Liver hepatocellular carcinoma | STRN | IHC (n = 45) | Upregulation | Positively correlated with TNM stage and lymph node metastasis | [111] |
STRN4 | Clinical cohort (n = 521) | Upregulation | Poor prognostic indicator | [112] | |
PP2AA | Online database (529) | Upregulation | Poor prognostic indicator; associated with tumour grade, stage | [113] | |
YSK1 | IHC (n = 29) and online database (n = 365) | Upregulation | Poor prognostic indicator, associated with TNM, vascular invasion | [114] | |
CCM3 | Online database | Upregulation | Poor prognostic indicator | [45] | |
MST4 | Clinical cohort (n = 178) and IHC (n = 178) | Upregulation | Positively associated with tumour size, vascular invasion, metastasis, TNM stages; poor prognostic indicator | [115] | |
MST4 | IHC (n = 325) | Downregulation | Tumour-suppressive, negatively associated with T stage, nodal status, and metastasis; good prognostic indicator | [116] | |
TRAF3IP3 | Online database (n = 303) | Downregulation | Good prognostic indicator; positively correlated with immune-checkpoint gene PDCD1 | [117] | |
Head and Neck | CCM3 | Online database | Upregulation | Poor prognostic indicator | [45] |
Kidney renal clear cell carcinoma | TRAF3IP3 | Online database (n = 623) | Upregulation | Poor prognostic indicator | [113] |
Kidney chromophobe carcinoma | CCM3 | Online database | Upregulation | Poor prognostic indicator | [45] |
Osteosarcoma | CCM3 | Clinical cohort (n = 38) | Upregulation | Poor prognostic indicator for five-year mortality | [93] |
Glioma | TRAF3IP3 | Multiple online databases | Upregulation | Poor prognostic indicator; associated with grade, EGFR mutation, and worse histologic type | [118,119] |
Uterine corpus endometrial carcinoma | CCM3 | Online database | Upregulation | Poor prognostic indicator | [45] |
Oral squamous cell carcinoma | CCM3 | Online database | Upregulation | Poor prognostic indicator | [45] |
CTTNBP2 | Multiple online databases | Downregulation | [120,121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.X.; Martin, T.A.; Lane, J.; Jiang, W.G. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers 2024, 16, 76. https://doi.org/10.3390/cancers16010076
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers. 2024; 16(1):76. https://doi.org/10.3390/cancers16010076
Chicago/Turabian StyleLi, Amber Xinyu, Tracey A. Martin, Jane Lane, and Wen G. Jiang. 2024. "Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review)" Cancers 16, no. 1: 76. https://doi.org/10.3390/cancers16010076
APA StyleLi, A. X., Martin, T. A., Lane, J., & Jiang, W. G. (2024). Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers, 16(1), 76. https://doi.org/10.3390/cancers16010076