Cachexia and Sarcopenia in Oligometastatic Non-Small Cell Lung Cancer: Making a Potential Curable Disease Incurable?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Inclusion and Study Design
2.2. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Survival Analysis
3.3. Safety Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, A.-M.C.; Hendriks, L.E.L.; Berghmans, T.; Levy, A.; Hasan, B.; Faivre-Finn, C.; Giaj-Levra, M.; Giaj-Levra, N.; Girard, N.; Greillier, L.; et al. Definition of Synchronous Oligometastatic Non–Small Cell Lung Cancer—A Consensus Report. J. Thorac. Oncol. 2019, 14, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.L.; Dooms, C.; Berghmans, T.; Novello, S.; Levy, A.; De Ruysscher, D.; Hasan, B.; Giaj Levra, M.; Giaj Levra, N.; Besse, B.; et al. Defining oligometastatic non-small cell lung cancer: A simulated multidisciplinary expert opinion. Eur. J. Cancer 2019, 123, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R., Jr.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy vs. Maintenance Therapy or Observation for Patients with Oligometastatic Non-Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, P.; Wardak, Z.; Gerber, D.E.; Tumati, V.; Ahn, C.; Hughes, R.S.; Dowell, J.E.; Cheedella, N.; Nedzi, L.; Westover, K.D.; et al. Consolidative Radiotherapy for Limited Metastatic Non-Small-Cell Lung Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e173501. [Google Scholar] [CrossRef] [PubMed]
- De Ruysscher, D.; Wanders, R.; Hendriks, L.E.; van Baardwijk, A.; Reymen, B.; Houben, R.; Bootsma, G.; Pitz, C.; van Eijsden, L.; Dingemans, A.C. Progression-Free Survival and Overall Survival beyond 5 Years of NSCLC Patients with Synchronous Oligometastases Treated in a Prospective Phase II Trial (NCT 01282450). J. Thorac. Oncol. 2018, 13, 1958–1961. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Non-Small Cell Lung Cancer. Version 3.2023. 2023. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450 (accessed on 26 October 2023).
- Iyengar, P.; All, S.; Berry, M.F.; Boike, T.P.; Bradfield, L.; Dingemans, A.C.; Feldman, J.; Gomez, D.R.; Hesketh, P.J.; Jabbour, S.K.; et al. Treatment of Oligometastatic Non-Small Cell Lung Cancer: An ASTRO/ESTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2023, 13, 393–412. [Google Scholar] [CrossRef]
- Bauml, J.M.; Mick, R.; Ciunci, C.; Aggarwal, C.; Davis, C.; Evans, T.; Deshpande, C.; Miller, L.; Patel, P.; Alley, E.; et al. Pembrolizumab after Completion of Locally Ablative Therapy for Oligometastatic Non-Small Cell Lung Cancer: A Phase 2 Trial. JAMA Oncol. 2019, 5, 1283–1290. [Google Scholar] [CrossRef]
- Remon, J.; Menis, J.; Levy, A.; De Ruysscher, D.K.M.; Hendriks, L.E.L. How to optimize the incorporation of immunotherapy in trials for oligometastatic non-small cell lung cancer: A narrative review. Transl. Lung Cancer Res. 2021, 10, 3486–3502. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.; Chargari, C.; Galluzzi, L.; Kroemer, G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2019, 20, e452–e463. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-S.; Bai, Y.-F.; Verma, V.; Yu, R.-L.; Tian, W.; Ao, R.; Deng, Y.; Zhu, X.-Q.; Liu, H.; Pan, H.-X.; et al. Randomized Trial of First-Line Tyrosine Kinase Inhibitor with or without Radiotherapy for Synchronous Oligometastatic EGFR-Mutated Non-Small Cell Lung Cancer. JNCI J. Natl. Cancer Inst. 2022, 115, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Giaj-Levra, N.; Giaj-Levra, M.; Durieux, V.; Novello, S.; Besse, B.; Hasan, B.; Hendriks, L.E.; Levy, A.; Dingemans, A.C.; Berghmans, T. Defining Synchronous Oligometastatic Non-Small Cell Lung Cancer: A Systematic Review. J. Thorac. Oncol. 2019, 14, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, R.; Inage, Y.; Tobita, R.; Yoneyama, S.; Numata, T.; Ota, K.; Yanai, H.; Endo, T.; Inadome, Y.; Sakashita, S.; et al. Sarcopenia in Resected NSCLC: Effect on Postoperative Outcomes. J. Thorac. Oncol. 2018, 13, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Morita-Tanaka, S.; Yamada, T.; Takayama, K. The landscape of cancer cachexia in advanced non-small cell lung cancer: A narrative review. Transl. Lung Cancer Res. 2023, 12, 168–180. [Google Scholar] [CrossRef]
- Srdic, D.; Plestina, S.; Sverko-Peternac, A.; Nikolac, N.; Simundic, A.-M.; Samarzija, M. Cancer cachexia, sarcopenia and biochemical markers in patients with advanced non-small cell lung cancer—Chemotherapy toxicity and prognostic value. Support. Care Cancer 2016, 24, 4495–4502. [Google Scholar] [CrossRef]
- Madeddu, C.; Busquets, S.; Donisi, C.; Lai, E.; Pretta, A.; López-Soriano, F.J.; Argilés, J.M.; Scartozzi, M.; Macciò, A. Effect of Cancer-Related Cachexia and Associated Changes in Nutritional Status, Inflammatory Status, and Muscle Mass on Immunotherapy Efficacy and Survival in Patients with Advanced Non-Small Cell Lung Cancer. Cancers 2023, 15, 1076. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, N.; Xiao, L.; Nie, X.; Xiong, J.; Liu, Y.; Zhang, M.; Zhang, H.; Tang, C.; Pan, S.; et al. Prognostic value of sarcopenia in patients with lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors or immune checkpoint inhibitors. Front. Nutr. 2023, 10, 1113875. [Google Scholar] [CrossRef]
- Chen, X.; Hou, L.; Shen, Y.; Wu, X.; Dong, B.; Hao, Q. The Role of Baseline Sarcopenia Index in Predicting Chemotherapy-Induced Undesirable Effects and Mortality in Older People with Stage III or IV Non-Small Cell Lung Cancer. J. Nutr. Health Aging 2021, 25, 878–882. [Google Scholar] [CrossRef]
- Argilés, J.M.; Betancourt, A.; Guàrdia-Olmos, J.; Peró-Cebollero, M.; López-Soriano, F.J.; Madeddu, C.; Serpe, R.; Busquets, S. Validation of the CAchexia SCOre (CASCO). Staging cancer patients: The use of miniCASCO as a simplified tool. Front. Physiol. 2017, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, N.; Azuma, K.; Murotani, K.; Murata, D.; Matama, G.; Kawahara, A.; Kojima, T.; Tokito, T.; Hoshino, T. Prognostic effect of cachexia in patients with non-small cell lung cancer receiving immune checkpoint inhibitors. Thorac. Cancer 2023, 14, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Uchino, J.; Yokoi, T.; Kijima, T.; Goto, Y.; Nakao, A.; Hibino, M.; Takeda, T.; Yamaguchi, H.; Takumi, C.; et al. Impact of cancer cachexia on the therapeutic outcome of combined chemoimmunotherapy in patients with non-small cell lung cancer: A retrospective study. Oncoimmunology 2021, 10, 1950411. [Google Scholar] [CrossRef] [PubMed]
- Burtin, C.; Bezuidenhout, J.; Sanders, K.J.C.; Dingemans, A.C.; Schols, A.; Peeters, S.T.H.; Spruit, M.A.; De Ruysscher, D.K.M. Handgrip weakness, low fat-free mass, and overall survival in non-small cell lung cancer treated with curative-intent radiotherapy. J. Cachexia Sarcopenia Muscle 2020, 11, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef]
- Spruit, M.A.; Sillen, M.J.; Groenen, M.T.; Wouters, E.F.; Franssen, F.M. New normative values for handgrip strength: Results from the UK Biobank. J. Am. Med. Dir. Assoc. 2013, 14, 775.E5–775.E11. [Google Scholar] [CrossRef]
- Bolte, F.J.; McTavish, S.; Wakefield, N.; Shantzer, L.; Hubbard, C.; Krishnaraj, A.; Novicoff, W.; Gentzler, R.D.; Hall, R.D. Association of sarcopenia with survival in advanced NSCLC patients receiving concurrent immunotherapy and chemotherapy. Front. Oncol. 2022, 12, 986236. [Google Scholar] [CrossRef]
- Hasenauer, A.; Forster, C.; Hungerbühler, J.; Perentes, J.Y.; Abdelnour-Berchtold, E.; Koerfer, J.; Krueger, T.; Becce, F.; Gonzalez, M. CT-Derived Sarcopenia and Outcomes after Thoracoscopic Pulmonary Resection for Non-Small Cell Lung Cancer. Cancers 2023, 15, 790. [Google Scholar] [CrossRef]
- Karaman, E.; Hursoy, N.; Goksel, S. The Effect of Sarcopenia and Metabolic PET-CT Parameters on Survival in Locally Advanced Non-Small Cell Lung Carcinoma. Nutr. Cancer 2023, 75, 286–295. [Google Scholar] [CrossRef]
- Katsui, K.; Ogata, T.; Sugiyama, S.; Yoshio, K.; Kuroda, M.; Hiraki, T.; Kiura, K.; Maeda, Y.; Toyooka, S.; Kanazawa, S. Sarcopenia is associated with poor prognosis after chemoradiotherapy in patients with stage III non-small-cell lung cancer: A retrospective analysis. Sci. Rep. 2021, 11, 11882. [Google Scholar] [CrossRef]
- Yuan, H.; Tan, X.; Sun, X.; He, L.; Li, D.; Jiang, L. Role of 18F-FDG PET/CT and sarcopenia in untreated non-small cell lung cancer with advanced stage. Jpn. J. Radiol. 2023, 41, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2018, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Portal, D.; Hofstetter, L.; Eshed, I.; Dan-Lantsman, C.; Sella, T.; Urban, D.; Onn, A.; Bar, J.; Segal, G. L3 skeletal muscle index (L3SMI) is a surrogate marker of sarcopenia and frailty in non-small cell lung cancer patients. Cancer Manag. Res. 2019, 11, 2579–2588. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Perez, S.L.; Haus, J.M.; Sheean, P.; Patel, B.; Mar, W.; Chaudhry, V.; McKeever, L.; Braunschweig, C. Measuring Abdominal Circumference and Skeletal Muscle from a Single Cross-Sectional Computed Tomography Image. J. Parenter. Enter. Nutr. 2016, 40, 308–318. [Google Scholar] [CrossRef]
- Minami, S.; Ihara, S.; Tanaka, T.; Komuta, K. Sarcopenia and Visceral Adiposity Did Not Affect Efficacy of Immune-Checkpoint Inhibitor Monotherapy for Pretreated Patients with Advanced Non-Small Cell Lung Cancer. World J. Oncol. 2020, 11, 9–22. [Google Scholar] [CrossRef]
- Haik, L.; Gonthier, A.; Quivy, A.; Gross-goupil, M.; Veillon, R.; Frison, E.; Ravaud, A.; Domblides, C.; Daste, A. The impact of sarcopenia on the efficacy and safety of immune checkpoint inhibitors in patients with solid tumours. Acta Oncol. 2021, 60, 1597–1603. [Google Scholar] [CrossRef]
- Nishioka, N.; Naito, T.; Notsu, A.; Mori, K.; Kodama, H.; Miyawaki, E.; Miyawaki, T.; Mamesaya, N.; Kobayashi, H.; Omori, S.; et al. Unfavorable impact of decreased muscle quality on the efficacy of immunotherapy for advanced non-small cell lung cancer. Cancer Med. 2021, 10, 247–256. [Google Scholar] [CrossRef]
- Roch, B.; Coffy, A.; Jean-Baptiste, S.; Palaysi, E.; Daures, J.-P.; Pujol, J.-L.; Bommart, S. Cachexia—Sarcopenia as a determinant of disease control rate and survival in non-small lung cancer patients receiving immune-checkpoint inhibitors. Lung Cancer 2020, 143, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Zhang, P.; Gao, J.-Y.; Cheng, G.; Liu, W.; Li, L. Sarcopenia as a predictor of initial administration dose of afatinib in patients with advanced non-small cell lung cancer. Thorac. Cancer 2021, 12, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Naqash, A.R.; McCallen, J.D.; Mi, E.; Iivanainen, S.; Marie, M.A.; Gramenitskaya, D.; Clark, J.; Koivunen, J.P.; Macherla, S.; Jonnalagadda, S.; et al. Increased interleukin-6/C-reactive protein levels are associated with the upregulation of the adenosine pathway and serve as potential markers of therapeutic resistance to immune checkpoint inhibitor-based therapies in non-small cell lung cancer. J. Immunother. Cancer 2023, 11, e007310. [Google Scholar] [CrossRef] [PubMed]
- Diker, O.; Olgun, P.; Balyemez, U.; Sigit Ikiz, S. Development of a Novel Predictive-Prognostic Scoring Index for Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer. Cureus 2023, 15, e33234. [Google Scholar] [CrossRef]
- Antoun, S.; Morel, H.; Souquet, P.J.; Surmont, V.; Planchard, D.; Bonnetain, F.; Foucher, P.; Egenod, T.; Krakowski, I.; Gaudin, H.; et al. Staging of nutrition disorders in non-small-cell lung cancer patients: Utility of skeletal muscle mass assessment. J. Cachexia Sarcopenia Muscle 2019, 10, 782–793. [Google Scholar] [CrossRef]
- Cong, M.; Song, C.; Xu, H.; Song, C.; Wang, C.; Fu, Z.; Ba, Y.; Wu, J.; Xie, C.; Chen, G.; et al. The patient-generated subjective global assessment is a promising screening tool for cancer cachexia. BMJ Support. Palliat. Care 2022, 12, e39–e46. [Google Scholar] [CrossRef]
- Minichsdorfer, C.; Gleiss, A.; Aretin, M.B.; Schmidinger, M.; Fuereder, T. Serum parameters as prognostic biomarkers in a real world cancer patient population treated with anti PD-1/PD-L1 therapy. Ann. Med. 2022, 54, 1339–1349. [Google Scholar] [CrossRef]
- Menekse, S.; Kut, E.; Almuradova, E. Elevated serum lactate dehydrogenase to albumin ratio is a useful poor prognostic predictor of nivolumab in patients with non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci. 2023, 27 (Suppl. S5), 86–94. [Google Scholar]
- Bozzetti, F. Forcing the vicious circle: Sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann. Oncol. 2017, 28, 2107–2118. [Google Scholar] [CrossRef]
- Deng, H.-Y.; Chen, Z.-J.; Qiu, X.-M.; Zhu, D.-X.; Tang, X.-J.; Zhou, Q. Sarcopenia and prognosis of advanced cancer patients receiving immune checkpoint inhibitors: A comprehensive systematic review and meta-analysis. Nutrition 2021, 90, 111345. [Google Scholar] [CrossRef]
Authors | Setting | Study Design | No. of Patients | Cachexia or Sarcopenia | Definition of Cachexia/Sarcopenia | Treatment | Outcome (Cachexia/Sarcopenia vs. Non-Cachexia/Sarcopenia) |
---|---|---|---|---|---|---|---|
Madeddu et al. [19] | Advanced NSCLC | Prospective, monocenter | 74 | Cachexia and sarcopenia | Cachexia: 1. Weight loss ≥ 5% during the past 6 months or weight loss of more than 2% and BMI < 20 2. MiniCASCO questionnaire [22] sarcopenia: SMI at L3, women < 39 cm2/m2; men < 55 cm2/m2 | ICI treatment | Cachexia was an independent predictor of negative survival in patients treated with ICI. Sarcopenia was not predictive of the PFS and OS in patients treated with ICI. |
Matsuo et al. [23] | Advanced or recurrent NSCLC | Retrospective, monocenter | 183 | Cachexia | Weight loss ≥ 5% during the past 6 months or weight loss of more than 2% and BMI < 20 | PD-1/PD-L1 inhibitors | Significantly shorter median PFS (2.1 vs. 5.1 months, p < 0.001) and OS (5.6 vs. 15.0 months, p < 0.001). Multivariate analysis: cachexia in combination with poor PS is associated with worse survival. |
Morimoto et al. [24] | All stages of NSCLC (81% stage III–IV), and recurrent | Retrospective, multicenter | 196 | Cachexia | Weight loss ≥ 5% during the past 6 months or weight loss of more than 2% and BMI < 20 | Chemoimmunotherapy | Overall population: significantly shorter median PFS (6.7 vs. 9.3 months, p = 0.04), and no significant difference in OS. In PD-L1 ≥ 50% expression: no significant difference in PFS and OS. |
Burtin et al. [25] | Stage I–III NSCLC | Prospective, monocenter | 936 | Sarcopenia | Low FFMI (women < 15 kg/m2; men < 17 kg/m2) [26] and handgrip weakness [27] | Primary RT, sequential CRT or concurrent CRT | Patients with PS 0–1: handgrip weakness and low FFMI were significant prognostic factors for OS. Patients with PS ≥ 2: handgrip weakness and low FFMI were not related to OS. |
Bolte et al. [28] | Advanced NSCLC | Retrospective, monocenter | 92 | Sarcopenia | Sex-specific 25th percentile of the PMI (at L3) in the cohort | Chemoimmunotherapy | Significantly shorter median OS (9.1 vs. 22.3 months, p = 0.003). |
Hasenauer et al. [29] | Stage I–III NSCLC | Retrospective, monocenter | 401 | Sarcopenia | SMI at L3. Sarcopenia: women < 38.5 cm2/m2; men < 52.4 cm2/m2 | VATS pulmonary resection | Sarcopenia is associated with a higher rate of postoperative complications and longer hospital stay. |
Karaman et al. [30] | Stage III NSCLC | Retrospective, monocenter | 56 | Sarcopenia | SMI at L3. Sarcopenia: women < 38.5 cm2/m2; men < 52.4 cm2/m2 | Concurrent CRT or RT only | Significantly shorter median OS (19.0 vs. 38.0 months, p < 0.04). |
Katsui et al. [31] | Stage III NSCLC | Retrospective, monocenter | 60 | Sarcopenia | SMI and PMI at L3, cut-off values based on time-dependent ROC curve | Concurrent CRT | Shorter 1,3,5-year OS rates in patient with low SMI (63.6%, 53.8% and 17.9%) vs. high SMI (92.1%, 59.6% and 51.0%). |
Lyu et al. [20] | Advanced NSCLC | Retrospective, monocenter | 131 | Sarcopenia | SMI at L3. Sarcopenia: women < 31.6 cm2/m2; men < 40.2 cm2/m2 | EGFR-TKI or ICI | Shorter median PFS (6.4 vs. 15.1 months, p < 0.001) and OS (13.0 vs. 26.0 months, p < 0.001). Sarcopenia was an independent predictor of poor OS and PFS. |
Yuan et al. [32] | Stage III–IV NSCLC | Retrospective, monocenter | 202 | Sarcopenia | SMI at L3. Sarcopenia: women < 32.5 cm2/m2; men 44.7 cm2/m2 | Treatment according NCCN guidelines | Significantly shorter median PFS (8.0 vs. 13.1 months, p = 0.02) and OS 13.3 months vs. 25.8 months, p = 0.003). |
Characteristic | All Patients (n = 234) | A: No Cachexia and No Sarcopenia (n = 133) | B: Cachexia, No Sarcopenia (n = 46) | C: Sarcopenia, No Cachexia (n = 34) | D: Cachexia and Sarcopenia (n = 21) | p Value |
---|---|---|---|---|---|---|
Median age at diagnosis (range), years | 67 (39–89) | 68 (39–89) | 67 (49–85) | 65 (48–88) | 66 (50–85) | 0.69 |
Sex (%) | 0.82 | |||||
Male | 123 (52.6) | 68 (51.1) | 25 (54.3) | 20 (58.8) | 10 (52.4) | |
Female | 111 (47.4) | 65 (48.9) | 21 (45.7) | 14 (41.2) | 11 (47.6) | |
WHO-PS (%) | 0.001 | |||||
0 | 102 (43.6) | 72 (54.1) | 12 (26.1) | 16 (47.1) | 2 (9.5) | |
1 | 108 (46.2) | 51 (38.3) | 26 (56.5) | 15 (44.1) | 16 (76.2) | |
2 | 21 (9.0) | 10 (7.5) | 6 (13.0) | 2 (5.9) | 3 (14.3) | |
3 * | 3 (1.3) | 0 (0) | 2 (4.3) | 1 (2.9) | 0 (0) | |
Median BMI (range), kg/m2 | 25.0 (15.8–42.1) | 26.4 (18.4–42.1) | 23.0 (16.6–35.9) | 24.5 (16.5–41.4) | 21.1 (15.8–31.2) | <0.001 |
Median weight loss in last 6 months before diagnosis (range), kg | 0 (0–25) | 0 (0–5) | 7.3 (2–25) | 0 (0–9) | 9 (1–25) | <0.001 |
Median PMI (range), mm2/m2 | 6.32 (1.50–14.58) | 7.05 (3.90–12.49) | 6.67 (3.78–14.58) | 4.21 (1.50–5.94) | 3.95 (2.13–5.89) | <0.001 |
Median LDH | 208 (120–699) | 208 (120–699) | 196 (132–499) | 211 (122–406) | 201 (151–415) | 0.82 |
Median CRP mg/L | 13 (1–268) | 12 (1–174) | 14 (1–268) | 13 (1–164) | 22 (1–217) | 0.14 |
Median serum albumin (range), g/dL | 39.0 (21.0–53.0) | 39.7 (21.2–53.0) | 37.8 (22.1–47.0) | 39.0 (29.5–49.0) | 36.0 (21.0–45.4) | 0.005 |
Median serum total protein g/dL | 70.4 (57.0–81.0) | 69.1 (57.0–76.0) | 73.7 (67.0–81.0) | 67.0 (57.0–71.0) | 76.1 (76.1–76.1) | 0.26 |
Smoking status | 0.02 | |||||
Current | 101 (43.2) | 44 (33.1) | 28 (60.9) | 17 (50.0) | 12 (57.1) | |
Former | 118 (50.4) | 79 (59.4) | 15 (32.6) | 16 (47.1) | 8 (38.1) | |
Never | 12 (5.1) | 9 (6.7) | 1 (2.2) | 1 (2.9) | 1 (4.8) | |
Unknown | 3 (1.3) | 1 (0.8) | 2 (4.3) | 0 (0) | 0 (0) | |
NSCLC subtype (%) | 0.83 | |||||
Non-squamous | 183 (78.2) | 102 (76.6) | 36 (78.3) | 27 (79.4) | 18 (85.7) | |
Squamous | 51 (21.8) | 31 (23.3) | 10 (21.7) | 7 (20.6) | 3 (14.3) | |
PD-L1 status (%) | 0.57 | |||||
Positive (≥50%) | 68 (29.1) | 34 (25.6) | 12 (26.1) | 14 (41.2) | 8 (38.1) | |
Positive (1–49%) | 45 (19.2) | 28 (21.1) | 6 (13.0) | 7 (20.6) | 4 (19.0) | |
Negative (<1%) | 39 (16.7) | 24 (18.0) | 8 (17.4) | 3 (8.8) | 4 (19.0) | |
Unknown | 82 (35.0) | 47 (35.3) | 20 (43.5) | 10 (29.4) | 5 (23.9) | |
Driver mutation (%) | ||||||
ALK+ | 1 (0.4) | 0 (0) | 0 (0) | 1 (2.9) | 0 (0) | 0.12 |
BRAF+ | 5 (2.1) | 3 (2.3) | 1 (2.2) | 0 (0) | 1 (4.8) | 0.70 |
EGFR + | 11 (4.7) | 8 (6.0) | 0 (0) | 2 (5.9) | 1 (4.8) | 0.41 |
KRAS+ | 62 (26.5) | 34 (25.6) | 13 (28.3) | 9 (26.5) | 6 (28.6) | 0.98 |
RET+ | 2 (0.9) | 1 (0.8) | 0 (0) | 0 (0) | 1 (4.8) | 0.21 |
ROS1+ | 3 (1.3) | 0 (0) | 2 (4.3) | 1 (2.9) | 0 (0) | 0.10 |
T stage ** (%) | 0.24 | |||||
x | 10 (4.3) | 9 (6.8) | 0 (0) | 1 (2.9) | 0 (0) | |
1a | 5 (2.1) | 2 (1.5) | 1 (2.2) | 2 (5.9) | 0 (0) | |
1b | 14 (6.0) | 8 (6.0) | 4 (8.7) | 1 (2.9) | 1 (4.8) | |
1c | 21 (9.0) | 13 (9.8) | 3 (6.5) | 5 (14.7) | 0 (0) | |
2a | 28 (12.0) | 17 (12.8) | 3 (6.5) | 7 (20.6) | 1 (4.8) | |
2b | 17 (7.3) | 10 (7.5) | 3 (6.5) | 1 (2.9) | 3 (14.3) | |
3 | 47 (20.1) | 29 (21.8) | 7 (15.2) | 6 (17.6) | 5 (23.8) | |
4 | 92 (39.3) | 45 (33.8) | 25 (54.3) | 11 (32.4) | 11 (52.4) | |
N stage (%) | 0.35 | |||||
0 | 70 (29.9) | 44 (33.1) | 9 (19.6) | 13 (38.2) | 4 (19.0) | |
1 | 16 (6.8) | 6 (4.5) | 4 (8.7) | 4 (11.8) | 2 (9.5) | |
2 | 85 (36.3) | 51 (38.3) | 16 (34.8) | 10 (29.4) | 8 (38.1) | |
3 | 63 (26.9) | 32 (24.1) | 17 (37.0) | 7 (20.6) | 7 (33.3) | |
Median number of metastases | 1 | 1 | 1 | 1 | 2 | 0.32 |
Number of metastases (%) | ||||||
1 | 127 (54.3) | 76 (57.1) | 24 (52.2) | 18 (52.9) | 9 (42.9) | 0.65 |
2 | 69 (29.5) | 42 (31.6) | 10 (21.7) | 9 (26.5) | 8 (38.1) | 0.47 |
3 | 20 (8.5) | 7 (5.3) | 7 (5.3) | 3 (8.8) | 3 (14.3) | 0.15 |
4 | 12 (5.1) | 4 (3.0) | 3 (6.5) | 4 (11.8) | 1 (4.8) | 0.21 |
5 | 6 (2.6) | 4 (3.0) | 2 (4.3) | 0 (0) | 0 (0) | 0.54 |
Metastatic sites (%) | ||||||
Brain | 95 (40.6) | 49 (36.8) | 17 (37.0) | 17 (50.0) | 12 (57.1) | 0.20 |
Bone | 45 (19.2) | 32 (24.1) | 8 (17.4) | 3 (8.8) | 2 (9.5) | 0.13 |
Adrenal | 30 (12.8) | 15 (11.3) | 7 (15.2) | 5 (14.7) | 3 (14.3) | 0.89 |
Lung | 64 (27.4) | 37 (27.8) | 13 (28.3) | 8 (23.5) | 6 (28.6) | 0.96 |
Nodal (extrathoracic) | 32 (13.7) | 18 (13.5) | 9 (19.6) | 3 (8.8) | 2 (9.5) | 0.51 |
Pleural | 12 (5.1) | 3 (2.3) | 3 (6.5) | 4 (11.8) | 2 (9.5) | |
Liver | 8 (3.4) | 4 (3.0) | 3 (6.5) | 1 (2.9) | 0 (0) | 0.54 |
Soft tissue | 6 (2.6) | 4 (3.0) | 0 (0) | 1 (2.9) | 1 (4.8) | 0.63 |
Renal | 2 (0.9) | 0 (0) | 1 (2.2) | 1 (2.9) | 0 (0) | 0.26 |
Subcutis | 1 (0.4) | 0 (0) | 1 (0.6) | 0.53 | 0 (0) | 0.86 |
Peritoneal | 1 (0.4) | 0 (0) | 1 (2.2) | 0 (0) | 0 (0) | 0.25 |
Type of systemic treatment | ||||||
Chemotherapy | 155 (79.5) | 91 (81.2) | 30 (83.3) | 23 (79.3) | 11 (61.1) | 0.67 |
Chemotherapy + ICI | 18 (9.2) | 12 (10.7) | 3 (8.3) | 1 (3.5) | 2 (11.1) | 0.23 |
ICI monotherapy | 12 (6.2) | 4 (3.6) | 1 (2.8) | 3 (10.3) | 4 (22.2) | 0.01 |
TKI | 10 (5.1) | 5 (4.5) | 2 (5.6) | 2 (5.9) | 1 (5.6) | 0.96 |
Best response after induction systemic treatment according to RECIST 1.1 (%) | 0.93 | |||||
CR | 3 (1.3) | 2 (1.5) | 1 (2.2) | 0 (0) | 0 (0) | |
PR | 103 (44.0) | 65 (48.9) | 16 (34.8) | 12 (35.3) | 10 (47.6) | |
SD | 57 (24.2) | 29 (21.8) | 12 (26.1) | 12 (35.3) | 4 (19.0) | |
PD | 46 (19.7) | 23 (17.3) | 12 (26.1) | 6 (17.6) | 5 (23.8) | |
Unknown | 25 (10.7) | 14 (10.5) | 5 (10.9) | 4 (11.8) | 6 (10.9) | |
Actual radical treatment (%) | 142 (60.7) | 86 (64.7) | 26 (56.5) | 19 (55.9) | 11 (52.4) | 0.54 |
Characteristics | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | ||
Age (ref: <75 years) | ≥75 years | 2.5 (1.3–4.9) | 0.005 | 2.1 (1.1–4.3) | 0.03 |
Gender (ref: male) | female | 0.5 (0.3–0.9) | 0.02 | 0.6 (0.3–1.0) | 0.07 |
WHO-PS (ref: 0–1) | 2–3 | 2.0 (0.8–4.6) | 0.12 | 1.7 (0.7–4.2) | 0.24 |
Smoking (ref: never) | Former | 1.5 (0.5–5.0) | 0.50 | ||
Current | 1.7 (0.5–5.7) | 0.37 | |||
Histology (ref: non-squamous) | Squamous | 0.4 (0.2–0.8) | 0.01 | 0.6 (0.3–1.1) | 0.09 |
BMI (ref: <25 kg/m2) | ≥25 kg/m2 | 1.2 (0.7–2.0) | 0.49 | ||
Cachexia | 0.7 (0.4–1.2) | 0.17 | 0.6 (0.4–1.2) | 0.15 | |
Sarcopenia | ≥6.05 mm2/m2 for men and ≥4.20 mm2/m2 for women | 1.0 (0.5–1.8) | 0.91 | 1.0 (0.5–1.8) | 0.92 |
Serum albumin (ref: <40 g/L) | ≥40 g/L | 0.8 (0.5–1.5) | 0.55 | ||
Serum CRP (ref: ≤5 mg/L) | >5 mg/L | 1.8 (0.9–3.5) | 0.09 | ||
Serum LDH (ref: <248) | ≥248 | 1.2 (0.7–2.1) | 0.59 | ||
Actionable driver mutation * (ref: yes) | 0.8 (0.3–2.1) | 0.64 |
Characteristics | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | ||
Age (ref: <75 years) | ≥75 years | 1.7 (0.8–3.6) | 0.16 | 1.9 (0.8–5.1) | 0.17 |
Gender (ref: male) | female | 0.6 (0.3–0.9) | 0.04 | 0.6 (0.3–1.2) | 0.13 |
WHO-PS (ref: 0–1) | 2–3 | 2.6 (0.8–7.8) | 0.10 | 2.5 (0.5–12.0) | 0.25 |
Smoking (ref: never) | Former | 2.4 (0.5–11.4) | 0.28 | ||
Current | 2.6 (0.6–12.2) | 0.25 | |||
Histology (ref: non-squamous) | Squamous | 1.0 (0.5–1.9) | 0.91 | ||
BMI (ref: <25 kg/m2) | ≥25 kg/m2 | 1.3 (0.7–2.2) | 0.43 | ||
Cachexia | 0.5 (0.2–1.0) | 0.05 | 0.4 (0.2–1.0) | 0.05 | |
Sarcopenia | ≥6.05 mm2/m2 for men and ≥4.20 mm2/m2 for women | 0.9 (0.5–1.8) | 0.84 | 1.3 (0.6–2.8) | 0.58 |
Serum albumin (ref: <40 g/L) | ≥40 g/L | 0.83 (0.5–1.6) | 0.56 | ||
Serum CRP (ref: ≤5 mg/L) | >5 mg/L | 2.8 (1.4–5.4) | 0.003 | 3.6 (1.3–5.2) | 0.008 |
Serum LDH (ref: <248) | ≥248 | 1.0 (0.5–1.8) | 0.94 | ||
Actionable driver mutation (ref: yes) * | 0.6 (0.2–1.9) | 0.36 |
Characteristics | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | ||
Age (ref: <75 years) | ≥75 years | 1.5 (0.5–4.2) | 0.45 | 0.8 (0.2–3.4) | 0.87 |
Gender (ref: male) | female | 0.5 (0.3–1.2) | 0.09 | 1.7 (0.6–4.5) | 0.29 |
WHO-PS (ref: 0–1) | 2 | 1.1 (0.2–5.4) | 0.93 | 0.8 (0.1–5.0) | 0.82 |
Smoking (ref: never) | Former | 0.8 (0.1–7.9) | 0.86 | ||
Current | 1.0 (0.1–10.0) | 0.98 | |||
Histology (ref: non-squamous) | Squamous | 0.3 (0.1–0.8) | 0.02 | 2.4 (0.8–7.0) | 0.11 |
BMI (ref: <25 kg/m2) | ≥25 kg/m2 | 2.1 (0.9–4.7) | 0.09 | ||
Cachexia | 1.0 (0.4–2.4) | 0.93 | 1.3 (0.4–3.7) | 0.67 | |
Sarcopenia | ≥6.05 mm2/m2 for men and ≥4.20 mm2/m2 for women | 1.1 (0.4–2.9) | 0.87 | 0.7 (0.2–2.5) | 0.55 |
Serum albumin (ref: <40 g/L) | ≥40 g/L | 1.7 (0.7–4.1) | 0.29 | ||
Serum CRP (ref: ≤5 mg/L) | >5 mg/L | 1.9 (0.6–5.6) | 0.25 | 0.6 (0.2–1.9) | 0.40 |
Serum LDH (ref: <248) | ≥248 | 1.3 (0.5–3.1) | 0.58 | ||
TRAE (ref: toxicity ≤ 2) | Toxicity grade ≥ 3 | 1.5 (0.7–3.4) | 0.32 | ||
Best response to induction systemic therapy (ref: CR and PR) | SD and PD | 2.2 (0.9–5.1) | 0.06 | ||
Actionable driver mutation (ref: yes) * | 0.89 (0.3–3.5) | 0.87 |
Characteristics | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | ||
Age (ref: <75 years) | ≥75 years | 0.9 (0.4–2.2) | 0.77 | 1.1 (0.3–3.9) | 0.84 |
Gender (ref: male) | female | 0.7 (0.4–1.4) | 0.35 | 1.2 (0.5–2.7) | 0.75 |
WHO-PS (ref: 0–1) | 2 | 3.4 (0.7–16.7) | 0.14 | 0.6 (0.1–3.0) | 0.50 |
Smoking (ref: never) | Former | 1.4 (0.2–9.0) | 0.71 | ||
Current | 1.2 (0.2–7.9) | 0.82 | |||
Histology (ref: non-squamous) | Squamous | 1.1 (0.5–2.4) | 0.90 | ||
BMI (ref: <25 kg/m2) | ≥25 kg/m2 | 1.0 (0.9–1.1) | 0.82 | ||
Cachexia | 0.5 (0.2–1.1) | 0.09 | 2.7 (1.0–6.9) | 0.05 | |
Sarcopenia | ≥6.05 mm2/m2 for men and ≥4.20 mm2/m2 for women | 1.2 (0.5–2.6) | 0.73 | 0.4 (0.2–1.3) | 0.13 |
Serum albumin (ref: <40 g/L) | ≥40 g/L | 1.2 (0.6–2.5) | 0.63 | ||
Serum CRP (ref: ≤5 mg/L) | >5 mg/L | 2.8 (1.2–6.7) | 0.02 | 0.4 (0.1–0.9) | 0.02 |
Serum LDH (ref: <248) | ≥248 | 1.2 (0.6–2.5) | 0.61 | ||
TRAE (ref: toxicity ≤ 2) | Toxicity grade ≥ 3 | 1.0 (0.5–2.0) | 0.99 | ||
Best response to induction systemic therapy (ref: CR and PR) | SD and PD | 1.5 (0.7–3.1) | 0.26 | ||
Actionable driver mutation (ref: yes) * | 2.2 (0.3–18.6) | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomeo, V.; Jongbloed, M.; van de Worp, W.R.P.H.; Langen, R.; Degens, J.; Hendriks, L.E.L.; de Ruysscher, D.K.M. Cachexia and Sarcopenia in Oligometastatic Non-Small Cell Lung Cancer: Making a Potential Curable Disease Incurable? Cancers 2024, 16, 230. https://doi.org/10.3390/cancers16010230
Bartolomeo V, Jongbloed M, van de Worp WRPH, Langen R, Degens J, Hendriks LEL, de Ruysscher DKM. Cachexia and Sarcopenia in Oligometastatic Non-Small Cell Lung Cancer: Making a Potential Curable Disease Incurable? Cancers. 2024; 16(1):230. https://doi.org/10.3390/cancers16010230
Chicago/Turabian StyleBartolomeo, Valentina, Mandy Jongbloed, Wouter R. P. H. van de Worp, Ramon Langen, Juliette Degens, Lizza E. L. Hendriks, and Dirk K. M. de Ruysscher. 2024. "Cachexia and Sarcopenia in Oligometastatic Non-Small Cell Lung Cancer: Making a Potential Curable Disease Incurable?" Cancers 16, no. 1: 230. https://doi.org/10.3390/cancers16010230
APA StyleBartolomeo, V., Jongbloed, M., van de Worp, W. R. P. H., Langen, R., Degens, J., Hendriks, L. E. L., & de Ruysscher, D. K. M. (2024). Cachexia and Sarcopenia in Oligometastatic Non-Small Cell Lung Cancer: Making a Potential Curable Disease Incurable? Cancers, 16(1), 230. https://doi.org/10.3390/cancers16010230