Immunotherapy in Elderly Patients—Single-Center Experience
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Treatment Response and Efficacy
3.3. Immune-Related Adverse Reactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scotté, F.; Bossi, P.; Carola, E.; Cudennec, T.; Dielenseger, P.; Gomes, F.; Knox, S.; Strasser, F. Addressing the quality of life needs of older patients with cancer: A SIOG consensus paper and practical guide. Ann. Oncol. 2018, 29, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Pilleron, S.; Soto-Perez-de-Celis, E.; Vignat, J.; Ferlay, J.; Soerjomataram, I.; Bray, F.; Sarfati, D. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer 2021, 148, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Fane, M.; Weeraratna, A.T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 2020, 20, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M.; et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 2020, 368, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Finn, O.J. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Ann. Oncol. 2012, 23 (Suppl. 8), viii6–viii9. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef]
- Gorgoulis, V.; Adams, P.D.; Alimonti, A.; Bennett, D.C.; Bischof, O.; Bishop, C.; Campisi, J.; Collado, M.; Evangelou, K.; Ferbeyre, G.; et al. Cellular Senescence: Defining a Path Forward. Cell 2019, 179, 813–827. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Walford, R.L. The immunologic theory of aging. Gerontologist 1964, 4, 195–197. [Google Scholar] [CrossRef]
- Pawelec, G. Age and immunity: What is “immunosenescence”? Exp. Gerontol. 2018, 105, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Yue, Y.; Yu, W.; Zhang, Y. Immunosenescence: A key player in cancer development. J. Hematol. Oncol. 2020, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Accardi, G.; Candore, G.; Caruso, C.; Colomba, C.; Di Bona, D.; Duro, G.; Gambino, C.M.; Ligotti, M.E.; Pandey, J.P. Role of Immunogenetics in the Outcome of HCMV Infection: Implications for Ageing. Int. J. Mol. Sci. 2019, 20, 685. [Google Scholar] [CrossRef]
- Accardi, G.; Caruso, C. Immune-inflammatory responses in the elderly: An update. Immun. Ageing 2018, 15, 11. [Google Scholar] [CrossRef]
- Turner, J.E. Is immunosenescence influenced by our lifetime “dose” of exercise? Biogerontology 2016, 17, 581–602, Erratum in Biogerontology 2016, 17, 783. [Google Scholar] [CrossRef]
- George, A.J.; Ritter, M.A. Thymic involution with ageing: Obsolescence or good housekeeping? Immunol. Today 1996, 17, 267–272. [Google Scholar] [CrossRef]
- Solana, R.; Tarazona, R.; Gayoso, I.; Lesur, O.; Dupuis, G.; Fulop, T. Innate immunosenescence: Effect of aging on cells and receptors of the innate immune system in humans. Semin. Immunol. 2012, 24, 331–341. [Google Scholar] [CrossRef]
- Nikolich-Žugich, J. Aging of the T cell compartment in mice and humans: From no naive expectations to foggy memories. J. Immunol. 2014, 193, 2622–2629. [Google Scholar] [CrossRef]
- Gouverneur, A.; Salvo, F.; Berdaï, D.; Moore, N.; Fourrier-Réglat, A.; Noize, P. Inclusion of elderly or frail patients in randomized controlled trials of targeted therapies for the treatment of metastatic colorectal cancer: A systematic review. J. Geriatr. Oncol. 2018, 9, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Scher, K.S.; Hurria, A. Under-representation of older adults in cancer registration trials: Known problem, little progress. J. Clin. Oncol. 2012, 30, 2036–2038. [Google Scholar] [CrossRef] [PubMed]
- Mohile, S.G.; Dale, W.; Somerfield, M.R.; Schonberg, M.A.; Boyd, C.M.; Burhenn, P.S.; Canin, B.; Cohen, H.J.; Holmes, H.M.; Hopkins, J.O.; et al. Practical Assessment and Management of Vulnerabilities in Older Patients Receiving Chemotherapy: ASCO Guideline for Geriatric Oncology. J. Clin. Oncol. 2018, 36, 2326–2347. [Google Scholar] [CrossRef] [PubMed]
- Nunno, V.D.; Franceschi, E.; Brandes, A.A. Immunotherapy in elderly patients: Should we stay or should we go? Future Oncol. 2020, 16, 973–974. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts & Figures 2023-Special Section: Lung Cancer 2023; American Cancer Society, Inc.: Atlanta, GA, USA, 2023; Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2023/2023-cff-special-section-lung-cancer.pdf (accessed on 21 December 2023).
- Gridelli, C.; Peters, S.; Velcheti, V.; Attili, I.; de Marinis, F. Immunotherapy in the first-line treatment of elderly patients with advanced non-small-cell lung cancer: Results of an International Experts Panel Meeting by the Italian Association of Thoracic Oncology (AIOT). ESMO Open 2023, 8, 101192. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Mezquita, L.; Auclin, E.; Chaput, N.; Besse, B. Immunosenescence and immunecheckpoint inhibitors in non-small cell lung cancer patients: Does age really matter? Cancer Treat Rev. 2017, 60, 60–68. [Google Scholar] [CrossRef]
- Padrón, Á.; Hurez, V.; Gupta, H.B.; Clark, C.A.; Pandeswara, S.L.; Yuan, B.; Svatek, R.S.; Turk, M.J.; Drerup, J.M.; Li, R.; et al. Age effects of distinct immune checkpoint blockade treatments in a mouse melanoma model. Exp. Gerontol. 2018, 105, 146–154. [Google Scholar] [CrossRef]
- Kugel, C.H., 3rd; Douglass, S.M.; Webster, M.R.; Kaur, A.; Liu, Q.; Yin, X.; Weiss, S.A.; Darvishian, F.; Al-Rohil, R.N.; Ndoye, A.; et al. Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clin. Cancer Res. 2018, 24, 5347–5356. [Google Scholar] [CrossRef]
- Kanesvaran, R.; Cordoba, R.; Maggiore, R. Immunotherapy in Older Adults with Advanced Cancers: Implications for Clinical Decision-Making and Future Research. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 400–414. [Google Scholar] [CrossRef]
- Gomes, F.; Tay, R.; Chiramel, J.; Califano, R. The Role of Targeted Agents and Immunotherapy in Older Patients with Non-small Cell Lung Cancer. Drugs Aging 2018, 35, 819–834. [Google Scholar] [CrossRef]
- Choucair, K.; Naqash, A.R.; Nebhan, C.A.; Nipp, R.; Johnson, D.B.; Saeed, A. Immune Checkpoint Inhibitors: The Unexplored Landscape of Geriatric Oncology. Oncologist 2022, 27, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Granier, C.; Gey, A.; Roncelin, S.; Weiss, L.; Paillaud, E.; Tartour, E. Immunotherapy in older patients with cancer. Biomed. J. 2021, 44, 260–271. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. IBM SPSS Statistics for Windows, Version 27.0; IBM Corp.: Armonk, NY, USA, 2023.
- Yan, X.; Tian, X.; Wu, Z.; Han, W. Impact of Age on the Efficacy of Immune Checkpoint Inhibitor-Based Combination Therapy for Non-small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 1671. [Google Scholar] [CrossRef] [PubMed]
- Nikolich-Žugich, J. The twilight of immunity: Emerging concepts in aging of the immune system. Nat. Immunol. 2018, 19, 10–19, Erratum in Nat. Immunol. 2018, 19, 1146. [Google Scholar] [CrossRef]
- Corbaux, P.; Maillet, D.; Boespflug, A.; Locatelli-Sanchez, M.; Perier-Muzet, M.; Duruisseaux, M.; Kiakouama-Maleka, L.; Dalle, S.; Falandry, C.; Péron, J. Older and younger patients treated with immune checkpoint inhibitors have similar outcomes in real-life setting. Eur. J. Cancer 2019, 121, 192–201. [Google Scholar] [CrossRef]
- Sun, Y.M.; Wang, Y.; Sun, X.X.; Chen, J.; Gong, Z.P.; Meng, H.Y. Clinical Efficacy of Immune Checkpoint Inhibitors in Older Non-small-Cell Lung Cancer Patients: A Meta-Analysis. Front. Oncol. 2020, 10, 558454. [Google Scholar] [CrossRef]
Variable | <65 Years Old | ≥65 Years Old | p-Value |
---|---|---|---|
Gender | |||
Female | 32 (34.0%) | 26 (21.3%) | 0.036 (a) |
Male | 62 (66.0%) | 96 (78.7%) | |
Smoking history | |||
No | 21 (22.3%) | 40 (32.8%) | 0.091 (a) |
Yes | 73 (77.7%) | 82 (67.2%) | |
ECOG | |||
0 | 33 (35.1%) | 32 (26.2%) | 0.283 (a) |
1 | 57 (60.6%) | 81 (66.4%) | |
2 | 4 (4.3%) | 9 (7.4%) | |
Cancer type | |||
Melanoma | 16 (17.0%) | 13 (10.7%) | 0.388 (a) |
NSCLC | 58 (61.7%) | 73 (59.8%) | |
Renal Cancer | 10 (10.6%) | 18 (14.8%) | |
Bladder Cancer | 10 (10.6%) | 18 (14.8%) | |
Number of metastasis locations | |||
1 | 56 (59.6%) | 75 (61.5%) | 0.277 (a) |
2 | 26 (27.7%) | 39 (32.0%) | |
≥3 | 12 (12.8%) | 8 (6.6%) | |
Metastasis location | |||
Lung | |||
No | 50 (53.2%) | 71 (58.2%) | 0.462 (a) |
Yes | 44 (46.8%) | 51 (41.8%) | |
Lymph node | |||
No | 60 (63.8%) | 70 (57.4%) | 0.337 (a) |
Yes | 34 (36.2%) | 52 (42.6%) | |
Brain | |||
No | 85 (90.4%) | 113 (92.6%) | 0.562 (a) |
Yes | 9 (9.6%) | 9 (7.4%) | |
Adrenal gland | |||
No | 86 (91.5%) | 115 (94.3%) | 0.427 (a) |
Yes | 8 (8.5%) | 7 (5.7%) | |
Hepatic | |||
No | 82 (87.2%) | 111 (91.0%) | 0.376 (a) |
Yes | 12 (12.8%) | 11 (9.0%) | |
Pleural | |||
No | 89 (94.7%) | 101 (82.8%) | 0.008 (a) |
Yes | 5 (5.3%) | 21 (17.2%) | |
Bone | |||
No | 68 (72.3%) | 103 (84.4%) | 0.030 (a) |
Yes | 26 (27.7%) | 19 (15.6%) | |
Peritoneal | |||
No | 93 (98.9%) | 119 (97.5%) | 0.634 (b) |
Yes | 1 (1.1%) | 3 (2.5%) | |
Skin | |||
No | 92 (97.9%) | 122 (100.0%) | 0.188 (b) |
Yes | 2 (2.1%) | 0 (0.0%) | |
Pancreatic | |||
No | 93 (98.9%) | 121 (99.2%) | >0.990 (b) |
Yes | 1 (1.1%) | 1 (0.8%) | |
Renal | |||
No | 94 (100.0%) | 121 (99.2%) | >0.990 (b) |
Yes | 0 (0.0%) | 1 (0.8%) | |
Number of ICI lines | |||
1 | 51 (54.3%) | 56 (45.9%) | 0.443 (a) |
2 | 41 (43.6%) | 61 (50.0%) | |
≥3 | 2 (2.1%) | 5 (4.1%) | |
ICI | |||
Ipilimumab | |||
No | 87 (92.6%) | 120 (98.4%) | 0.043 (b) |
Yes | 7 (7.4%) | 2 (1.6%) | |
Pembrolizumab | |||
No | 48 (51.1%) | 50 (41.0%) | 0.140 (a) |
Yes | 46 (48.9%) | 72 (59.0%) | |
Nivolumab | |||
No | 62 (66.0%) | 82 (67.2%) | 0.846 (a) |
Yes | 32 (34.0%) | 40 (32.8%) | |
Atezolizumab | |||
No | 87 (92.6%) | 115 (94.3%) | 0.613 (a) |
Yes | 7 (7.4%) | 7 (5.7%) | |
Avelumab | |||
No | 92 (97.9%) | 121 (99.2%) | 0.581 (b) |
Yes | 2 (2.1%) | 1 (0.8%) | |
Toxicity | |||
No | 52 (55.3%) | 72 (59.0%) | 0.586 (a) |
Yes | 42 (44.7%) | 50 (41.0%) | |
Toxicities (n = 42) | |||
Toxicity ≥ G3 | |||
No | 34 (81.0%) | 39 (78.0%) | 0.728 (a) |
Yes | 8 (19.0%) | 11 (22.0%) | |
Supportive care | |||
No | 9 (21.4%) | 15 (30.0%) | 0.351 (a) |
Yes | 33 (78.6%) | 35 (70.0%) | |
Oral corticosteroid | |||
No | 35 (83.3%) | 33 (66.0%) | 0.059 (a) |
Yes | 7 (16.7%) | 17 (34.0%) | |
IV corticosteroids | |||
No | 37 (88.1%) | 42 (84.0%) | 0.574 (a) |
Yes | 5 (11.9%) | 8 (16.0%) |
Cancer Type | Age Groups | ORR = No Response | ORR = Response | p-Value |
---|---|---|---|---|
Melanoma | <65 years old (n = 16) | 14 (56.0%) | 2 (50.0%) | >0.990 (b) |
≥65 years old (n = 13) | 11 (44.0%) | 2 (50.0%) | ||
NSCLC | <65 years old (n = 58) | 41 (46.1%) | 17 (40.5%) | 0.548 (a) |
≥65 years old (n = 73) | 48 (53.9%) | 25 (59.5%) | ||
Renal Cancer | <65 years old (n = 10) | 6 (26.1%) | 4 (80.0%) | 0.041 (b) |
≥65 years old (n = 18) | 17 (73.9%) | 1 (20.0%) | ||
Bladder Cancer | <65 years old (n = 10) | 6 (33.3%) | 4 (40.0%) | >0.990 (b) |
≥65 years old (n = 18) | 12 (66.7%) | 6 (60.0%) |
Cancer Type | Age Groups | Median (Q1–Q3) | p-Value |
---|---|---|---|
Melanoma | <65 years old (n = 16) | 7.0 (2.0–22.0) | 0.983 |
≥65 years old (n = 13) | 7.0 (4.0–11.0) | ||
NSCLC | <65 years old (n = 58) | 4.0 (1.0–15.0) | 0.277 |
≥65 years old (n = 73) | 4.0 (2.0–16.0) | ||
Renal Cancer | <65 years old (n = 10) | 12.5 (4.0–28.0) | 0.759 |
≥65 years old (n = 18) | 10.0 (4.0–19.0) | ||
Bladder Cancer | <65 years old (n = 10) | 4.0 (1.0–8.0) | 0.286 |
≥65 years old (n = 18) | 8.5 (3.0–21.0) |
B (SE) | HR | 95% CI for HR | p-Value | |
---|---|---|---|---|
Gender (male) | 0.16 (0.40) | 1.17 | 0.54–2.56 | 0.691 |
Age ≥ 65 | −0.41 (0.31) | 0.66 | 0.36–1.22 | 0.184 |
ECOG = 0 | ||||
ECOG = 1 | −0.62 (0.41) | 0.54 | 0.24–1.20 | 0.132 |
ECOG = 2 | −0.06 (0.67) | 0.95 | 0.25–3.52 | 0.934 |
Smoking history (yes) | −0.23 (0.55) | 0.79 | 0.27–2.34 | 0.675 |
Toxicity (yes) | −0.70 (0.30) | 0.50 | 0.28–0.89 | 0.018 |
Duration of ICI treatment (months) | −0.46 (0.08) | 0.63 | 0.54–.74 | <0.001 |
Histology = Adenocarcinoma | −0.08 (0.39) | 0.93 | 0.43–2.00 | 0.848 |
Histology = Other | 0.00 (0.72) | 1.00 | 0.24–4.15 | 0.995 |
Number of metastasis locations = 1 | ||||
Number of metastasis locations = 2 | 0.10 (0.32) | 1.11 | 0.60–2.06 | 0.744 |
Number of metastasis locations ≥ 3 | 0.24 (0.45) | 1.28 | 0.53–3.07 | 0.585 |
B (SE) | HR | 95% CI for HR | p-Value | |
---|---|---|---|---|
Gender (male) | −0.27 (0.29) | 0.76 | 0.43–1.35 | 0.352 |
Age ≥ 65 | 0.30 (0.23) | 1.35 | 0.85–2.12 | 0.201 |
ECOG = 0 | ||||
ECOG = 1 | 0.36 (0.33) | 1.44 | 0.75–2.74 | 0.274 |
ECOG = 2 | 0.95 (0.55) | 2.58 | 0.87–7.64 | 0.087 |
Smoking history (yes) | 0.46 (0.40) | 1.58 | 0.72–3.48 | 0.252 |
Toxicity (yes) | −0.49 (0.22) | 0.61 | 0.40–0.95 | 0.027 |
Duration of ICI treatment (months) | −0.14 (0.02) | 0.87 | 0.84–0.90 | <0.001 |
Histology = Adenocarcinoma | −0.04 (0.27) | 0.96 | 0.56–1.64 | 0.885 |
Histology = Other | −0.72 (0.58) | 0.49 | 0.16–1.51 | 0.212 |
Number of metastasis locations = 1 | ||||
Number of metastasis locations = 2 | 0.30 (0.24) | 1.35 | 0.85–2.15 | 0.209 |
Number of metastasis locations ≥ 3 | 0.86 (0.36) | 2.36 | 1.17–4.77 | 0.016 |
<65 Years Old | ≥65 Years Old | |
---|---|---|
Hypothyroidism | 7 (7.4%) | 6 (4.9%) |
Pruritus | 9 (9.6%) | 11 (9.0%) |
Rash | 6 (6.4%) | 11 (9.0%) |
Myalgia | 7 (7.4%) | 4 (3.3%) |
Arthralgia | 10 (10.6%) | 7 (5.7%) |
Pneumonitis | 3 (3.2%) | 4 (3.3%) |
Colitis | 1 (1.1%) | 6 (4.9%) |
Bullous pemphigus | 0 (0.0%) | 1 (0.8%) |
Vasculitis | 0 (0.0%) | 1 (0.8%) |
Herpes Zoster | 0 (0.0%) | 1 (0.8%) |
Hepatitis | 3 (3.2%) | 4 (3.3%) |
Nephritis | 1 (1.1%) | 3 (2.5%) |
Hyperthyroidism | 4 (4.3%) | 0 (0.0%) |
Diarrhea | 1 (1.1%) | 1 (0.8%) |
Inflammatory myopathy | 1 (1.1%) | 0 (0.0%) |
Proteinuria | 0 (0.0%) | 1 (0.8%) |
Vitiligo | 1 (1.1%) | 0 (0.0%) |
Cholangitis | 1 (1.1%) | 1 (0.8%) |
Pancytopenia | 1 (1.1%) | 0 (0.0%) |
Fever | 1 (1.1%) | 2 (1.6%) |
Astenia | 0 (0.0%) | 2 (1.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, M.J.; Mendes, A.S.; Romão, R.; Febra, J.; Araújo, A. Immunotherapy in Elderly Patients—Single-Center Experience. Cancers 2024, 16, 145. https://doi.org/10.3390/cancers16010145
Ramos MJ, Mendes AS, Romão R, Febra J, Araújo A. Immunotherapy in Elderly Patients—Single-Center Experience. Cancers. 2024; 16(1):145. https://doi.org/10.3390/cancers16010145
Chicago/Turabian StyleRamos, Maria João, Ana Sofia Mendes, Raquel Romão, Joana Febra, and António Araújo. 2024. "Immunotherapy in Elderly Patients—Single-Center Experience" Cancers 16, no. 1: 145. https://doi.org/10.3390/cancers16010145
APA StyleRamos, M. J., Mendes, A. S., Romão, R., Febra, J., & Araújo, A. (2024). Immunotherapy in Elderly Patients—Single-Center Experience. Cancers, 16(1), 145. https://doi.org/10.3390/cancers16010145