Robotic versus Video-Assisted Thoracic Surgery for Lung Cancer: Short-Term Outcomes of a Propensity Matched Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Patient Management
2.3. Operative Technique
2.4. Variables and Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T.J.; Mack, M.J.; Landreneau, R.J.; Rice, T.W. Lobectomy—Video-assisted thoracic surgery versus muscle-sparing thoracotomy: A randomized trial. J. Thorac. Cardiovasc. Surg. 1995, 109, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Altorki, N.K.; Sheng, S.; Lee, P.C.; Harpole, D.H.; Onaitis, M.W.; Stiles, B.M.; Port, J.L.; D’Amico, T.A. Thoracoscopic lobectomy is associated with lower morbidity than open lobectomy: A propensity-matched analysis from the STS database. J. Thorac. Cardiovasc. Surg. 2010, 139, 366–378. [Google Scholar] [CrossRef]
- Bendixen, M.; Jørgensen, O.D.; Kronborg, C.; Andersen, C.; Licht, P.B. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: A randomised controlled trial. Lancet Oncol. 2016, 17, 836–844. [Google Scholar] [CrossRef]
- Demmy, T.L.; Yendamuri, S.; D’amico, T.A.; Burfeind, W.R. Oncologic Equivalence of Minimally Invasive Lobectomy: The Scientific and Practical Arguments. Ann. Thorac. Surg. 2018, 106, 609–617. [Google Scholar] [CrossRef]
- Bendixen, M.; Kronborg, C.; Jørgensen, O.D.; Andersen, C.; Licht, P.B. Cost–utility analysis of minimally invasive surgery for lung cancer: A randomized controlled trial. Eur. J. Cardiothorac. Surg. 2019, 56, 754–761. [Google Scholar] [CrossRef]
- Lim, E.; Batchelor, T.J.; Dunning, J.; Shackcloth, M.; Anikin, V.; Naidu, B.; Belcher, E.; Loubani, M.; Zamvar, V.; Harris, R.A.; et al. Video-Assisted Thoracoscopic or Open Lobectomy in Early-Stage Lung Cancer. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Melfi, F.M.; Mussi, A. Robotically Assisted Lobectomy: Learning Curve and Complications. Thorac. Surg. Clin. 2008, 18, 289–295. [Google Scholar] [CrossRef]
- Veronesi, G.; Novellis, P.; Voulaz, E.; Alloisio, M. Robot-assisted surgery for lung cancer: State of the art and perspectives. Lung Cancer 2016, 101, 28–34. [Google Scholar] [CrossRef]
- Louie, B.E.; Wilson, J.L.; Kim, S.; Cerfolio, R.J.; Park, B.J.; Farivar, A.S.; Vallières, E.; Aye, R.W.; Burfeind, W.R.; Block, M.I. Comparison of Video-Assisted Thoracoscopic Surgery and Robotic Approaches for Clinical Stage I and Stage II Non-Small Cell Lung Cancer Using The Society of Thoracic Surgeons Database. Ann. Thorac. Surg. 2016, 102, 917–924. [Google Scholar] [CrossRef]
- Deen, S.A.; Wilson, J.L.; Wilshire, C.L.; Vallières, E.; Farivar, A.S.; Aye, R.W.; Ely, R.E.; Louie, B.E. Defining the Cost of Care for Lobectomy and Segmentectomy: A Comparison of Open, Video-Assisted Thoracoscopic, and Robotic Approaches. Ann. Thorac. Surg. 2014, 97, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Swanson, S.J.; Miller, D.L.; McKenna, R.J.; Howington, J.; Marshall, M.B.; Yoo, A.C.; Moore, M.; Gunnarsson, C.L.; Meyers, B.F. Comparing robot-assisted thoracic surgical lobectomy with conventional video-assisted thoracic surgical lobectomy and wedge resection: Results from a multihospital database (Premier). J. Thorac. Cardiovasc. Surg. 2014, 147, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Sesti, J.; Langan, R.C.; Bell, J.; Nguyen, A.; Turner, A.; Hilden, P.; Leshchuk, K.; Dabrowski, M.; Paul, S. A Comparative Analysis of Long-Term Survival of Robotic Versus Thoracoscopic Lobectomy. Ann. Thorac. Surg. 2020, 110, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Kneuertz, P.J.; D’souza, D.M.; Richardson, M.; Abdel-Rasoul, M.; Moffatt-Bruce, S.D.; Merritt, R.E. Long-Term Oncologic Outcomes After Robotic Lobectomy for Early-stage Non–Small-cell Lung Cancer Versus Video-assisted Thoracoscopic and Open Thoracotomy Approach. Clin. Lung Cancer 2019, 21, 214–224.e2. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Jalbert, J.; Isaacs, A.J.; Altorki, N.K.; Isom, O.W.; Sedrakyan, A. Comparative Effectiveness of Robotic-Assisted vs Thoracoscopic Lobectomy. Chest 2014, 146, 1505–1512. [Google Scholar] [CrossRef]
- Demir, A.; Ayalp, K.; Ozkan, B.; Kaba, E.; Toker, A. Robotic and video-assisted thoracic surgery lung segmentectomy for malignant and benign lesions. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 304–309. [Google Scholar] [CrossRef]
- Bao, F.; Zhang, C.; Yang, Y.; He, Z.; Wang, L.; Hu, J. Comparison of robotic and video-assisted thoracic surgery for lung cancer: A propensity-matched analysis. J. Thorac. Dis. 2016, 8, 1798–1803. [Google Scholar] [CrossRef]
- Hennon, M.W.; Degraaff, L.H.; Groman, A.; Demmy, T.L.; Yendamuri, S. The association of nodal upstaging with surgical approach and its impact on long-term survival after resection of non-small-cell lung cancer. Eur. J. Cardiothorac. Surg. 2019, 57, 888–895. [Google Scholar] [CrossRef]
- Yang, C.-F.J.; Sun, Z.; Speicher, P.J.; Saud, S.M.; Gulack, B.C.; Hartwig, M.G.; Harpole, D.H.; Onaitis, M.W.; Tong, B.C.; D’Amico, T.A.; et al. Use and Outcomes of Minimally Invasive Lobectomy for Stage I Non-Small Cell Lung Cancer in the National Cancer Data Base. Ann. Thorac. Surg. 2016, 101, 1037–1042. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines). Non-Small Cell Lung Cancer, Version 3. 2020. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 7 April 2020).
- Brunelli, A.; Kim, A.W.; Berger, K.I.; Addrizzo-Harris, D.J. Physiologic Evaluation of the Patient with Lung Cancer Being Considered for Resectional Surgery: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e166S–e190S. [Google Scholar] [CrossRef]
- Brunelli, A.; Charloux, A.; Bolliger, C.T.; Rocco, G.; Sculier, J.-P.; Varela, G.; Licker, M.; Ferguson, M.K.; Faivre-Finn, C.; Huber, R.M.; et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur. Respir. J. 2009, 34, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.; Gonzalez, M.; Ljungqvist, O.; Petersen, R.H.; Popescu, W.M.; Slinger, P.D.; et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardiothorac. Surg. 2019, 55, 91–115. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, G.; Galetta, D.; Maisonneuve, P.; Melfi, F.; Schmid, R.A.; Borri, A.; Vannucci, F.; Spaggiari, L. Four-arm robotic lobectomy for the treatment of early-stage lung cancer. J. Thorac. Cardiovasc. Surg. 2010, 140, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Pardolesi, A.; Park, B.; Petrella, F.; Borri, A.; Gasparri, R.; Veronesi, G. Robotic Anatomic Segmentectomy of the Lung: Technical Aspects and Initial Results. Ann. Thorac. Surg. 2012, 94, 929–934. [Google Scholar] [CrossRef]
- Detterbeck, F.C.; Boffa, D.J.; Kim, A.W.; Tanoue, L.T. The Eighth Edition Lung Cancer Stage Classification. Chest 2017, 151, 193–203. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Dugan, K.C.; Laxmanan, B.; Murgu, S.; Hogarth, D.K. Management of Persistent Air Leaks. Chest 2017, 152, 417–423. [Google Scholar] [CrossRef]
- Song, G.; Sun, X.; Miao, S.; Li, S.; Zhao, Y.; Xuan, Y.; Qiu, T.; Niu, Z.; Song, J.; Jiao, W. Learning curve for robot-assisted lobectomy of lung cancer. J. Thorac. Dis. 2019, 11, 2431–2437. [Google Scholar] [CrossRef]
- Andersson, S.E.-M.; Ilonen, I.K.; Pälli, O.H.; Salo, J.A.; Räsänen, J.V. Learning curve in robotic-assisted lobectomy for non-small cell lung cancer is not steep after experience in video-assisted lobectomy; single-surgeon experience using cumulative sum analysis. Cancer Treat. Res. Commun. 2021, 27, 100362. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhao, S.; Wang, J.; Zhang, W.; Sun, G. Robot-assisted thoracic surgery versus video-assisted thoracic surgery for lung lobectomy or segmentectomy in patients with non-small cell lung cancer: A meta-analysis. BMC Cancer 2021, 21, 496. [Google Scholar] [CrossRef]
- Li, J.; Xue, Q.; Gao, Y.; Mao, Y.; Zhao, J.; Gao, S. Bleeding is the most common cause of unplanned return to operating room after lung cancer surgeries. J. Thorac. Dis. 2020, 12, 7266–7271. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.L.; Louie, B.E.; Cerfolio, R.J.; Park, B.J.; Vallières, E.; Aye, R.W.; Abdel-Razek, A.; Bryant, A.; Farivar, A.S. The Prevalence of Nodal Upstaging During Robotic Lung Resection in Early Stage Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2014, 97, 1901–1907. [Google Scholar] [CrossRef] [PubMed]
- Kneuertz, P.J.; Cheufou, D.H.; D’Souza, D.M.; Mardanzai, K.; Abdel-Rasoul, M.; Theegarten, D.; Moffatt-Bruce, S.D.; Aigner, C.; Merritt, R.E. Propensity-score adjusted comparison of pathologic nodal upstaging by robotic, video-assisted thoracoscopic, and open lobectomy for non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2019, 158, 1457–1466.e2. [Google Scholar] [CrossRef]
- Boffa, D.J.; Kosinski, A.S.; Paul, S.; Mitchell, J.D.; Onaitis, M. Lymph Node Evaluation by Open or Video-Assisted Approaches in 11,500 Anatomic Lung Cancer Resections. Ann. Thorac. Surg. 2012, 94, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Licht, P.B.; Jørgensen, O.D.; Ladegaard, L.; Jakobsen, E. A National Study of Nodal Upstaging After Thoracoscopic Versus Open Lobectomy for Clinical Stage I Lung Cancer. Ann. Thorac. Surg. 2013, 96, 943–950. [Google Scholar] [CrossRef]
- Merritt, R.E.; Hoang, C.D.; Shrager, J.B. Lymph Node Evaluation Achieved by Open Lobectomy Compared With Thoracoscopic Lobectomy for N0 Lung Cancer. Ann. Thorac. Surg. 2013, 96, 1171–1177. [Google Scholar] [CrossRef]
- Lodhia, J.V.; Tenconi, S. Postoperative subcutaneous emphysema: Prevention and treatment. Shanghai Chest 2021, 5, 17. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bryant, A.; Maniscalco, L.M. Management of Subcutaneous Emphysema after Pulmonary Resection. Ann. Thorac. Surg. 2008, 85, 1759–1765. [Google Scholar] [CrossRef]
- Singhal, S.; Ferraris, V.A.; Bridges, C.R.; Clough, E.R.; Mitchell, J.D.; Fernando, H.C.; Shrager, J.B. Management of Alveolar Air Leaks After Pulmonary Resection. Ann. Thorac. Surg. 2010, 89, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tian, Y.; Li, C.; Shen, Y.; Li, H.; Lv, F.; Lin, H.; Lu, P.; Lin, J.; Lau, C.; et al. Robotic-assisted thoracic surgery reduces perioperative complications and achieves a similar long-term survival profile as posterolateral thoracotomy in clinical N2 stage non-small cell lung cancer patients: A multicenter, randomized, controlled trial. Transl. Lung Cancer Res. 2021, 10, 4281–4292. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, N.J.; Silva, U.C.; Sánchez, A.C.; de la Cruz, J.L.C.-C.; Carillo, A.O.; Sarceda, J.R.J.; López, S.S.; Ramos, Á.C.; Díaz, J.L.R.; Call, S.; et al. Effect of COVID-19 on Thoracic Oncology Surgery in Spain: A Spanish Thoracic Surgery Society (SECT) Survey. Cancers 2021, 13, 2897. [Google Scholar] [CrossRef] [PubMed]
- Mayer, N.; Perikleous, P.; Doukas, G.; De Rome, K.; Bruijnen, H.; Finch, J.; Beddow, E.; Anikin, V.; Asadi, N. P31 Thoracic surgery in the COVID-19 era: A tertiary single centre report. Thorax 2021, 76, A101–A102. [Google Scholar] [CrossRef]
- Wang, R.; Zhong, R.; Liang, H.; Zhang, T.; Zhou, X.; Huo, Z.; Feng, Y.; Wang, Q.; Li, J.; Xiong, S.; et al. Thoracic surgery and COVID-19: Changes and managements during the pandemic. J. Thorac. Dis. 2021, 13, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.M.; Kodia, K.; Szewczyk, J.; Alnajar, A.; Stephens-McDonnough, J.A.; Villamizar, N.R. Effect of COVID-19 on the delivery of care for thoracic surgical patients. JTCVS Open 2022, 10, 456–468. [Google Scholar] [CrossRef]
- Fraser, S.; Baranowski, R.; Patrini, D.; Nandi, J.; Al-Sahaf, M.; Smelt, J.; Hoffman, R.; Santhirakumaran, G.; Lee, M.; Wali, A.; et al. Maintaining safe lung cancer surgery during the COVID-19 pandemic in a global city. Eclinicalmedicine 2021, 39, 101085. [Google Scholar] [CrossRef]
- Harrison, O.J.; Maraschi, A.; Routledge, T.; Lampridis, S.; Le Reun, C.; Bille, A. A cost analysis of robotic vs video-assisted thoracic surgery: The impact of the learning curve and the COVID-19 pandemic. Front. Surg. 2023, 10. Epub Ahead Print. [Google Scholar] [CrossRef]
Variable | RATS (n = 366) | VATS (n = 380) | p Value |
---|---|---|---|
Age, years | 69.7 ± 9.8 | 69.1 ± 9.9 | 0.373 |
Sex, n (%) | 0.269 | ||
Female | 234 (63.9) | 228 (60.0) | |
Male | 132 (36.1) | 152 (40.0) | |
BMI, kg/m 2 | 27.5 ± 5.6 | 27.1 ± 5.3 | 0.289 |
Smoking status, n (%) | 0.166 | ||
Non-smoker | 81 (22.1) | 63 (16.6) | |
Ex-smoker | 219 (59.8) | 254 (66.8) | |
Smoker | 62 (16.9) | 63 (16.6) | |
Unknown | 3 (0.8) | ||
Pulmonary function | |||
FEV1% of predicted | 91.9 ± 21.2 | 92.3 ± 22.3 | 0.790 |
FVC% of predicted | 108.4 ± 20.8 | 108.9 ± 21.3 | 0.742 |
DLCO% of predicted | 76.5 ± 20.1 | 72.2 ± 18.8 | 0.003 |
Comorbidities, n (%) | |||
Atrial fibrillation | 30 (8.2) | 26 (6.8) | <0.001 |
Bronchiectasis | 6 (1.6) | 0.012 | |
Cerebrovascular accident | 16 (4.4) | 13 (3.4) | 0.502 |
Chronic kidney disease | 14 (3.8) | 19 (5.0) | 0.435 |
COPD | 80 (21.9) | 92 (24.2) | 0.446 |
Coronary artery disease | 47 (12.8) | 51 (13.4) | 0.815 |
Interstitial lung disease | 1 (0.3) | 5 (1.3) | 0.111 |
Peripheral vascular disease | 3 (0.8) | 3 (0.8) | 0.963 |
Previous other cancer | 147 (40.2) | 125 (32.9) | 0.039 |
Previous primary lung cancer | 18 (4.9) | 19 (5.0) | 0.959 |
Pulmonary hypertension | 2 (0.5) | 1 (0.3) | 0.541 |
Charlson Comorbidity Index, 2 median (range) | 6 (0–19) | 6 (0–18) | 0.977 |
Induction chemotherapy, n (%) | 8 (2.2) | 10 (2.6) | 0.692 |
Histopathology, n (%) | 0.820 | ||
Adenocarcinoma | 226 (61.7) | 217 (57.1) | |
Squamous cell carcinoma | 49 (13.4) | 63 (16.6) | |
Carcinoid tumor | 34 (9.3) | 24 (6.3%) | |
Other | 57 (15.6) | 76 (20) | |
Clinical stage, n (%) | |||
0 | 2 (0.5) | 1 (0.3) | |
IA1 | 23 (6.3) | 16 (4.2) | |
IA2 | 83 (22.7) | 98 (25.8) | |
IA3 | 65 (17.8) | 43 (11.3) | |
IB | 57 (15.6) | 64 (16.8) | |
IIA | 19 (5.2) | 20 (5.3) | |
IIB | 37 (10.1) | 36 (9.5) | |
IIIA | 24 (6.6) | 32 (8.4) | |
IIIB | 5 (1.4) | 7 (1.8) | |
IIIC | |||
IVA | 1 (0.3) | 1 (0.3) | |
IVB | 1 (0.3) | ||
Unknown | 50 (13.7) | 61 (16.1) |
Variable | All Patients | Propensity-Matched Patients | ||
---|---|---|---|---|
RATS | VATS | RATS | VATS | |
ECOG performance status 1,% | ||||
Grade 0 | 31.4 | 31.3 | 31.4 | 31.3 |
Grade 1 | 49.7 | 49.8 | 49.7 | 50.9 |
Grade 2 | 18.9 | 18.9 | 18.9 | 17.8 |
FEV1% of predicted, mean | 92.2 | 92.5 | 92.2 | 91.4 |
DLCO% of predicted, mean | 76.6 | 72.7 | 76.6 | 76.2 |
Procedure,% | ||||
Lobectomy | 79.0 | 75.1 | 79.0 | 79.1 |
Segmentectomy | 21.0 | 24.9 | 21.0 | 20.9 |
Outcome | RATS | VATS | Difference RATS vs. VATS (95% CI) | p Value |
---|---|---|---|---|
Operating time, min | 132.4 ± 37.3 | 122.4 ± 27.7 | 10.0 (4.2, 15.9) | 0.001 |
Estimated blood loss, ml | 82.2 ± 195.4 | 169.7 ± 237.2 | −87.5 (−126.8, −48.1) | <0.001 |
Transfusion of blood products,% | 1.8 | 4.9 | −3.1 (−7.3, 1.2) | 0.161 |
Conversion to thoracotomy,% | 4.3 | 3.2 | 1.1 (−2.5, 4.7) | 0.562 |
Complications,% | ||||
Atelectasis requiring bronchoscopy | 5.5 | 2.7 | 2.7 (−0.4, 5.9) | 0.092 |
Atrial fibrillation | 8.5 | 6.1 | 2.4 (−1.6, 6.5) | 0.238 |
Bleeding requiring reoperation | 1.2 | 0.8 | 0.582 | |
Empyema | 2.1 | 0.9 | 1.2 (−0.8, 3.3) | 0.245 |
Pneumonia | 11.0 | 9.6 | 1.4 (−3.7, 6.5) | 0.599 |
Prolonged air leak 1 | 6.7 | 7.9 | −1.2 (−5.7, 3.2) | 0.590 |
Pneumothorax requiring drain insertion | 3.1 | 2.3 | 0.8 (−2.4, 3.9) | 0.638 |
Subcutaneous emphysema | 0.3 | 3.2 | −2.9 (−5.5, −0.3) | 0.030 |
Low-grade complications 2,% | 28.0 | 24.2 | 3.8 (−4.0, 11.6) | 0.340 |
High-grade complications 2,% | 7.0 | 6.4 | 0.6 (−4.0, 5.2) | 0.794 |
ICU admission (unplanned),% | 8.8 | 12.0 | −3.2 (−8.9, 2.5) | 0.269 |
Reoperation,% | 2.1 | 1.2 | 0.9 (−1.1, 3.0) | 0.385 |
Chest tube duration, days | 3.5 ± 4.4 | 3.5 ± 4.6 | 0.03 (−0.8, 0.9) | 0.937 |
Length of hospital stay, days,% | 6.8 ± 8.6 | 6.1 ± 5.3 | 0.7 (−0.4, 1.9) | 0.223 |
Readmission within 30 days,% | 6.7 | 4.9 | 1.8 (−2.8, 6.5) | 0.443 |
Mortality within 30 days,% | 0.8 | 0.8 | 0 (−1.6, 1.6) | >0.99 |
Lymph node stations dissected | 4.8 ± 2.2 | 5.9 ± 1.5 | −1.2 (−1.5, −0.8) | <0.001 |
Lymph node upstaging,% | ||||
cN0 to pN1 | 6.3 | 4.5 | 1.7 (−3.0, 6.5) | 0.470 |
cN0 to pN2 | 4.5 | 6.3 | −1.7 (−5.6, 2.2) | 0.380 |
cN1 to pN2 | 1.0 | 1.0 | 0.0 (−1.7, 1.7) | >0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lampridis, S.; Maraschi, A.; Le Reun, C.; Routledge, T.; Billè, A. Robotic versus Video-Assisted Thoracic Surgery for Lung Cancer: Short-Term Outcomes of a Propensity Matched Analysis. Cancers 2023, 15, 2391. https://doi.org/10.3390/cancers15082391
Lampridis S, Maraschi A, Le Reun C, Routledge T, Billè A. Robotic versus Video-Assisted Thoracic Surgery for Lung Cancer: Short-Term Outcomes of a Propensity Matched Analysis. Cancers. 2023; 15(8):2391. https://doi.org/10.3390/cancers15082391
Chicago/Turabian StyleLampridis, Savvas, Alessandro Maraschi, Corinne Le Reun, Tom Routledge, and Andrea Billè. 2023. "Robotic versus Video-Assisted Thoracic Surgery for Lung Cancer: Short-Term Outcomes of a Propensity Matched Analysis" Cancers 15, no. 8: 2391. https://doi.org/10.3390/cancers15082391
APA StyleLampridis, S., Maraschi, A., Le Reun, C., Routledge, T., & Billè, A. (2023). Robotic versus Video-Assisted Thoracic Surgery for Lung Cancer: Short-Term Outcomes of a Propensity Matched Analysis. Cancers, 15(8), 2391. https://doi.org/10.3390/cancers15082391