Efficacy of Antibodies Targeting TfR1 in Xenograft Mouse Models of AIDS-Related Non-Hodgkin Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Recombinant Antibodies
2.3. In Vivo Efficacy Studies
2.4. Bioluminescence Imaging
3. Results
3.1. Efficacy of ch128.1/IgG1 and hu128.1 in a Local Model of AIDS-NHL Using 2F7-BR44 Cells
Treatment | Number of Animals | Median Survival (Days) | p-Value Compared to IgG1 | p-Value Compared to Buffer | p-Value Compared to hu128.1 (Day 2) |
---|---|---|---|---|---|
Data presented in Figure 1B | |||||
Buffer (Day 2) | 10 | 37 | |||
400 μg IgG1 (Days 2, 20, 23, 26) | 10 | 37 | 0.2094 | ||
400 μg hu128.1 (Day 2) | 10 | 58 | <0.0001 | <0.0001 | |
400 μg hu128.1 (Day 20) | 9 | 47 | <0.0001 | <0.0001 | <0.0001 |
400 μg hu128.1 (Days 20, 23, 26) | 10 | 47 | <0.0001 | <0.0001 | 0.0003 |
Data presented in Figure 1C | |||||
Buffer (Day 2) | 9 | 38 | |||
400 μg IgG1 (Day 2) | 9 | 36 | 0.1307 | ||
400 μg hu128.1 (Day 2) | 9 | 64 | <0.0001 | <0.0001 | |
400 μg IgG1 (Days 2, 5, 8, 11) | 9 | 36 | 0.2262 | ||
400 μg hu128.1 (Days 2, 5, 8, 11) | 9 | 84 | <0.0001 | <0.0001 | 0.1555 |
3.2. Efficacy of ch128.1/IgG1 and hu128.1 in a Disseminated Model of AIDS-NHL Using 2F7-BR44 Cells
3.3. Efficacy of ch128.1/IgG1 and hu128.1 in Local and Disseminated Models of AIDS-NHL Using JB Cells
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziegler, J.L.; Bragg, K.; Abrams, D.; Beckstead, J.; Cogan, M.; Volberding, P.; Baer, D.; Wilkinson, L.; Rosenbaum, E.; Grant, K.; et al. High-grade non-Hodgkin’s lymphoma in patients with AIDS. Ann. N. Y. Acad. Sci. 1984, 437, 412–419. [Google Scholar] [CrossRef]
- Noy, A. HIV Lymphoma and Burkitts Lymphoma. Cancer J. 2020, 26, 260–268. [Google Scholar] [CrossRef]
- Gibson, T.M.; Morton, L.M.; Shiels, M.S.; Clarke, C.A.; Engels, E.A. Risk of non-Hodgkin lymphoma subtypes in HIV-infected people during the HAART era: A population-based study. AIDS 2014, 28, 2313–2318. [Google Scholar] [CrossRef] [Green Version]
- Seaberg, E.C.; Wiley, D.; Martinez-Maza, O.; Chmiel, J.S.; Kingsley, L.; Tang, Y.; Margolick, J.B.; Jacobson, L.P.; Multicenter, A.C.S. Cancer incidence in the multicenter AIDS Cohort Study before and during the HAART era: 1984 to 2007. Cancer 2010, 116, 5507–5516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimani, S.M.; Painschab, M.S.; Horner, M.J.; Muchengeti, M.; Fedoriw, Y.; Shiels, M.S.; Gopal, S. Epidemiology of haematological malignancies in people living with HIV. Lancet HIV 2020, 7, e641–e651. [Google Scholar] [CrossRef]
- Centers for Disease Control. Revision of the case definition of acquired immunodeficiency syndrome for national reporting--United States. MMWR Morb. Mortal Wkly. Rep. 1985, 34, 373–375. [Google Scholar]
- Cesarman, E. Pathology of lymphoma in HIV. Curr. Opin. Oncol. 2013, 25, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggar, R.J. AIDS-related cancers in the era of highly active antiretroviral therapy. Oncology 2001, 15, 439–448; discussion 448–449. [Google Scholar]
- Atallah-Yunes, S.A.; Murphy, D.J.; Noy, A. HIV-associated Burkitt lymphoma. Lancet Haematol. 2020, 7, e594–e600. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, T.; Inaba, Y.; Kawasaki, Y.; Tsukada, K.; Teruya, K.; Kikuchi, Y.; Gatanaga, H.; Oka, S. Mortality and causes of death in people living with HIV in the era of combination antiretroviral therapy compared with the general population in Japan. AIDS 2020, 34, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Balestre, E.; Thiebaut, R.; Morlat, P.; Pellegrin, J.L.; Neau, D.; Dabis, F.; Groupe d’Epidemiologie Clinique du SIDA en Aquitaine. Factors associated with the occurrence of AIDS-related non-Hodgkin lymphoma in the era of highly active antiretroviral therapy: Aquitaine Cohort, France. Clin. Infect. Dis. 2006, 42, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Epeldegui, M.; Vendrame, E.; Martinez-Maza, O. HIV-associated immune dysfunction and viral infection: Role in the pathogenesis of AIDS-related lymphoma. Immunol. Res. 2010, 48, 72–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Siewe, B.; Epeldegui, M.; Detels, R.; Landay, A.; Martinez-Maza, O. TLR2 activated B cells are phenotypically similar to the abnormal circulating B cells seen preceding the diagnosis of AIDS related non-Hodgkin lymphoma (NHL) diagnosis. J. Acquir. Immune Defic. Syndr. 2013, 64, 204–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilly, A.J.; Fedoriw, Y. Human Immunodeficiency Virus-Associated Lymphoproliferative Disorders. Surg. Pathol. Clin. 2019, 12, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Maza, O.; Crabb, E.; Mitsuyasu, R.T.; Fahey, J.L.; Giorgi, J.V. Infection with the human immunodeficiency virus (HIV) is associated with an in vivo increase in B lymphocyte activation and immaturity. J. Immunol. 1987, 138, 3720–3724. [Google Scholar] [CrossRef] [PubMed]
- Candelaria, P.V.; Leoh, L.S.; Penichet, M.L.; Daniels-Wells, T.R. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-cancer Agents. Front. Immunol. 2021, 12, 607692. [Google Scholar] [CrossRef] [PubMed]
- Essaghir, A.; Demoulin, J.B. A minimal connected network of transcription factors regulated in human tumors and its application to the quest for universal cancer biomarkers. PLoS ONE 2012, 7, e39666. [Google Scholar] [CrossRef]
- Maguire, A.; Chen, X.; Wisner, L.; Malasi, S.; Ramsower, C.; Kendrick, S.; Barrett, M.T.; Glinsmann-Gibson, B.; McGrath, M.; Rimsza, L.M. Potential Alternative Survival Mechanisms in HIV-Associated Diffuse Large B-Cell Lymphoma (DLBCL) of Germinal Center (GCB) Origin. In Proceedings of the 17th International Confereence on Malignancies in HIV/AIDS, Bethesda, MD, USA, 21–22 October 2019. [Google Scholar]
- Maguire, A.; Chen, X.; Wisner, L.; Ramsower, C.; Glinsmann-Gibson, B.; Rimsza, L.M. Over-Expression of Transferrin Receptor (TFRC/CD71) and Low Expression of Innate and Adaptive Immune Cell Subsets in HIV-Associated, GCB-DLBCL By Digital Gene Expression Profiling. Blood 2019, 134, 2783. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Helguera, G.; Daniels, T.R.; Neacato, I.I.; Lopez-Valdes, H.E.; Charles, A.C.; Penichet, M.L. Binding specificity and internalization properties of an antibody-avidin fusion protein targeting the human transferrin receptor. J. Control. Release 2007, 124, 35–42. [Google Scholar] [CrossRef]
- Ng, P.P.; Helguera, G.; Daniels, T.R.; Lomas, S.Z.; Rodriguez, J.A.; Schiller, G.; Bonavida, B.; Morrison, S.L.; Penichet, M.L. Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor. Blood 2006, 108, 2745–2754. [Google Scholar] [CrossRef]
- White, S.; Taetle, R.; Seligman, P.A.; Rutherford, M.; Trowbridge, I.S. Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: Evidence for synergistic antiproliferative effects. Cancer Res. 1990, 50, 6295–6301. [Google Scholar]
- Daniels, T.R.; Ortiz-Sanchez, E.; Luria-Perez, R.; Quintero, R.; Helguera, G.; Bonavida, B.; Martinez-Maza, O.; Penichet, M.L. An antibody-based multifaceted approach targeting the human transferrin receptor for the treatment of B-cell malignancies. J. Immunother 2011, 34, 500–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leoh, L.S.; Kim, Y.K.; Candelaria, P.V.; Martinez-Maza, O.; Daniels-Wells, T.R.; Penichet, M.L. Efficacy and Mechanism of Antitumor Activity of an Antibody Targeting Transferrin Receptor 1 in Mouse Models of Human Multiple Myeloma. J. Immunol. 2018, 200, 3485–3494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels-Wells, T.R.; Widney, D.P.; Leoh, L.S.; Martínez-Maza, O.; Penichet, M.L. Efficacy of an Anti-transferrin Receptor 1 Antibody Against AIDS-related Non-Hodgkin Lymphoma. J. Immunother. 2015, 38, 307–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels-Wells, T.R.; Candelaria, P.V.; Leoh, L.S.; Nava, M.; Martinez-Maza, O.; Penichet, M.L. An IgG1 Version of the Anti-transferrin Receptor 1 Antibody ch128.1 Shows Significant Antitumor Activity Against Different Xenograft Models of Multiple Myeloma: A Brief Communication. J. Immunother. 2020, 43, 48–52. [Google Scholar] [CrossRef]
- Farrell, P.J. Epstein-Barr Virus and Cancer. Annu. Rev. Pathol. 2019, 14, 29–53. [Google Scholar] [CrossRef]
- Moses, A.V.; Williams, S.E.; Strussenberg, J.G.; Heneveld, M.L.; Ruhl, R.A.; Bakke, A.C.; Bagby, G.C.; Nelson, J.A. HIV-1 induction of CD40 on endothelial cells promotes the outgrowth of AIDS-associated B-cell lymphomas. Nat. Med. 1997, 3, 1242–1249. [Google Scholar] [CrossRef]
- Wen, J.; Wu, D.; Qin, M.; Liu, C.; Wang, L.; Xu, D.; Vinters, H.V.; Liu, Y.; Kranz, E.; Guan, X.; et al. Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice. Nat. Biomed. Eng. 2019, 3, 706–716. [Google Scholar] [CrossRef]
- Penichet, M.L.; Daniels-Wells, T.R.; Candelaria, P.V.; Almagro, J.C. Compositions and Methods for Transferrin Receptor 1 Targeting. International Patent Application No. PCT/US2020/059532, 6 November 2020. Publication Number: WO/2021/092482A1, Publication Date: 14 May 2021. [Google Scholar]
- Tao, M.H.; Canfield, S.M.; Morrison, S.L. The differential ability of human IgG1 and IgG4 to activate complement is determined by the COOH-terminal sequence of the CH2 domain. J. Exp. Med. 1991, 173, 1025–1028. [Google Scholar] [CrossRef]
- Hather, G.; Liu, R.; Bandi, S.; Mettetal, J.; Manfredi, M.; Shyu, W.C.; Donelan, J.; Chakravarty, A. Growth rate analysis and efficient experimental design for tumor xenograft studies. Cancer Inform. 2014, 13, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Martinez, L.E.; Daniels-Wells, T.R.; Guo, Y.; Magpantay, L.I.; Candelaria, P.V.; Penichet, M.L.; Martinez-Maza, O.; Epeldegui, M. Targeting TfR1 with the ch128.1/IgG1 Antibody Inhibits EBV-driven Lymphomagenesis in Immunosuppressed Mice Bearing EBV(+) Human Primary B-cells. Mol. Cancer Ther. 2021, 20, 1592–1602. [Google Scholar] [CrossRef]
- Helguera, G.; Jemielity, S.; Abraham, J.; Cordo, S.M.; Martinez, M.G.; Rodriguez, J.A.; Bregni, C.; Wang, J.J.; Farzan, M.; Penichet, M.L.; et al. An antibody recognizing the apical domain of human transferrin receptor 1 efficiently inhibits the entry of all new world hemorrhagic Fever arenaviruses. J. Virol. 2012, 86, 4024–4028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, A.; Gloghini, A.; Capello, D.; Gaidano, G. Genetic pathways and histogenetic models of AIDS-related lymphomas. Eur. J. Cancer 2001, 37, 1270–1275. [Google Scholar] [CrossRef]
- Barta, S.K.; Joshi, J.; Mounier, N.; Xue, X.; Wang, D.; Ribera, J.M.; Navarro, J.T.; Hoffmann, C.; Dunleavy, K.; Little, R.F.; et al. Central nervous system involvement in AIDS-related lymphomas. Br. J. Haematol. 2016, 173, 857–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaboration of Observational HIV Epidemiological Research Europe (COHERE) Study Group; Bohlius, J.; Schmidlin, K.; Costagliola, D.; Fatkenheuer, G.; May, M.; Caro Murillo, A.M.; Mocroft, A.; Bonnet, F.; Clifford, G.; et al. Prognosis of HIV-associated non-Hodgkin lymphoma in patients starting combination antiretroviral therapy. AIDS 2009, 23, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Bosma, G.C.; Custer, R.P.; Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nature 1983, 301, 527–530. [Google Scholar] [CrossRef]
- Roder, J.C. The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J. Immunol. 1979, 123, 2168–2173. [Google Scholar] [CrossRef]
- Roder, J.C.; Lohmann-Matthes, M.L.; Domzig, W.; Wigzell, H. The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J. Immunol. 1979, 123, 2174–2181. [Google Scholar] [CrossRef]
- Jones-Carson, J.; Vazquez-Torres, A.; Balish, E. Defective killing of Candida albicans hyphae by neutrophils from beige mice. J. Infect. Dis. 1995, 171, 1664–1667. [Google Scholar] [CrossRef]
- Leoh, L.S.; Daniels-Wells, T.R.; Martinez-Maza, O.; Penichet, M.L. Insights into the effector functions of human IgG3 in the context of an antibody targeting transferrin receptor 1. Mol. Immunol. 2015, 67, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Hickerson, B.T.; Daniels-Wells, T.R.; Payes, C.; Clark, L.E.; Candelaria, P.V.; Bailey, K.W.; Sefing, E.J.; Zink, S.; Ziegenbein, J.; Abraham, J.; et al. Host receptor-targeted therapeutic approach to counter pathogenic New World mammarenavirus infections. Nat. Commun. 2022, 13, 558. [Google Scholar] [CrossRef]
- Richard, C.; Verdier, F. Transferrin Receptors in Erythropoiesis. Int. J. Mol. Sci. 2020, 21, 9713. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kawabata, H.; Masuda, T.; Uchiyama, T.; Mizumoto, C.; Ohmori, K.; Koeffler, H.P.; Kadowaki, N.; Takaori-Kondo, A. H-Ferritin Is Preferentially Incorporated by Human Erythroid Cells through Transferrin Receptor 1 in a Threshold-Dependent Manner. PLoS ONE 2015, 10, e0139915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montemiglio, L.C.; Testi, C.; Ceci, P.; Falvo, E.; Pitea, M.; Savino, C.; Arcovito, A.; Peruzzi, G.; Baiocco, P.; Mancia, F.; et al. Cryo-EM structure of the human ferritin-transferrin receptor 1 complex. Nat. Commun. 2019, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- Phase I, Open-Label, Multicentre, Dose-Escalation Study to Evaluate the Safety and Pharmacokinetics of a Single Intravenous PPMX-T003 in Polycythemia Vera (Identifier: NCT05074550). Available online: ClinicalTrials.gov (accessed on 6 December 2022).
- Shimosaki, S.; Nakahata, S.; Ichikawa, T.; Kitanaka, A.; Kameda, T.; Hidaka, T.; Kubuki, Y.; Kurosawa, G.; Zhang, L.; Sudo, Y.; et al. Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma. Biochem. Biophys. Res. Commun. 2017, 485, 144–151. [Google Scholar] [CrossRef]
- Zhang, L.; Nomura, F.; Aikawa, Y.; Kurosawa, Y.; Morishita, K.; Sudo, Y. PPMX-T003, a fully human anti-TfR1 antibody with potent efficacy against hematologic malignancies [abstract]. Cancer Res. 2017, 77, 5586. [Google Scholar] [CrossRef]
- Ogama, Y.; Kumagai, Y.; Komatsu, N.; Araki, M.; Masubuchi, N.; Akiyoshi, H.; Matsuura, T.; Kirisako, H.; Kyoya, A.; Nomura, F.; et al. Phase 1 Clinical Trial of PPMX-T003, a Novel Human Monoclonal Antibody Specific for Transferrin Receptor 1, to Evaluate Its Safety, Pharmacokinetics, and Pharmacodynamics. Clin. Pharmacol. Drug Dev. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Saunders, K.O. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Front. Immunol. 2019, 10, 1296. [Google Scholar] [CrossRef] [Green Version]
- Lansdorp, P.M.; Dragowska, W. Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J. Exp. Med. 1992, 175, 1501–1509. [Google Scholar] [CrossRef] [Green Version]
- Knaän-Shanzer, S.; van der Velde-van Dijke, I.; van de Watering, M.J.M.; de Leeuw, P.J.; Valerio, D.; van Bekkum, D.W.; de Vries, A.A.F. Phenotypic and Functional Reversal Within the Early Human Hematopoietic Compartment. Stem Cells 2008, 26, 3210–3217. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.; Helm, K.; Gruntmeir, J.J.; Stillman, W.S.; Pyatt, D.W.; Irons, R.D. Characterization and phenotypic analysis of differentiating CD34+ human bone marrow cells in liquid culture. Eur. J. Haematol. 1997, 59, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Daniels-Wells, T.R.; Helguera, G.; Rodriguez, J.A.; Leoh, L.S.; Erb, M.A.; Diamante, G.; Casero, D.; Pellegrini, M.; Martinez-Maza, O.; Penichet, M.L. Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1. Toxicol. Vitr. 2013, 27, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Number of Animals | Median Survival (Days) | p-Value Compared to IgG1 | p-Value Compared to Buffer | p-Value Compared to hu128.1 (Day 2) |
---|---|---|---|---|---|
Buffer (Day 2) | 9 | 23 | |||
100 μg IgG1 (Day 2) | 10 | 24 | 0.9024 | ||
100 μg hu128.1 (Day 2) | 10 | 42 | <0.0001 | <0.0001 | |
100 μg IgG1 (Days 2, 5, 8, 11) | 10 | 25 | 0.5451 | ||
100 μg hu128.1 (Days 2, 5, 8, 11) | 10 | 39 | <0.0001 | <0.0001 | 0.1528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniels-Wells, T.R.; Candelaria, P.V.; Kranz, E.; Wen, J.; Wang, L.; Kamata, M.; Almagro, J.C.; Martínez-Maza, O.; Penichet, M.L. Efficacy of Antibodies Targeting TfR1 in Xenograft Mouse Models of AIDS-Related Non-Hodgkin Lymphoma. Cancers 2023, 15, 1816. https://doi.org/10.3390/cancers15061816
Daniels-Wells TR, Candelaria PV, Kranz E, Wen J, Wang L, Kamata M, Almagro JC, Martínez-Maza O, Penichet ML. Efficacy of Antibodies Targeting TfR1 in Xenograft Mouse Models of AIDS-Related Non-Hodgkin Lymphoma. Cancers. 2023; 15(6):1816. https://doi.org/10.3390/cancers15061816
Chicago/Turabian StyleDaniels-Wells, Tracy R., Pierre V. Candelaria, Emiko Kranz, Jing Wen, Lan Wang, Masakazu Kamata, Juan C. Almagro, Otoniel Martínez-Maza, and Manuel L. Penichet. 2023. "Efficacy of Antibodies Targeting TfR1 in Xenograft Mouse Models of AIDS-Related Non-Hodgkin Lymphoma" Cancers 15, no. 6: 1816. https://doi.org/10.3390/cancers15061816
APA StyleDaniels-Wells, T. R., Candelaria, P. V., Kranz, E., Wen, J., Wang, L., Kamata, M., Almagro, J. C., Martínez-Maza, O., & Penichet, M. L. (2023). Efficacy of Antibodies Targeting TfR1 in Xenograft Mouse Models of AIDS-Related Non-Hodgkin Lymphoma. Cancers, 15(6), 1816. https://doi.org/10.3390/cancers15061816