Dichotomous Nitric Oxide–Dependent Post-Translational Modifications of STAT1 Are Associated with Ipilimumab Benefits in Melanoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Flow Cytometry and Mass Spectrometry Analyses
2.3. Statistical Analyses
3. Results
3.1. Patient Demographics
3.2. Type-I Interferon Treatment Increased Phosphorylation of STAT1
3.3. Phosphorylation of STAT1 Displays a Narrow Distribution in Samples with Long RFS
3.4. Higher Levels of pSTAT1 Were Associated with Low RFS in Anti-CTLA-4 Adjuvant Settings
3.5. Stimulation with 102 U/mL of Interferon-α Demonstrated Comparable pSTAT1 Activation before and after Ipilimumab Treatment
3.6. Increased [nSTAT1]post–[nSTAT1]pre in PBMC Is Associated with Longer RFS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarhini, A.A. Adjuvant Therapy of Melanoma. Hematol. Oncol. Clin. N. Am. 2021, 35, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Testori, A.A.E.; Chiellino, S.; van Akkooi, A.C.J. Adjuvant Therapy for Melanoma: Past, Current, and Future Developments. Cancers 2020, 12, 1994. [Google Scholar] [CrossRef] [PubMed]
- Tarhini, A.A.; Lee, S.J.; Hodi, F.S.; Rao, U.N.M.; Cohen, G.I.; Hamid, O.; Hutchins, L.F.; Sosman, J.A.; Kluger, H.M.; Eroglu, Z.; et al. Phase III Study of Adjuvant Ipilimumab (3 or 10 mg/kg) Versus High-Dose Interferon Alfa-2b for Resected High-Risk Melanoma: North American Intergroup E1609. J. Clin. Oncol. 2020, 38, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017, 377, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Weber, J.; Del Vecchio, M.; Gogas, H.; Arance, A.M.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.J.; Chiarion-Sileni, V.; et al. Adjuvant nivolumab versus ipilimumab (CheckMate 238 trial): Reassessment of 4-year efficacy outcomes in patients with stage III melanoma per AJCC-8 staging criteria. Eur. J. Cancer 2022, 173, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, K.F.; Othus, M.; Patel, S.P.; Tarhini, A.A.; Sondak, V.K.; Knopp, M.V.; Petrella, T.M.; Truong, T.G.; Khushalani, N.I.; Cohen, J.V.; et al. Adjuvant Pembrolizumab versus IFNalpha2b or Ipilimumab in Resected High-Risk Melanoma. Cancer Discov. 2022, 12, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Sarnaik, A.A.; Yu, B.; Yu, D.; Morelli, D.; Hall, M.; Bogle, D.; Yan, L.; Targan, S.; Solomon, J.; Nichol, G.; et al. Extended dose ipilimumab with a peptide vaccine: Immune correlates associated with clinical benefit in patients with resected high-risk stage IIIc/IV melanoma. Clin. Cancer Res. 2011, 17, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.K.; Welsh, E.A.; Fang, B.; Hernandez, Y.I.; Rose, T.; Gray, J.; Koomen, J.M.; Berglund, A.; Mule, J.J.; Markowitz, J. Multi-Omics and Informatics Analysis of FFPE Tissues Derived from Melanoma Patients with Long/Short Responses to Anti-PD1 Therapy Reveals Pathways of Response. Cancers 2020, 12, 3515. [Google Scholar] [CrossRef]
- Yarlagadda, K.; Hassani, J.; Foote, I.P.; Markowitz, J. The role of nitric oxide in melanoma. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 500–509. [Google Scholar] [CrossRef]
- Garg, S.K.; Ott, M.J.; Mostofa, A.G.M.; Chen, Z.; Chen, Y.A.; Kroeger, J.; Cao, B.; Mailloux, A.W.; Agrawal, A.; Schaible, B.J.; et al. Multi-Dimensional Flow Cytometry Analyses Reveal a Dichotomous Role for Nitric Oxide in Melanoma Patients Receiving Immunotherapy. Front. Immunol. 2020, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 2004, 4, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G.P.; Archambault, J.M.; Lee, H.; Arthur, C.D.; White, J.M.; Kalinke, U.; et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 2011, 208, 1989–2003. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, T.F.; Fuertes, M.B.; Woo, S.R. Innate immune sensing of cancer: Clues from an identified role for type I IFNs. Cancer Immunol. Immunother. 2012, 61, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, G.B.; Kondadasula, S.V.; Crespin, T.; Shen, L.; Kendra, K.; Walker, M.; Carson, W.E., 3rd. Multiparametric flow cytometric analysis of inter-patient variation in STAT1 phosphorylation following interferon Alfa immunotherapy. J. Natl. Cancer Inst. 2004, 96, 1331–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundy-Bosse, B.L.; Lesinski, G.B.; Jaime-Ramirez, A.C.; Benninger, K.; Khan, M.; Kuppusamy, P.; Guenterberg, K.; Kondadasula, S.V.; Chaudhury, A.R.; La Perle, K.M.; et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 2011, 71, 5101–5110. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, J.; Wang, J.; Vangundy, Z.; You, J.; Yildiz, V.; Yu, L.; Foote, I.P.; Branson, O.E.; Stiff, A.R.; Brooks, T.R.; et al. Nitric oxide mediated inhibition of antigen presentation from DCs to CD4(+) T cells in cancer and measurement of STAT1 nitration. Sci. Rep. 2017, 7, 15424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reich, N.C. STAT dynamics. Cytokine Growth Factor Rev. 2007, 18, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Radi, R. Protein tyrosine nitration: Biochemical mechanisms and structural basis of functional effects. Acc. Chem. Res. 2013, 46, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Tarhini, A.A.; Gogas, H.; Kirkwood, J.M. IFN-alpha in the treatment of melanoma. J. Immunol. 2012, 189, 3789–3793. [Google Scholar] [CrossRef] [Green Version]
- Di Trolio, R.; Simeone, E.; Di Lorenzo, G.; Buonerba, C.; Ascierto, P.A. The use of interferon in melanoma patients: A systematic review. Cytokine Growth Factor Rev. 2015, 26, 203–212. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Richards, T.; Zarour, H.M.; Sosman, J.; Ernstoff, M.; Whiteside, T.L.; Ibrahim, J.; Blum, R.; Wieand, S.; Mascari, R. Immunomodulatory effects of high-dose and low-dose interferon alpha2b in patients with high-risk resected melanoma: The E2690 laboratory corollary of intergroup adjuvant trial E1690. Cancer 2002, 95, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Geiger, T.; Alkan, S.; Heusser, C.H. Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells. J. Exp. Med. 1993, 178, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.J.; Harries, M.; Gore, M.E.; Collins, M.K. Interferon-alpha (IFN-alpha) stimulates anti-melanoma cytotoxic T lymphocyte (CTL) generation in mixed lymphocyte tumour cultures (MLTC). Clin. Exp. Immunol. 2000, 119, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Tough, D.F. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk. Lymphoma 2004, 45, 257–264. [Google Scholar] [CrossRef]
- Davar, D.; Kirkwood, J.M. Adjuvant Therapy of Melanoma. Cancer Treat. Res. 2016, 167, 181–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.; Zitelli, J.A. Treating patients with melanoma with interferon. Arch. Dermatol. 1997, 133, 387–389. [Google Scholar] [CrossRef]
- Simons, D.L.; Lee, G.; Kirkwood, J.M.; Lee, P.P. Interferon signaling patterns in peripheral blood lymphocytes may predict clinical outcome after high-dose interferon therapy in melanoma patients. J. Transl. Med. 2011, 9, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerer, J.M.; Lehman, A.M.; Ruppert, A.S.; Noble, C.W.; Olencki, T.; Walker, M.J.; Kendra, K.; Carson, W.E., 3rd. IFN-alpha-2b-induced signal transduction and gene regulation in patient peripheral blood mononuclear cells is not enhanced by a dose increase from 5 to 10 megaunits/m2. Clin. Cancer Res. 2008, 14, 1438–1445. [Google Scholar] [CrossRef] [Green Version]
- Grasso, C.S.; Tsoi, J.; Onyshchenko, M.; Abril-Rodriguez, G.; Ross-Macdonald, P.; Wind-Rotolo, M.; Champhekar, A.; Medina, E.; Torrejon, D.Y.; Shin, D.S.; et al. Conserved Interferon-gamma Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell 2021, 39, 122. [Google Scholar] [CrossRef]
- Jacquelot, N.; Yamazaki, T.; Roberti, M.P.; Duong, C.P.M.; Andrews, M.C.; Verlingue, L.; Ferrere, G.; Becharef, S.; Vetizou, M.; Daillere, R.; et al. Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 2019, 29, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Kelly, L.P.; Levine, K.M.; Olencki, T.E.; Del Campo, S.E.M.; Streacker, E.A.; Brooks, T.R.; Karpa, V.I.; Markowitz, J.; Bingman, A.K.; Geyer, S.M.; et al. A pilot study of interferon-alpha-2b dose reduction in the adjuvant therapy of high-risk melanoma. Cancer Immunol. Immunother. 2019, 68, 619–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | n | Percentage |
---|---|---|
Gender | ||
Male | 22 | 63 |
Female | 13 | 37 |
Melanoma stage | ||
IIIC | 16 | 46 |
IV | 19 | 54 |
Ipilimumab dose | ||
3 mg/kg | 6 | 17 |
10 mg/kg | 29 | 83 |
Treatment outcome | ||
NED | 77 | |
AWD | 2 | 6 |
DOD | 6 | 17 |
Age | - | |
Median | 58 years | |
Range | 21–78 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garg, S.K.; Sun, J.; Kim, Y.; Whiting, J.; Sarnaik, A.; Conejo-Garcia, J.R.; Phelps, M.; Weber, J.S.; Mulé, J.J.; Markowitz, J. Dichotomous Nitric Oxide–Dependent Post-Translational Modifications of STAT1 Are Associated with Ipilimumab Benefits in Melanoma. Cancers 2023, 15, 1755. https://doi.org/10.3390/cancers15061755
Garg SK, Sun J, Kim Y, Whiting J, Sarnaik A, Conejo-Garcia JR, Phelps M, Weber JS, Mulé JJ, Markowitz J. Dichotomous Nitric Oxide–Dependent Post-Translational Modifications of STAT1 Are Associated with Ipilimumab Benefits in Melanoma. Cancers. 2023; 15(6):1755. https://doi.org/10.3390/cancers15061755
Chicago/Turabian StyleGarg, Saurabh K., James Sun, Youngchul Kim, Junmin Whiting, Amod Sarnaik, José R. Conejo-Garcia, Mitch Phelps, Jeffrey S. Weber, James J. Mulé, and Joseph Markowitz. 2023. "Dichotomous Nitric Oxide–Dependent Post-Translational Modifications of STAT1 Are Associated with Ipilimumab Benefits in Melanoma" Cancers 15, no. 6: 1755. https://doi.org/10.3390/cancers15061755
APA StyleGarg, S. K., Sun, J., Kim, Y., Whiting, J., Sarnaik, A., Conejo-Garcia, J. R., Phelps, M., Weber, J. S., Mulé, J. J., & Markowitz, J. (2023). Dichotomous Nitric Oxide–Dependent Post-Translational Modifications of STAT1 Are Associated with Ipilimumab Benefits in Melanoma. Cancers, 15(6), 1755. https://doi.org/10.3390/cancers15061755