The Driverless Triple-Wild-Type (BRAF, RAS, KIT) Cutaneous Melanoma: Whole Genome Sequencing Discoveries
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. DNA Extraction and Quality Control
2.3. Whole Genome Sequencing
2.4. Bioinformatic Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chalmers, Z.R.; Conelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixido, C.; Castillo, P.; Martinez-Vila, C.; Arance, A.; Alos, L. Molecular markers and targets in melanoma. Cells 2021, 10, 2320. [Google Scholar] [CrossRef] [PubMed]
- Law, M.H.; Mac Gregor, S.; Hayward, N.K. Melanoma genomics: Recent findings take us beyond well-travelled pathways. J. Investig. Dermatol. 2012, 132, 1763–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tímár, J.; Ladányi, A. Molecular pathology of skin melanoma: Epidemiology, differential diagnostics, prognosis and therapy prediction. Int. J. Mol. Sci. 2022, 23, 5384. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 2015, 161, 1681–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Shen, R.; Arora, A.; Orlow, I.; Busam, K.J.; Lezcano, C.; Lee, T.K.; Hernando, E.; Gorlov, I.; Amos, C.; et al. Landscape of mutations in early stage primary cutanous melanoma: An InterMEL study. Pigment Cell Melanoma Res. 2022, 35, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.M.T.; Le, L.P.; Nardi, V.; Golas, J.; Farahani, A.A.; Signorelli, S.; Onozato, M.L.; Foreman, R.K.; Duncan, L.M.; Lawrence, D.P.; et al. Identification of fusions with potential clinical significance in melanoma. Mod. Pathol. 2022, 35, 1837–1847. [Google Scholar] [CrossRef]
- Conway, J.R.; Dietlein, F.; Taylor-Weiner, A.; AlDubayan, S.; Vokes, N.; Keenan, T.; Reardon, B.; He, M.X.; Margolis, C.A.; Weitrater, J.L.; et al. Integrated molecular drivers coordinate biological snd clinical states in melanoma. Nat. Genet. 2020, 52, 1373–1383. [Google Scholar] [CrossRef]
- Leichsenring, J.; Stögbauer, F.; Volckmar, A.-L.; Buchhalter, I.; Oliveira, C.; Kirchner, M.; Fröhling, S.; Hassel, J.; Enk, A.; Schirmacher, P.; et al. Genetic profiling of melanoma in routine diagnostics: Assay performance and molecular characteristics in a consecutive series of 274 cases. Pathology 2018, 50, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.H.; Zheng, H.Y.; Li, J. The clinical significance of KIT mutations in melanoma: A meta-analysis. Melanoma Res. 2018, 28, 259–270. [Google Scholar] [CrossRef] [PubMed]
- LoRusso, P.M.; Sekulic, A.; Sosman, J.A.; Liang, W.S.; Carpten, J.; Craig, D.W.; Solit, D.B.; Bryce, A.H.; Kiefer, J.A.; Aldrich, F.; et al. Identifying treatment options for BRAFV600 wild-type metastatic melanoma: A SU2C/MRA genomics-enabled clinical trial. PLoS ONE 2021, 16, e0248097. [Google Scholar] [CrossRef] [PubMed]
- Doma, V.; Kárpáti, S.; Rásó, E.; Barbai, T.; Tímár, J. Dynamic and unpredictable changes in mutant allele fractions of BRAF and NRAS during visceral progression of cutaneous malignant melanoma. BMC Cancer 2019, 19, 786. [Google Scholar]
- Doma, V.; Barbai, T.; Beleaua, M.A.; Kovalszky, I.; Rásó, E.; Tímár, J. KIT mutation incidence and pattern of melanoma in central-east Europe. Patol. Oncol. Res. 2020, 26, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 2 December 2022).
- MultiQC. Available online: https://multiqc.info (accessed on 21 December 2022).
- Available online: http://bio-bwa.sourceforge.net (accessed on 18 December 2022).
- Faust, G.G.; Hall, I.M. SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics 2014, 30, 2503–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broad Institute. Available online: https://software.broadinstitute.org/gatk (accessed on 17 December 2022).
- VEP. Available online: https://www.ensembl.org/vep (accessed on 16 December 2022).
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improvements to accessing data. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [Green Version]
- Sherry, S.T.; Ward, M.; Sirotkin, K. dbSNPDatabase for Single Nucleotide Polymorphisms and Other Classes of Minor Genetic Variation. Genome Res. 1999, 9, 677–679. [Google Scholar] [CrossRef]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, D.; et al. COSMIC: The Catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [Green Version]
- Clarke, L.; Fairley, S.; Zheng-Bradley, X.; Streeter, I.; Perry, E.; Lowy, E.; Tasse, A.M.; Flicek, P. The international genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res. 2017, 45, D854–D859. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Wang, Q.; Collins, R.L.; Laricchie, K.M.; Ganna, A.; Birnbaum, D.P.; Gauthier, L.D.; Brand, H.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian, N.G.A.W.; Wu, Y.; Boot, A.; Cavington, K.R.; Gordenin, P.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: Genome-wide copy number detection and visualization from targeted sequencing. PLoS Comput. Biol. 2014, 12, e1004873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://github.com/niu-lab/msisensor2 (accessed on 13 January 2023).
- Stenzinger, A.; Endris, V.; Budczies, J.; Merkelbach-Bruse, S.; Kazdal, D.; Dietmaier, W.; Pfarr, N.; Siebolts, U.; Hummel, M.; Herold, S.; et al. Harmonization and standardization of panel-based tumor mutational burden measurement: Real-world results and recommendations of the quality in pathology study. J. Thorac. Oncol. 2020, 7, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Ngoi, N.Y.L.; Tan, D.S.P. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: Do we need it? ESMO Open 2021, 6, 100144. [Google Scholar] [CrossRef]
- Nopparat, J.; Zhang, J.; Chen, Y.-H.; Zheng, D.; Neufer, P.D.; Fan, J.M.; Hong, H.; Boykin, C.; Lu, Q. D-catenin, WNT/b-catenin modulator, reveals inducible mutagenesis promoting cancer cell survival adaptation and metabolic reprogramming. Oncogene 2015, 34, 1542–1552. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Moon, S.W.; Mo, H.Y.; Son, H.J.; Choi, E.J.; Yoo, N.J.; Ann, C.H.; Lee, S.H. Concurrent inactivating mutations and expression losses of RGS2, HNF1A and CAPN12 candidate tumor suppressor genes in colon cancer. Pathol. Res. Pract. 2022, 241, 154288. [Google Scholar] [CrossRef] [PubMed]
- Kwong, L.N.; Chin, L. Chromosome 10, frequently lost in human melanoma, encodes multiple tumor-suppressive functions. Cancer Res. 2014, 74, 1814–1821. [Google Scholar] [CrossRef] [Green Version]
- Lusche, D.F.; Buchele, E.C.; Russell, K.B.; Soll, B.A.; Vitolo, M.I.; Klemme, M.R.; Wessels, D.J.; Soll, D.R. Overexpressing TPTE2 (TPIP), a homolog of the human tumor suppressor gene PTEN, rescues the abnormal phenotype of the PTEN−/− mutant. Oncotarget 2018, 9, 21100–21121. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, X.; Ma, L.; Ma, Z.; Li, S.; Fang, X.; Ma, X. Bioinformatics analysis and biological function of lncRNA ZFPM2-AS1 and ZFPM2 gene in hepatocellular carcinoma. Oncol. Lett. 2020, 19, 3677–3686. [Google Scholar]
- Tang, J.; Yang, L.; Li, Y.; Ning, X.; Chaulagain, A.; Wang, T.; Wang, D. ARID3A promotes the development of colorectal cancer by upregulating AURKA. Carcinogenesis 2021, 42, 578–586. [Google Scholar] [CrossRef]
- Katoh, M. Functional and cancer genomics of ASXL family members. Br. J. Cancer 2013, 109, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Ono, M.; Perkins, N.D.; Rocha, S.; Almond, A.I. Identification and functional characterization of FMN2, a regulator of the cyclin-dependent kinase inhibitor p21. Mol. Cell 2013, 49, 922–933. [Google Scholar] [CrossRef] [Green Version]
- Cipriano, R.; Miskimen, K.L.S.; Bryson, B.L.; Foy, C.R.; Bartel, C.A.; Jackson, M.W. Conserved oncogenic behaviour of the FAM83 family regulates MAPK signalling in human cancer. Mol. Cancer Res. 2014, 12, 1156–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, S.; Xu, P.-P.; Xu, Y.-H.; Guo, Y. A bioinformatics analysis: ZFHX4 is associated with metastasis and poor survival in ovarian cancer. J. Ovarian Res. 2022, 15, 90. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, X.; Wu, Y.; Linag, X.; Dai, J.; Zhang, Z.; Guo, R. Deleterious AHNAK2 mutation as a novel biomarker for immune checkpoint inhibitors in non-small cell lung cancer. Front. Oncol. 2022, 12, 798401. [Google Scholar] [CrossRef]
- Yu, J.; Xu, L.; Yan, J.; Yu, J.; Wu, X.; Dai, J.; Guo, J.; Kong, Y. MUC4 isoform expression profiling and prognosis value in Chinese melanoma patients. Clin. Exp. Med. 2020, 20, 1299–1311. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Y.; Yang, M.; Li, X.; Chen, K. high mutation load, immune-activated microenvironment, favourable outcome and better immunotherapeutic efficacy in melanoma patients harbouring MUC16/CA125 mutations. Aging 2020, 12, 10827–10843. [Google Scholar] [CrossRef] [PubMed]
- Yavorski, J.M.; Stoll, R.J.; Samy, M.D.; Mauro, J.A.; Blanck, G. Identification of sets of cytoskeletal related and adhesion-related coding region mutations in the TCGA melanoma dataset that correlate with a negative outcome. Curr. Genomics 2017, 18, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Snyder, A.; Wolchok, J.D.; Chan, T.A. Genetic basis for clinical response to CTLA-4 blockade. N. Engl. J. Med. 2015, 372, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Tang, Y.; Sheng, J.; Shu, P.; Zhu, X.; Cai, X.; Zhao, C.; Wang, L.; Huang, X. Titin mutation is associated with tumor mutation burden and promotes antitumor immunity in lung squamous cell carcinoma. Front. Cell Dev. Biol. 2021, 9, 761758. [Google Scholar] [CrossRef]
- Rusinova, I.; Forster, S.; Yu, S.; Kannan, A.; Masse, M.; Cumming, H.; Chapman, R.; Herzog, P. INTERFEROMEv2.0: An updated database of annotated interferone-regulated genes. Nucleic Acids Res. 2012, 41, D1040–D1046. [Google Scholar] [CrossRef] [Green Version]
- Dienstmann, R.; Elez, E.; Argiles, G.; Matos, I.; Sanz-Garcia, E.; Ortiz, C.; Macarulla, T.; Capdevila, J.; Alsina, M.; Sauri, A.M.; et al. Analysis of mutant allele fractions in driver genes in colorectal cancer—Biological and clinical insights. Mol. Oncol. 2017, 11, 1263–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteith, G.R.; Prevarskaya, N.; Roberts-Thompson, S.J. The calcium-cancer signalling nexus. Nat. Rev. Cancer 2017, 17, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehata, S.; Miyazono, K. Bone morphogenic protein signalling in cancer: Some topics in the recent 10 years. Front. Cell Dev. Biol. 2022, 10, 883523. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Kobayashi, A.; Jiang, P.; de Andrade, L.F.; Tay, R.E.; Luoma, A.M.; Tsoucas, D.; Qiu, X.; Lim, K.; Rao, P.; et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 2018, 359, 770–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
REF [5] | REF [9] | REF [8] | REF [11] | ||
---|---|---|---|---|---|
mutation | CNV | mutation | mutation | mutation | CNV |
CDKN2A | CCND1 | CTNNB1 | AP2B1 | CCND1 | CCND1 |
CTNNB1 | CDK4 | ERBB2 | ARID2 | CDKN2A | CDKN2A |
EZH2 | KDR | FGFR3 | CDKN2A | FGFR3 | |
GNA11 | MDM2 | GNA11 | CTNNB1 | RAD51 | |
GNAQ | PDGFRA | GNAQ | FBXW7 | RAF1 | |
IDH1 | KIT | FRY | RB1 | RB1 | |
KIT | KDR | GNA11 | PTEN | ||
PTEN | GNAQ | IGFR1 | |||
TP53 | IDH1 | ||||
KIT | |||||
LZTR1 | |||||
MAP1B | |||||
MAP2K1 | |||||
MLH1 | |||||
NPC1 | |||||
RQCD1 | |||||
SF3B1 | |||||
SV2C | |||||
SLC39A10 | |||||
TP53 | |||||
ZMYND8 |
Case No. | Gender | Age (Year) | Tumor Type | Primary Localisation | BR (mm) | Histological Type | CSD |
---|---|---|---|---|---|---|---|
1. | male | 34 | skin metastasis | lower extremity | 3.85 | NM | low |
2. | female | 51 | skin metastasis | glabrous plantar skin | 4.4 | SSM | none |
3. | female | 44 | LND metastasis | pubic | - | regressed | low |
4. | female | 89 | local recidive | back | 8.5 | NM | low |
5. | male | 68 | skin primary | chest | 4.2 | SSM | low |
6. | male | 58 | LND metastasis | scapular skin | 1.1 | regressed | high |
7. | female | 79 | skin primary | auricule | 6.7 | NM | high |
Case | 1. | 2. | 3. | 4. | 5. | 6. | 7. |
---|---|---|---|---|---|---|---|
total N of mutations | 85,846 | 2576 | 28,148 | 41,635 | 35,410 | 293,162 | 539,258 |
pathogenic mutation N/exome | 53 | 4 | 27 | 24 | 27 | 189 | 315 |
WGS-TMB/Mb | 25.8 | 0.8 | 8.5 | 12.4 | 10.6 | 88.8 | 163.3 |
UV signature | predominant | minor | predominant | predominant | predominant | predominant | predominant |
MS | MSS | MSS | MSS | MSS | MSS | MSS | MSS |
total N of CNV | 3 | 247 | 2 | 71 | 152 | 99 | 73 |
CNG | |||||||
A | 0 | 39 | 1 | 0 | 6 | 11 | 4 |
TRS | 2 | 37 | 1 | 58 | 56 | 21 | 55 |
CNL | |||||||
HL | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
LOH | 0 | 170 | 0 | 13 | 90 | 67 | 14 |
LOH% | 0 | 53.6 | 0 | 4.1 | 28.4 | 21.1 | 4.4 |
HRD signature | none | none | none | none | minor | none | none |
Gene Name | Symbol | Incidence (%) | TCGA (%) |
---|---|---|---|
ankyrin 3 | ANK3 | 4/7 (57) | 38 |
BMP binding endothelial regulator | BMPER | 3/7 (43) | 12 |
BMP/retinoic acid inducible neural-specific 2 | BRINP2 | 3/7 (43) | 13 |
complement 6 | C6 | 3/7 (43) | 24 |
catenin delta 2 | CTNND2 | 3/7 (43) | 14 |
CUB and Sushi multiple domain 1 | CSMD1 | 3/7 (43) | 40 |
dynein axonemal heavy chain 5 | DNAH5 | 3/7 (43) | 56 |
laminin B4 | LAMB4 | 3/7 (43) | 15 |
mucin 4 | MUC4 | 4/7 (57) | 18 |
Maestro heat-like repeat family member 2B | MROH2B | 3/7 (43) | 7 |
mucin 17 | MUC17 | 3/7 (43) | 31 |
Piccolo presynaptic cytomatrix protein | PCLO | 4/7 (57) | 49 |
POM121 transmembrane nucleoporin like 12 | POM121L12 | 3/7 (43) | 13 |
reelin | RELN | 3/7 (43) | 27 |
telomerase reverse transcriptase | TERT | 6/7 (86) | 77 |
titin | TTN | 4/7 (57) | 80 |
unc-1 homolog C3 | UNC13C | 3/7 (43) | 30 |
Zinc finger homeobox protein 4 | ZFHX4 | 4/7 (57) | 33 |
Zinc finger protein, FOG family member 2 | ZFPM2 | 3/7 (43) | 18 |
Gene Alteration | Case No | 1. | 2. | 3. | 4. | 5. | 6. | 7. | |
---|---|---|---|---|---|---|---|---|---|
drivers | TCGA% | IRG | |||||||
CDKN2A | 38 | LOHwt | LOHwt | LOHwt | LOHwt | LOHwt | |||
CTNNB1 | 7 | LOHwt | |||||||
NF1 | 18 | + | LOHwt | C | P | ||||
PTEN | 16 | + | LOHwt | C | |||||
TP53 | 16 | + | LOH/C | C | |||||
IDH1 | 6 | + | S | ||||||
KRAS | 3 | + | Awt | Awt | |||||
NRAS | 29 | Awt | |||||||
TERT promoter | 77 | C | S | C | C | P | C | ||
actionable drivers | |||||||||
NTRK1 | 10 | + | P | Awt | |||||
NTRK3 | 12 | + | Awt | ||||||
RET | 8 | + | P | ||||||
VEGFR1 | 12 | C | P | ||||||
potential drivers | |||||||||
CTNND2 | 14 | + | P | LOHwt | P | P | |||
HNF1A | 5 | P | |||||||
TACC2 | 25 | + | S | C | |||||
TPTE2 | 10 | S | |||||||
ZFPM2 | 18 | + | P | C | P | ||||
ARID3A | 2.7 | + | C | ||||||
ASXL1 | 5 | + | S | P | |||||
ASXL2 | 7 | + | P | P | |||||
FAM83B | 20 | P | |||||||
FMN2 | 24 | P | |||||||
PARP4 | 9 | + | C | ||||||
PARP14 | 9 | + | P | P | |||||
WNT7A | 5 | C | |||||||
ZFHX4 | 33 | + | S | P | P | P | |||
immunity | |||||||||
AHNAK2 | 24 | + | S | S | |||||
CSMD1 | 40 | P | C | P | |||||
MUC4 | 18 | + | P | S | S | S | |||
MUC16 | 74 | S | C | P | |||||
MUC17 | 31 | S | P | P | |||||
TTN | 80 | + | P | LOHwt | C | C | C | ||
Ca signaling | |||||||||
RYR1 | 33 | C | P | ||||||
RYR2 | 32 | Awt | C | P | |||||
TRVP6 | 8 | C | |||||||
BMP signaling | |||||||||
BMPER | 12 | + | Awt | S | P | P | |||
BRINP2 | 13 | + | Awt | S | C | P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pipek, O.; Vizkeleti, L.; Doma, V.; Alpár, D.; Bödör, C.; Kárpáti, S.; Timar, J. The Driverless Triple-Wild-Type (BRAF, RAS, KIT) Cutaneous Melanoma: Whole Genome Sequencing Discoveries. Cancers 2023, 15, 1712. https://doi.org/10.3390/cancers15061712
Pipek O, Vizkeleti L, Doma V, Alpár D, Bödör C, Kárpáti S, Timar J. The Driverless Triple-Wild-Type (BRAF, RAS, KIT) Cutaneous Melanoma: Whole Genome Sequencing Discoveries. Cancers. 2023; 15(6):1712. https://doi.org/10.3390/cancers15061712
Chicago/Turabian StylePipek, Orsolya, Laura Vizkeleti, Viktória Doma, Donát Alpár, Csaba Bödör, Sarolta Kárpáti, and Jozsef Timar. 2023. "The Driverless Triple-Wild-Type (BRAF, RAS, KIT) Cutaneous Melanoma: Whole Genome Sequencing Discoveries" Cancers 15, no. 6: 1712. https://doi.org/10.3390/cancers15061712
APA StylePipek, O., Vizkeleti, L., Doma, V., Alpár, D., Bödör, C., Kárpáti, S., & Timar, J. (2023). The Driverless Triple-Wild-Type (BRAF, RAS, KIT) Cutaneous Melanoma: Whole Genome Sequencing Discoveries. Cancers, 15(6), 1712. https://doi.org/10.3390/cancers15061712