Immune Checkpoint Inhibitors for Solid Tumors in the Adjuvant Setting: Current Progress, Future Directions, and Role in Transplant Oncology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Potential Predictive Biomarkers
2.1. Approved Biomarkers
2.2. Emerging Biomarkers
3. Clinical Studies of Adjuvant Immunotherapy
3.1. Cutaneous Melanoma
3.2. Urothelial Cancer
3.3. Renal Cell Carcinoma
3.4. Non-Small Cell Lung Cancer
3.5. Esophageal and Gastroesophageal Junction Cancer
3.6. Hepatobiliary Malignancies and Transplant Oncology
3.7. Impact of Diet and Microbiome on Response to Immunotherapy
3.8. Safety and Immune-Related Adverse Events
3.9. Economic Considerations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaghmour, G.; Pandey, M.; Ireland, C.; Patel, K.; Nunnery, S.; Powell, D.; Baum, S.; Wiedower, E.; Schwartzberg, L.S.; Martin, M.G. Role of Genomic Instability in Immunotherapy with Checkpoint Inhibitors. Anticancer Res. 2016, 36, 4033–4038. [Google Scholar] [CrossRef]
- Remon, J.; Besse, B. Adjuvant immunotherapy for NSCLC—Does treating earlier mean treating better? Nat. Rev. Clin. Oncol. 2022, 19, 7–8. [Google Scholar] [CrossRef]
- Bai, R.; Lv, Z.; Xu, D.; Cui, J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark. Res. 2020, 8, 34. [Google Scholar] [CrossRef]
- Sundar, R.; Smyth, E.C.; Peng, S.; Yeong, J.P.S.; Tan, P. Predictive Biomarkers of Immune Checkpoint Inhibition in Gastroesophageal Cancers. Front. Oncol. 2020, 10, 763. [Google Scholar] [CrossRef]
- Stenzinger, A.; Allen, J.D.; Maas, J.; Stewart, M.D.; Merino, D.M.; Wempe, M.M.; Dietel, M. Tumor mutational burden standardization initiatives: Recommendations for consistent tumor mutational burden assessment in clinical samples to guide immunotherapy treatment decisions. Genes Chromosomes Cancer 2019, 58, 578–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litchfield, K.; Reading, J.L.; Puttick, C.; Thakkar, K.; Abbosh, C.; Bentham, R.; Watkins, T.B.K.; Rosenthal, R.; Biswas, D.; Rowan, A.; et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021, 184, 596–614.e514. [Google Scholar] [CrossRef]
- Valero, C.; Lee, M.; Hoen, D.; Wang, J.; Nadeem, Z.; Patel, N.; Postow, M.A.; Shoushtari, A.N.; Plitas, G.; Balachandran, V.P.; et al. The association between tumor mutational burden and prognosis is dependent on treatment context. Nat. Genet. 2021, 53, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Wang, X.; Alessi, J.V.; Rizvi, H.; Mahadevan, N.R.; Li, Y.Y.; Polio, A.; Lindsay, J.; Umeton, R.; Sinha, R.; et al. Association of High Tumor Mutation Burden in Non–Small Cell Lung Cancers With Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 Expression Levels. JAMA Oncol. 2022, 8, 1160–1168. [Google Scholar] [CrossRef]
- Coleman, S.; Xie, M.; Tarhini, A.A.; Tan, A.C. Systematic evaluation of the predictive gene expression signatures of immune checkpoint inhibitors in metastatic melanoma. Mol. Carcinog. 2023, 62, 77–89. [Google Scholar] [CrossRef]
- Ferrándiz-Pulido, C.; Leiter, U.; Harwood, C.; Proby, C.M.; Guthoff, M.; Scheel, C.H.; Westhoff, T.H.; Bavinck, J.N.B.; Meyer, T.; Nägeli, M.C. Immune Checkpoint Inhibitors in Solid Organ Transplant Recipients With Advanced Skin Cancers—Emerging Strategies for Clinical Management. Transplantation 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Chen, Y.; Anandhan, S.; Szabo, P.M.; Basu, S.; Blando, J.M.; Liu, W.; Zhang, J.; Natarajan, S.; Xiong, L.; et al. Combinatorial biomarkers to predict responses to immune checkpoint therapy in metastatic urothelial cancer. J. Clin. Oncol. 2021, 39, 488. [Google Scholar] [CrossRef]
- Goswami, S.; Chen, Y.; Anandhan, S.; Szabo, P.M.; Basu, S.; Blando, J.M.; Liu, W.; Zhang, J.; Natarajan, S.M.; Xiong, L.; et al. ARID1A mutation plus CXCL13 expression act as combinatorial biomarkers to predict responses to immune checkpoint therapy in mUCC. Sci. Transl. Med. 2020, 12, eabc4220. [Google Scholar] [CrossRef] [PubMed]
- Johansson, P.A.; Hayward, N.K.; Pritchard, A.L. Immune signatures in cutaneous melanoma correlate with survival independently of immunotherapy treatment. Pigment. Cell Melanoma Res. 2023, 36, 246–251. [Google Scholar] [CrossRef]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e2073. [Google Scholar] [CrossRef] [PubMed]
- Boyiadzis, M.M.; Kirkwood, J.M.; Marshall, J.L.; Pritchard, C.C.; Azad, N.S.; Gulley, J.L. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J. Immunother. Cancer 2018, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galon, J.; Pagès, F.; Marincola, F.M.; Thurin, M.; Trinchieri, G.; Fox, B.A.; Gajewski, T.F.; Ascierto, P.A. The immune score as a new possible approach for the classification of cancer. J. Transl. Med. 2012, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Velichinskii, R.; Lesh, R.W.; Ali, U.; Kubiak, M.; Bansal, P.; Borghaei, H.; Edelman, M.J.; Boumber, Y. Existing and Emerging Biomarkers for Immune Checkpoint Immunotherapy in Solid Tumors. Adv. Ther. 2019, 36, 2638–2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Federico, L.; McGrail, D.J.; Bentebibel, S.E.; Haymaker, C.; Ravelli, A.; Forget, M.A.; Karpinets, T.; Jiang, P.; Reuben, A.; Negrao, M.V.; et al. Distinct tumor-infiltrating lymphocyte landscapes are associated with clinical outcomes in localized non-small-cell lung cancer. Ann. Oncol. 2022, 33, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, L.; Alessandrini, L.; Fasanaro, E.; Gaudioso, P.; Carli, A.; Nicolai, P.; Marioni, G. Prognostic impact of neutrophils-to-lymphocytes ratio (NLR), PD-L1 expression, and tumor immune microenvironment in laryngeal cancer. Ann. Diagn. Pathol. 2021, 50, 151657. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [Green Version]
- Ameratunga, M.; Chénard-Poirier, M.; Moreno Candilejo, I.; Pedregal, M.; Lui, A.; Dolling, D.; Aversa, C.; Ingles Garces, A.; Ang, J.E.; Banerji, U.; et al. Neutrophil-lymphocyte ratio kinetics in patients with advanced solid tumours on phase I trials of PD-1/PD-L1 inhibitors. Eur. J. Cancer 2018, 89, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Spakowicz, D.; Burkart, J.; Patel, S.; Husain, M.; He, K.; Bertino, E.M.; Shields, P.G.; Carbone, D.P.; Verschraegen, C.F.; et al. Change in neutrophil to lymphocyte ratio during immunotherapy treatment is a non-linear predictor of patient outcomes in advanced cancers. J. Cancer Res. Clin. Oncol. 2019, 145, 2541–2546. [Google Scholar] [CrossRef] [Green Version]
- Valero, C.; Lee, M.; Hoen, D.; Weiss, K.; Kelly, D.W.; Adusumilli, P.S.; Paik, P.K.; Plitas, G.; Ladanyi, M.; Postow, M.A.; et al. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat. Commun. 2021, 12, 729. [Google Scholar] [CrossRef]
- Bryant, A.K.; Sankar, K.; Strohbehn, G.W.; Zhao, L.; Elliott, D.; Qin, A.; Yentz, S.; Ramnath, N.; Green, M.D. Prognostic and predictive value of neutrophil-to-lymphocyte ratio with adjuvant immunotherapy in stage III non-small-cell lung cancer. Lung Cancer 2022, 163, 35–41. [Google Scholar] [CrossRef]
- Grunvald, M.W.; Jacobson, R.A.; Kuzel, T.M.; Pappas, S.G.; Masood, A. Current Status of Circulating Tumor DNA Liquid Biopsy in Pancreatic Cancer. Int. J. Mol. Sci. 2020, 21, 7651. [Google Scholar] [CrossRef]
- Lo, Y.M. Fetal DNA in maternal plasma: Biology and diagnostic applications. Clin. Chem. 2000, 46, 1903–1906. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Mandel, P.; Metais, P. Nuclear Acids In Human Blood Plasma. C R Seances Soc. Biol. Fil. 1948, 142, 241–243. [Google Scholar]
- Sorenson, G.D.; Pribish, D.M.; Valone, F.H.; Memoli, V.A.; Bzik, D.J.; Yao, S.L. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomark. Prev. 1994, 3, 67–71. [Google Scholar]
- Tan, E.M.; Schur, P.H.; Carr, R.I.; Kunkel, H.G. Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J. Clin. Investig. 1966, 45, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Vasioukhin, V.; Anker, P.; Maurice, P.; Lyautey, J.; Lederrey, C.; Stroun, M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br. J. Haematol. 1994, 86, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Volik, S.; Alcaide, M.; Morin, R.D.; Collins, C. Cell-free DNA (cfDNA): Clinical Significance and Utility in Cancer Shaped by Emerging Technologies. Mol. Cancer Res. 2016, 14, 898–908. [Google Scholar] [CrossRef] [Green Version]
- Reddy, T.; Esmail, A.; Chang, J.C.; Ghobrial, R.M.; Abdelrahim, M. Utility of Cell-Free DNA Detection in Transplant Oncology. Cancers 2022, 14, 743. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, P.A.; Wind, T.T.; van Kruchten, M.; Schuuring, E.; Hospers, G.A.P.; van der Wekken, A.J.; de Groot, D.J.; Schröder, C.P.; Fehrmann, R.S.N.; Reyners, A.K.L. Clinical utility of circulating tumor DNA as a response and follow-up marker in cancer therapy. Cancer Metastasis. Rev. 2020, 39, 999–1013. [Google Scholar] [CrossRef]
- Chaudhuri, A.A.; Chabon, J.J.; Lovejoy, A.F.; Newman, A.M.; Stehr, H.; Azad, T.D.; Khodadoust, M.S.; Esfahani, M.S.; Liu, C.L.; Zhou, L.; et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov. 2017, 7, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, D.; Liu, W.; Chen, C.; Zhang, T.; Ma, Y.; Cui, L.; Gu, Y.; Bei, T.; Zhao, X.; Zhang, B.; et al. Circulating tumor DNA predicts neoadjuvant immunotherapy efficacy and recurrence-free survival in surgical non-small cell lung cancer patients. Transl. Lung Cancer Res. 2022, 11, 263–276. [Google Scholar] [CrossRef]
- Abbosh, C.; Frankell, A.M.; Garnett, A.T.; Harrison, T.; Weichert, M.; Licon, A.; Veeriah, S.; Daber, B.; Moreau, M.; Chesh, A.S.; et al. Abstract CT023: Phylogenetic tracking and minimal residual disease detection using ctDNA in early-stage NSCLC: A lung TRACERx study. Cancer Res. 2020, 80, CT023. [Google Scholar] [CrossRef]
- Qiu, B.; Guo, W.; Zhang, F.; Lv, F.; Ji, Y.; Peng, Y.; Chen, X.; Bao, H.; Xu, Y.; Shao, Y.; et al. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat. Commun. 2021, 12, 6770. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.; Birkenkamp-Demtröder, K.; Sethi, H.; Shchegrova, S.; Salari, R.; Nordentoft, I.; Wu, H.T.; Knudsen, M.; Lamy, P.; Lindskrog, S.V.; et al. Early Detection of Metastatic Relapse and Monitoring of Therapeutic Efficacy by Ultra-Deep Sequencing of Plasma Cell-Free DNA in Patients With Urothelial Bladder Carcinoma. J. Clin. Oncol. 2019, 37, 1547–1557. [Google Scholar] [CrossRef]
- Tan, L.; Sandhu, S.; Lee, R.J.; Li, J.; Callahan, J.; Ftouni, S.; Dhomen, N.; Middlehurst, P.; Wallace, A.; Raleigh, J.; et al. Prediction and monitoring of relapse in stage III melanoma using circulating tumor DNA. Ann. Oncol. 2019, 30, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, Y.; Lam, V.K.; Shi, Y.; Guan, Y.; Zhang, Y.; Ji, L.; Chen, Y.; Zhao, Y.; Qian, F.; et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis. 2020, 11, 346. [Google Scholar] [CrossRef]
- Garcia-Murillas, I.; Schiavon, G.; Weigelt, B.; Ng, C.; Hrebien, S.; Cutts, R.J.; Cheang, M.; Osin, P.; Nerurkar, A.; Kozarewa, I.; et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 2015, 7, 302ra133. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cohen, J.D.; Lahouel, K.; Lo, S.N.; Wang, Y.; Kosmider, S.; Wong, R.; Shapiro, J.; Lee, M.; Harris, S.; et al. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer. N. Engl. J. Med. 2022, 386, 2261–2272. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.A.; Cho, B.C.; Reinmuth, N.; Lee, K.H.; Luft, A.; Ahn, M.J.; van den Heuvel, M.M.; Cobo, M.; Vicente, D.; Smolin, A.; et al. Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-line Treatment of Metastatic Non-Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 661–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Feng, J.; Weng, Y.; Xu, Z.; Jin, Y.; Wang, P.; Cui, X.; Ruan, P.; Luo, R.; Li, N.; et al. The Prognostic Value of ctDNA and bTMB on Immune Checkpoint Inhibitors in Human Cancer. Front. Oncol. 2021, 11, 706910. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, J.; Wang, G.; He, X.; Mi, Y.; Cao, Y.; Yu, X. Predictive Efficacy of Blood-Based Tumor Mutation Burden Assay for Immune Checkpoint Inhibitors Therapy in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 795933. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Wang, Z.-J.; Zhang, K.; Li, B.; Cai, Y.-R.; Wen, F.-C.; Zhang, D.; Bai, Y.-Z.; Zhang, X.-Y.; Wang, S.-Y.; et al. ctDNA-adjusted bTMB as a predictive biomarker for patients with NSCLC treated with PD-(L)1 inhibitors. BMC Med. 2022, 20, 170. [Google Scholar] [CrossRef] [PubMed]
- Esmail, A.; Guan, J.; Xu, J.; Al-Rawi, H.; Parks, B.; Saadi, N.A.; Khan, T.; Madoux, L.; Taha, M.; Abdelrahim, M. Prognostic value of molecular response via ctDNA measurement in predicating response of systemic therapy in patients with advanced solid cancer. J. Clin. Oncol. 2022, 40, e13001. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Xu, J.; Katz, T.A.; Sharma, S.; Kalashnikova, E.; Malhotra, M.; Olshan, P.; Billings, P.R.; Aleshin, A. Early Relapse Detection and Monitoring Disease Status in Patients with Early-stage Pancreatic Adenocarcinoma using Circulating Tumor DNA. J. Surg. Res. 2021, 4, 602–615. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Saharia, A.; McMillan, R.; He, A.R.; Starr, J.S.; Dhani, H.; Aushev, V.N.; Malashevich, A.K.; Rattigan, N.H.; et al. Feasibility of disease recurrence monitoring in liver post-transplantation for patients with hepatocellular carcinoma via personalized and tumor-informed ctDNA test. J. Clin. Oncol. 2022, 40, e16123. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Saharia, A.; He, A.; Dhani, H.; Aushev, V.; Jurdi, A.; Starr, J.; Gauthier, P. P-165 The feasibility of tumor recurrence detection in liver post-transplantation for patients with hepatocellular carcinoma via personalized, tumor-informed ctDNA testing. Ann. Oncol. 2022, 33, S308–S309. [Google Scholar] [CrossRef]
- Livingstone, A.; Dempsey, K.; Stockler, M.R.; Howard, K.; Long, G.V.; Carlino, M.S.; Menzies, A.M.; Morton, R.L. Adjuvant immunotherapy recommendations for stage III melanoma: Physician and nurse interviews. BMC Cancer 2021, 21, 1014. [Google Scholar] [CrossRef]
- Thomas, D.; Bello, D.M. Adjuvant immunotherapy for melanoma. J. Surg. Oncol. 2021, 123, 789–797. [Google Scholar] [CrossRef]
- Eggermont, A.M.; Chiarion-Sileni, V.; Grob, J.J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2015, 16, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Chiarion-Sileni, V.; Grob, J.J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; et al. Adjuvant ipilimumab versus placebo after complete resection of stage III melanoma: Long-term follow-up results of the European Organisation for Research and Treatment of Cancer 18071 double-blind phase 3 randomised trial. Eur. J. Cancer 2019, 119, 1–10. [Google Scholar] [CrossRef]
- Tarhini, A.A.; Lee, S.J.; Hodi, F.S.; Rao, U.N.M.; Cohen, G.I.; Hamid, O.; Hutchins, L.F.; Sosman, J.A.; Kluger, H.M.; Eroglu, Z.; et al. Phase III Study of Adjuvant Ipilimumab (3 or 10 mg/kg) Versus High-Dose Interferon Alfa-2b for Resected High-Risk Melanoma: North American Intergroup E1609. J. Clin. Oncol. 2020, 38, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017, 377, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Del Vecchio, M.; Mandalá, M.; Gogas, H.; Arance, A.M.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.J.; Chiarion-Sileni, V.; et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB-C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2020, 21, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Korn, E.L.; Freidlin, B.; Abrams, J.S. Overall survival as the outcome for randomized clinical trials with effective subsequent therapies. J. Clin. Oncol. 2011, 29, 2439–2442. [Google Scholar] [CrossRef] [Green Version]
- Betof Warner, A.; Palmer, J.S.; Shoushtari, A.N.; Goldman, D.A.; Panageas, K.S.; Hayes, S.A.; Bajwa, R.; Momtaz, P.; Callahan, M.K.; Wolchok, J.D.; et al. Long-Term Outcomes and Responses to Retreatment in Patients With Melanoma Treated With PD-1 Blockade. J. Clin. Oncol. 2020, 38, 1655–1663. [Google Scholar] [CrossRef]
- Weber, J.S.; Ascierto, P.A.; Middleton, M.R.; Hennicken, D.; Zoffoli, R.; Pieters, A.; Amadi, A.; Kupas, K.; Kotapati, S.; Moshyk, A.; et al. Indirect treatment comparison of nivolumab versus placebo as adjuvant treatment for resected melanoma. Eur. J. Cancer 2021, 158, 225–233. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, L.; Livingstone, E.; Hassel, J.C.; Fluck, M.; Eigentler, T.; Loquai, C.; Haferkamp, S.; Gutzmer, R.; Meier, F.; Mohr, P.; et al. Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020, 395, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, E.; Zimmer, L.; Hassel, J.C.; Fluck, M.; Eigentler, T.K.; Loquai, C.; Haferkamp, S.; Gutzmer, R.; Meier, F.; Mohr, P.; et al. Adjuvant nivolumab plus ipilimumab or nivolumab alone versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): Final results of a randomised, double-blind, phase 2 trial. Lancet 2022, 400, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Schadendorf, D.; Del Vecchio, M.; Larkin, J.; Atkinson, V.; Schenker, M.; Pigozzo, J.; Gogas, H.; Dalle, S.; Meyer, N.; et al. Adjuvant Therapy of Nivolumab Combined With Ipilimumab Versus Nivolumab Alone in Patients With Resected Stage IIIB-D or Stage IV Melanoma (CheckMate 915). J. Clin. Oncol. 2023, 41, 517–527. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S.; et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): Distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S.; et al. Longer Follow-Up Confirms Recurrence-Free Survival Benefit of Adjuvant Pembrolizumab in High-Risk Stage III Melanoma: Updated Results From the EORTC 1325-MG/KEYNOTE-054 Trial. J. Clin. Oncol. 2020, 38, 3925–3936. [Google Scholar] [CrossRef]
- Grossmann, K.F.; Othus, M.; Patel, S.P.; Tarhini, A.A.; Sondak, V.K.; Petrella, T.M.; Truong, T.-G.; Khushalani, N.I.; Cohen, J.V.; Buchbinder, E.I.; et al. Final analysis of overall survival (OS) and relapse-free-survival (RFS) in the intergroup S1404 phase III randomized trial comparing either high-dose interferon (HDI) or ipilimumab to pembrolizumab in patients with high-risk resected melanoma. J. Clin. Oncol. 2021, 39, 9501. [Google Scholar] [CrossRef]
- Blank, C.U.; Rozeman, E.A.; Fanchi, L.F.; Sikorska, K.; van de Wiel, B.; Kvistborg, P.; Krijgsman, O.; van den Braber, M.; Philips, D.; Broeks, A.; et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 2018, 24, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Othus, M.; Prieto, V.; Lowe, M.; Buchbinder, E.; Chen, Y.M.; Hyngstrom, J.; Lao, C.D.; Truong, T.-G.; Chandra, S.; et al. LBA6—Neoadjvuant versus Adjuvant Pembrolizumab for Resected Stage III–IV Melanoma (SWOG S1801). Available online: https://oncologypro.esmo.org/meeting-resources/esmo-congress/neoadjvuant-versus-adjuvant-pembrolizumab-for-resected-stage-iii-iv-melanoma-swog-s1801 (accessed on 19 September 2022).
- Lucas, M.W.; Lijnsvelt, J.; Pulleman, S.; Scolyer, R.A.; Menzies, A.M.; Van Akkooi, A.C.J.; van Houdt, W.J.; Shannon, K.F.; Pennington, T.; Suijkerbuijk, K.; et al. The NADINA trial: A multicenter, randomised, phase 3 trial comparing the efficacy of neoadjuvant ipilimumab plus nivolumab with standard adjuvant nivolumab in macroscopic resectable stage III melanoma. J. Clin. Oncol. 2022, 40, TPS9605. [Google Scholar] [CrossRef]
- Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; et al. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. N. Engl. J. Med. 2017, 377, 1813–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dima, D.; Lopetegui-Lia, N.; Ogbue, O.; Osantowski, B.; Ahmed, R.; Basali, D.; Chamseddine, F.; Eicher, D.M.; Song, J.M.; Gastman, B.; et al. Immunotherapy versus targeted therapy in the adjuvant setting for resected stage III melanoma: A single institution study. J. Clin. Oncol. 2022, 40, e21578. [Google Scholar] [CrossRef]
- Taylor, A.M.; Galea, C.; Lo, S.N.; Dimitriou, F.; Jacques, S.; Allayous, C.; Yeoh, H.-L.; Ressler, J.M.; Kähler, K.C.; Festino, L.; et al. Efficacy and safety of “second adjuvant” therapy with BRAF/MEK inhibitors after resection of recurrent melanoma following adjuvant PD-1–based immunotherapy. J. Clin. Oncol. 2022, 40, 9575. [Google Scholar] [CrossRef]
- Yushak, M.; Mehnert, J.; Luke, J.; Poklepovic, A. Approaches to High-Risk Resected Stage II and III Melanoma. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, e207–e211. [Google Scholar] [CrossRef] [PubMed]
- Luke, J.J.; Rutkowski, P.; Queirolo, P.; Del Vecchio, M.; Mackiewicz, J.; Chiarion-Sileni, V.; de la Cruz Merino, L.; Khattak, M.A.; Schadendorf, D.; Long, G.V.; et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): A randomised, double-blind, phase 3 trial. Lancet 2022, 399, 1718–1729. [Google Scholar] [CrossRef]
- Long, G.V.; Luke, J.J.; Khattak, M.A.; de la Cruz Merino, L.; Del Vecchio, M.; Rutkowski, P.; Spagnolo, F.; Mackiewicz, J.; Chiarion-Sileni, V.; Kirkwood, J.M.; et al. Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma (KEYNOTE-716): Distant metastasis-free survival results of a multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Khattak, M.A.; Luke, J.J.; Long, G.V.; Ascierto, P.A.; Rutkowski, P.; Schadendorf, D.; Robert, C.; Grob, J.J.; de la Cruz Merino, L.; Del Vecchio, M.; et al. Adjuvant pembrolizumab versus placebo in resected high-risk stage II melanoma: Health-related quality of life from the randomized phase 3 KEYNOTE-716 study. Eur. J. Cancer 2022, 176, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Hussain, M.; Gschwend, J.E.; Albers, P.; Oudard, S.; Castellano, D.; Daneshmand, S.; Nishiyama, H.; Majchrowicz, M.; Degaonkar, V.; et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H. PD10-01 disease-free survival with longer follow-up from the checkmate 274 trial of adjuvant nivolumab in patients after surgery for high-risk muscle-invasive urothelial carcinoma. J. Urol. 2022, 207, e183. [Google Scholar] [CrossRef]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 2102–2114. [Google Scholar] [CrossRef]
- Mollica, V.; Rizzo, A.; Massari, F. Adjuvant Nivolumab in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 385, 956–957. [Google Scholar] [CrossRef]
- Duan, J.; Cui, L.; Zhao, X.; Bai, H.; Cai, S.; Wang, G.; Zhao, Z.; Zhao, J.; Chen, S.; Song, J.; et al. Use of Immunotherapy With Programmed Cell Death 1 vs Programmed Cell Death Ligand 1 Inhibitors in Patients With Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Kassouf, W.; Crabb, S.J.; Duran, I.; Brundage, M.D.; Reaume, M.N.; Dragomir, A.; Wyatt, A.W.; Badillo, F.E.V.; Lukka, H.; Niazi, T.; et al. CCTG BL13 a randomized phase II trial assessing trimodality therapy with or without adjuvant durvalumab to treat patients with muscle-invasive bladder cancer (NCT03768570). J. Clin. Oncol. 2022, 40, TPS4619. [Google Scholar] [CrossRef]
- Nardone, V.; Pastina, P.; Giannicola, R.; Agostino, R.; Croci, S.; Tini, P.; Pirtoli, L.; Giordano, A.; Tagliaferri, P.; Correale, P. How to Increase the Efficacy of Immunotherapy in NSCLC and HNSCC: Role of Radiation Therapy, Chemotherapy, and Other Strategies. Front. Immunol. 2018, 9, 2941. [Google Scholar] [CrossRef] [PubMed]
- Ukleja, J.; Kusaka, E.; Miyamoto, D.T. Immunotherapy Combined With Radiation Therapy for Genitourinary Malignancies. Front. Oncol. 2021, 11, 663852. [Google Scholar] [CrossRef]
- Janowitz, T.; Welsh, S.J.; Zaki, K.; Mulders, P.; Eisen, T. Adjuvant therapy in renal cell carcinoma-past, present, and future. Semin. Oncol. 2013, 40, 482–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Ravaud, A.; Patard, J.-J.; Pandha, H.S.; George, D.J.; Patel, A.; Chang, Y.-H.; Escudier, B.; Donskov, F.; Magheli, A. Adjuvant sunitinib for high-risk renal cell carcinoma after nephrectomy: Subgroup analyses and updated overall survival results. Eur. Urol. 2018, 73, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, M.B.; Firwana, B.; Hilal, T.; Wang, Z.; Almader-Douglas, D.; Joseph, R.W.; Ho, T.H. Adjuvant Antiangiogenic Agents in Post-nephrectomy Renal Cell Carcinoma: A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2018, 1, 101–108. [Google Scholar] [CrossRef]
- Porta, C.; Chiellino, S. ASSURE vs. S-TRAC: Conflicting results of adjuvant treatments for kidney cancer in the era of targeted agents and genomics. Ann. Transl. Med. 2016, 4, S14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.-H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- Harshman, L.C.; Xie, W.; Moreira, R.B.; Bossé, D.; Ruiz Ares, G.J.; Sweeney, C.J.; Choueiri, T.K. Evaluation of disease-free survival as an intermediate metric of overall survival in patients with localized renal cell carcinoma: A trial-level meta-analysis. Cancer 2018, 124, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, R.R. The Promise of Adjuvant Immunotherapy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Uzzo, R.; Karam, J.A.; Master, V.A.; Donskov, F.; Suarez, C.; Albiges, L.; Rini, B.; Tomita, Y.; Kann, A.G.; et al. Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at increased risk of recurrence following resection (IMmotion010): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2022, 400, 1103–1116. [Google Scholar] [CrossRef]
- Motzer, R.J.; Russo, P.; Grünwald, V.; Tomita, Y.; Zurawski, B.; Parikh, O.; Buti, S.; Barthélémy, P.; Goh, J.C.; Ye, D.; et al. Adjuvant nivolumab plus ipilimumab versus placebo for localised renal cell carcinoma after nephrectomy (CheckMate 914): A double-blind, randomised, phase 3 trial. Lancet 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Allaf, M.; Kim, S.E.; Harshman, L.C.; McDermott, D.; Master, V.A.; Signoretti, S.; Cole, S.; Moon, H.; Adra, N.; Singer, E.A.; et al. LBA67—Phase III Randomized Study Comparing Perioperative Nivolumab (Nivo) versus Observation in Patients (Pts) with Renal Cell Carcinoma (RCC) Undergoing Nephrectomy (PROSPER, ECOG-ACRIN EA8143), a National Clinical Trials Network trial. Available online: https://oncologypro.esmo.org/meeting-resources/esmo-congress/phase-iii-randomized-study-comparing-perioperative-nivolumab-nivo-versus-observation-in-patients-pts-with-renal-cell-carcinoma-rcc-undergoing (accessed on 28 September 2022).
- Bex, A.; Russo, P.; Tomita, Y.; Grünwald, V.; Ramirez, L.-M.; McHenry, B.M.; Motzer, R.J. A phase III, randomized, placebo-controlled trial of nivolumab or nivolumab plus ipilimumab in patients with localized renal cell carcinoma at high-risk of relapse after radical or partial nephrectomy (CheckMate 914). J. Clin. Oncol. 2020, 38, TPS5099. [Google Scholar] [CrossRef]
- Oza, B.; Frangou, E.; Smith, B.; Bryant, H.; Kaplan, R.; Choodari-Oskooei, B.; Powles, T.; Stewart, G.D.; Albiges, L.; Bex, A.; et al. RAMPART: A phase III multi-arm multi-stage trial of adjuvant checkpoint inhibitors in patients with resected primary renal cell carcinoma (RCC) at high or intermediate risk of relapse. Contemp. Clin. Trials 2021, 108, 106482. [Google Scholar] [CrossRef] [PubMed]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arriagada, R.; Dunant, A.; Pignon, J.P.; Bergman, B.; Chabowski, M.; Grunenwald, D.; Kozlowski, M.; Le Péchoux, C.; Pirker, R.; Pinel, M.I.; et al. Long-term results of the international adjuvant lung cancer trial evaluating adjuvant Cisplatin-based chemotherapy in resected lung cancer. J. Clin. Oncol. 2010, 28, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Wakelee, H.A.; Dahlberg, S.E.; Keller, S.M.; Tester, W.J.; Gandara, D.R.; Graziano, S.L.; Adjei, A.A.; Leighl, N.B.; Aisner, S.C.; Rothman, J.M. Adjuvant chemotherapy with or without bevacizumab in patients with resected non-small-cell lung cancer (E1505): An open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2017, 18, 1610–1623. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.-W.; Kato, T.; et al. Osimertinib in Resected EGFR-Mutated Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.A.; Naqash, A.R.; Puri, S.; Dienstmann, R. Is It Time to Implement Adjuvant Targeted Therapy in EGFR-Mutant Non-Small-Cell Lung Cancer? JCO Precis. Oncol. 2021, 5, 408–414. [Google Scholar] [CrossRef]
- Zhong, W.Z.; Wang, Q.; Mao, W.M.; Xu, S.T.; Wu, L.; Shen, Y.; Liu, Y.Y.; Chen, C.; Cheng, Y.; Xu, L.; et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): A randomised, open-label, phase 3 study. Lancet Oncol. 2018, 19, 139–148. [Google Scholar] [CrossRef]
- Shigematsu, H.; Lin, L.; Takahashi, T.; Nomura, M.; Suzuki, M.; Wistuba, I.I.; Fong, K.M.; Lee, H.; Toyooka, S.; Shimizu, N.; et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst. 2005, 97, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [Green Version]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021, 398, 1344–1357. [Google Scholar] [CrossRef]
- West, H.; Hu, X.; Burke, T.; Walker, M.; Wang, Y.; Samkari, A. 90P Disease-free survival (DFS) as a predictor of overall survival (OS) in completely resected early stage non-small cell lung cancer (NSCLC). Ann. Oncol. 2022, 33, S74–S75. [Google Scholar] [CrossRef]
- Felip, E.; Vallieres, E.; Zhou, C.; Wakelee, H.; Bondarenko, I.; Sakai, H.; Saito, H.; Ursol, G.; Kawaguchi, K.; Liu, Y. LBA9 IMpower010: Sites of relapse and subsequent therapy from a phase III study of atezolizumab vs best supportive care after adjuvant chemotherapy in stage IB-IIIA NSCLC. Ann. Oncol. 2021, 32, S1319. [Google Scholar] [CrossRef]
- O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef]
- US Food and Drug Administration. FDA Approves Pembrolizumab as Adjuvant Treatment for Non-Small Cell Lung Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-adjuvant-treatment-non-small-cell-lung-cancer#:~:text=On%20January%2026%2C%202023%2C%20the,full%20prescribing%20information%20for%20Keytruda (accessed on 15 February 2023).
- Chaft, J.E.; Dahlberg, S.E.; Khullar, O.V.; Edelman, M.J.; Simone, C.B.; Heymach, J.; Rudin, C.M.; Ramalingam, S.S. EA5142 adjuvant nivolumab in resected lung cancers (ANVIL). J. Clin. Oncol. 2018, 36, TPS8581. [Google Scholar] [CrossRef]
- Peters, S.; Spigel, D.; Ahn, M.; Tsuboi, M.; Chaft, J.; Harpole, D.; Goss, G.; Barlesi, F.; Abbosh, C.; Poole, L.; et al. P03.03 MERMAID-1: A Phase III Study of Adjuvant Durvalumab plus Chemotherapy in Resected NSCLC Patients with MRD+ Post-Surgery. J. Thorac. Oncol. 2021, 16, S258–S259. [Google Scholar] [CrossRef]
- Spigel, D.R.; Peters, S.A.E.; Ahn, M.-J.; Tsuboi, M.; Chaft, J.E.; Harpole, D.H.J.; Barlesi, F.; Abbosh, C.; Mann, H.; May, R.; et al. 93TiP MERMAID-2: Phase III study of durvalumab in patients with resected, stage II-III NSCLC who become MRD+ after curative-intent therapy. J. Thorac. Oncol. 2021, 16, S745–S746. [Google Scholar] [CrossRef]
- Bauml, J.M.; Mick, R.; Ciunci, C.; Aggarwal, C.; Davis, C.; Evans, T.; Deshpande, C.; Miller, L.; Patel, P.; Alley, E.; et al. Pembrolizumab After Completion of Locally Ablative Therapy for Oligometastatic Non–Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 1283. [Google Scholar] [CrossRef] [PubMed]
- Metro, G.; Signorelli, D. Immune checkpoints inhibitors rechallenge in non-small-cell lung cancer: Different scenarios with different solutions? Lung Cancer Manag. 2020, 8, Lmt18. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.; Kennedy, E.B.; Catenacci, D.V.; Deighton, D.C.; Goodman, K.A.; Malhotra, N.K.; Willett, C.; Stiles, B.; Sharma, P.; Tang, L.; et al. Treatment of Locally Advanced Esophageal Carcinoma: ASCO Guideline. J. Clin. Oncol. 2020, 38, 2677–2694. [Google Scholar] [CrossRef]
- Blum Murphy, M.; Xiao, L.; Patel, V.R.; Maru, D.M.; Correa, A.M.; Amlashi, F.G.; Liao, Z.; Komaki, R.; Lin, S.H.; Skinner, H.D.; et al. Pathological complete response in patients with esophageal cancer after the trimodality approach: The association with baseline variables and survival-The University of Texas MD Anderson Cancer Center experience. Cancer 2017, 123, 4106–4113. [Google Scholar] [CrossRef] [PubMed]
- Ilson, D.H. Adjuvant Nivolumab in Esophageal Cancer—A New Standard of Care. N. Engl. J. Med. 2021, 384, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; Van Cutsem, E.; Fuchs, C.S.; Ohtsu, A.; Tabernero, J.; Ilson, D.H.; Hyung, W.J.; Strong, V.E.; Goetze, T.O.; Yoshikawa, T.; et al. KEYNOTE-585: Phase III study of perioperative chemotherapy with or without pembrolizumab for gastric cancer. Future Oncol. 2019, 15, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Adjuvant Immunotherapy after Curative Treatment for Hepatocellular Carcinoma. Liver Cancer 2021, 10, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Takayama, T.; Mazzaferro, V.; Chau, G.Y.; Yang, J.; Kudo, M.; Cai, J.; Poon, R.T.; Han, K.H.; Tak, W.Y.; et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015, 16, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Mizukoshi, E.; Yamashita, T.; Arai, K.; Sunagozaka, H.; Ueda, T.; Arihara, F.; Kagaya, T.; Yamashita, T.; Fushimi, K.; Kaneko, S. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 2013, 57, 1448–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, A.G.; Ulahannan, S.V.; Makorova-Rusher, O.; Rahma, O.; Wedemeyer, H.; Pratt, D.; Davis, J.L.; Hughes, M.S.; Heller, T.; ElGindi, M.; et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J. Hepatol. 2017, 66, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, M.; Ueshima, K.; Nakahira, S.; Nishida, N.; Ida, H.; Minami, Y.; Nakai, T.; Wada, H.; Kubo, S.; Ohkawa, K.; et al. Final results of adjuvant nivolumab for hepatocellular carcinoma (HCC) after surgical resection (SR) or radiofrequency ablation (RFA) (NIVOLVE): A phase 2 prospective multicenter single-arm trial and exploratory biomarker analysis. J. Clin. Oncol. 2022, 40, 416. [Google Scholar] [CrossRef]
- Jimenez Exposito, M.J.; Akce, M.; Alvarez, J.L.M.; Assenat, E.; Balart, L.A.; Baron, A.D.; Decaens, T.; Heurgue-Berlot, A.; Martin, A.O.; Paik, S.W.; et al. CA209-9DX: Phase III, randomized, double-blind study of adjuvant nivolumab vs placebo for patients with hepatocellular carcinoma (HCC) at high risk of recurrence after curative resection or ablation. Ann. Oncol. 2018, 29, ix65. [Google Scholar] [CrossRef]
- Vogel, A.; Zhu, A.X.; Cheng, A.L.; Yau, T.; Zhou, J.; Kim, E.; Malhotra, U.; Siegel, A.B.; Kudo, M. 1017TiP KEYNOTE-937 trial in progress: Adjuvant pembrolizumab in patients with hepatocellular carcinoma (HCC) and complete radiologic response after surgical resection or local ablation. Ann. Oncol. 2020, 31, S703. [Google Scholar] [CrossRef]
- Hack, S.P.; Zhu, A.X.; Wang, Y. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Front. Immunol. 2020, 11, 598877. [Google Scholar] [CrossRef]
- Knox, J.; Cheng, A.; Cleary, S.; Galle, P.; Kokudo, N.; Lencioni, R.; Park, J.; Zhou, J.; Mann, H.; Morgan, S.; et al. A phase 3 study of durvalumab with or without bevacizumab as adjuvant therapy in patients with hepatocellular carcinoma at high risk of recurrence after curative hepatic resection or ablation: EMERALD-2. Ann. Oncol. 2019, 30, iv59–iv60. [Google Scholar] [CrossRef]
- Hack, S.P.; Spahn, J.; Chen, M.; Cheng, A.-L.; Kaseb, A.; Kudo, M.; Lee, H.C.; Yopp, A.; Chow, P.; Qin, S. IMbrave 050: A Phase III trial of atezolizumab plus bevacizumab in high-risk hepatocellular carcinoma after curative resection or ablation. Future Oncol. 2020, 16, 975–989. [Google Scholar] [CrossRef] [PubMed]
- Sapisochin, G.; Hibi, T.; Toso, C.; Man, K.; Berenguer, M.; Heimbach, J.; Greten, T.F.; Pugh, T.J.; Dawson, L.A.; Mazzaferro, V. Transplant Oncology in Primary and Metastatic Liver Tumors: Principles, Evidence, and Opportunities. Ann. Surg. 2021, 273, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, M.; Esmail, A.; Abudayyeh, A.; Murakami, N.; Saharia, A.; McMillan, R.; Victor, D.; Kodali, S.; Shetty, A.; Nolte Fong, J.V.; et al. Transplant Oncology: An Evolving Field in Cancer Care. Cancers 2021, 13, 4911. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Al-Rawi, H.; Esmail, A.; Xu, J.; Umoru, G.; Ibnshamsah, F.; Abudayyeh, A.; Victor, D.; Saharia, A.; McMillan, R.; et al. Gemcitabine and Cisplatin as Neo-Adjuvant for Cholangiocarcinoma Patients Prior to Liver Transplantation: Case-Series. Curr. Oncol. 2022, 29, 3585–3594. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Saharia, A.; Abudayyeh, A.; Abdel-Wahab, N.; Diab, A.; Murakami, N.; Kaseb, A.O.; Chang, J.C.; Gaber, A.O. Utilization of Immunotherapy for the Treatment of Hepatocellular Carcinoma in the Peri-Transplant Setting: Transplant Oncology View. Cancers 2022, 14, 1760. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Saharia, A.; Kodali, S.; Victor, D.; Heyne, K.; Ghobrial, R. P-161 Trial in progress: Neoadjuvant combination therapy of lenvatinib plus transcatheter arterial chemoembolization (TACE) for transplant-eligible patients with large hepatocellular carcinoma. Ann. Oncol. 2022, 33, S307. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Saharia, A.; McMillan, R.; He, A.R.; Starr, J.; Dhani, H.; Aushev, V.; Malashevich, A.K.; Hook, N. Feasibility of personalized and tumor informed ctdna testing for recurrence monitoring in post-transplantation hepatocellular carcinoma. Transplantation 2022, 106, 161–162. [Google Scholar]
- Abdelrahim, M.; Esmail, A.; Umoru, G.; Westhart, K.; Abudayyeh, A.; Saharia, A.; Ghobrial, R.M. Immunotherapy as a Neoadjuvant Therapy for a Patient with Hepatocellular Carcinoma in the Pretransplant Setting: A Case Report. Curr. Oncol. 2022, 29, 4267–4273. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, M.; Esmail, A.; Xu, J.; Umoru, G.; Al-Rawi, H.; Saharia, A. P-168 Combination of gemcitabine plus cisplatin compared to non-gemcitabine and cisplatin regimens as neo-adjuvant treatment in liver transplant recipients with cholangiocarcinoma. Ann. Oncol. 2022, 33, S309–S310. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Xu, J.; Umoru, G.; Al-Rawi, H.; Saharia, A.; Abudayyeh, A.; Victor, D.; McMillan, R.; Kodali, S.; et al. Gemcitabine Plus Cisplatin Versus Non-Gemcitabine and Cisplatin Regimens as Neoadjuvant Treatment for Cholangiocarcinoma Patients Prior to Liver Transplantation: An Institution Experience. Front. Oncol. 2022, 12, 908687. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, M.; Okane, G.; Esmail, A.; Saharia, A.; Kodali, S.; Victor, D. P-162 Atezolizumab and bevacizumab pre-liver transplantation for patients with hepatocellular carcinoma beyond Milan criteria. Ann. Oncol. 2022, 33, S308. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Victor, D.; Esmail, A.; Kodali, S.; Graviss, E.A.; Nguyen, D.T.; Moore, L.W.; Saharia, A.; McMillan, R.; Fong, J.N. Transarterial Chemoembolization (TACE) plus sorafenib compared to TACE alone in transplant recipients with hepatocellular carcinoma: An institution experience. Cancers 2022, 14, 650. [Google Scholar] [CrossRef] [PubMed]
- Esmail, A.; Kodali, S.; Graviss, E.; Nguyen, D.; Moore, L.; Saharia, A.; Uosef, A.; Victor, D.; Abdelrahim, M. P-163 Tyrosine kinase inhibitors (TKIs) plus transarterial chemoembolization (TACE) compared to TACE alone as downstaging therapy in transplant recipients with hepatocellular carcinoma. Ann. Oncol. 2022, 33, S308. [Google Scholar] [CrossRef]
- Esmail, A.; Victor, D.; Kodali, S.; Graviss, E.A.; Nguyen, D.T.; Moore, L.W.; Saharia, A.; McMillan, R.; Fong, J.N.; Uosef, A. Combination of transarterial chemoembolization (TACE) and tyrosine kinase inhibitors (TKIs) compared to TACE alone as bridging therapy transplant recipients with hepatocellular carcinoma: An update. J. Clin. Oncol. 2022, 40, e16201. [Google Scholar] [CrossRef]
- Esmail, A.; Xu, J.; Umoru, G.; Al-Rawi, H.; Saharia, A.; Abdelrahim, M. P-169 Feasibility of gemcitabine plus cisplatin as neo-adjuvant in cholangiocarcinoma patients prior to liver transplantation. Ann. Oncol. 2022, 33, S310. [Google Scholar] [CrossRef]
- Cho, S.M.; Esmail, A.; Raza, A.; Dacha, S.; Abdelrahim, M. Timeline of FDA-Approved Targeted Therapy for Cholangiocarcinoma. Cancers 2022, 14, 2641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Esmail, A.; Mazzaferro, V.; Abdelrahim, M. Newest Therapies for Cholangiocarcinoma: An Updated Overview of Approved Treatments with Transplant Oncology Vision. Cancers 2022, 14, 5074. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Citterio, D.; Bhoori, S.; Bongini, M.; Miceli, R.; De Carlis, L.; Colledan, M.; Salizzoni, M.; Romagnoli, R.; Antonelli, B.; et al. Liver transplantation in hepatocellular carcinoma after tumour downstaging (XXL): A randomised, controlled, phase 2b/3 trial. Lancet Oncol. 2020, 21, 947–956. [Google Scholar] [CrossRef]
- Ilyas, F.Z.; Beane, J.D.; Pawlik, T.M. The State of Immunotherapy in Hepatobiliary Cancers. Cells 2021, 10, 2096. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Dao, T.V.; Toni, E.N.D.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Sánchez-Fueyo, A.; Strom, T.B. Immunologic basis of graft rejection and tolerance following transplantation of liver or other solid organs. Gastroenterology 2011, 140, 51–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.D.; Huang, C.; Shen, Y.H.; Ji, Y.; Ge, N.L.; Qu, X.D.; Chen, L.; Shi, W.K.; Li, M.L.; Zhu, J.J.; et al. Downstaging and Resection of Initially Unresectable Hepatocellular Carcinoma with Tyrosine Kinase Inhibitor and Anti-PD-1 Antibody Combinations. Liver Cancer 2021, 10, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhu, X.D.; Shen, Y.H.; Wu, D.; Ji, Y.; Ge, N.L.; Chen, L.L.; Tan, C.J.; Zhou, J.; Fan, J.; et al. Organ specific responses to first-line lenvatinib plus anti-PD-1 antibodies in patients with unresectable hepatocellular carcinoma: A retrospective analysis. Biomark. Res. 2021, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Tabrizian, P.; Florman, S.S.; Schwartz, M.E. PD-1 inhibitor as bridge therapy to liver transplantation? Am. J. Transplant. 2021, 21, 1979–1980. [Google Scholar] [CrossRef]
- Aby, E.S.; Lake, J.R. Immune Checkpoint Inhibitor Therapy Before Liver Transplantation-Case and Literature Review. Transplant. Direct. 2022, 8, e1304. [Google Scholar] [CrossRef] [PubMed]
- Schwacha-Eipper, B.; Minciuna, I.; Banz, V.; Dufour, J.F. Immunotherapy as a Downstaging Therapy for Liver Transplantation. Hepatology 2020, 72, 1488–1490. [Google Scholar] [CrossRef]
- Yin, C.; Baba, T.; He, A.R.; Smith, C. Immune checkpoint inhibitors in liver transplant recipients—A review of current literature. Hepatoma Res. 2021, 7, 52. [Google Scholar] [CrossRef]
- Chen, Z.; Hong, X.; Wang, T.; Guo, Y.; Huang, C.; Li, M.; He, X.; Ju, W.; Chen, M. Prognosis after liver transplantation in patients treated with anti- PD-1 immunotherapy for advanced hepatocellular carcinoma: Case series. Ann. Palliat. Med. 2021, 10, 9354–9361. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Wanchoo, R.; Riella, L.V.; Uppal, N.N.; Lopez, C.A.; Nair, V.; Devoe, C.; Jhaveri, K.D. Immune Checkpoint Inhibitors in the Cancer Patient with An Organ Transplant. J. Onco-Nephrol. 2017, 1, 42–48. [Google Scholar] [CrossRef]
- Riella, L.V.; Watanabe, T.; Sage, P.T.; Yang, J.; Yeung, M.; Azzi, J.; Vanguri, V.; Chandraker, A.; Sharpe, A.H.; Sayegh, M.H.; et al. Essential role of PDL1 expression on nonhematopoietic donor cells in acquired tolerance to vascularized cardiac allografts. Am. J. Transplant. 2011, 11, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Fujino, M.; Jiang, G.; Kitazawa, Y.; Xie, L.; Azuma, M.; Yagita, H.; Nagao, S.; Sugioka, A.; Kurosawa, Y.; et al. PD-1/B7-H1 interaction contribute to the spontaneous acceptance of mouse liver allograft. Am. J. Transplant. 2010, 10, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Albin, M.J.; Yuan, X.; Yamaura, K.; Habicht, A.; Murayama, T.; Grimm, M.; Waaga, A.M.; Ueno, T.; Padera, R.F.; et al. PDL1 is required for peripheral transplantation tolerance and protection from chronic allograft rejection. J. Immunol. 2007, 179, 5204–5210. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zheng, X.X.; Kuhr, C.S.; Perkins, J.D. CTLA4 engagement is required for induction of murine liver transplant spontaneous tolerance. Am. J. Transplant. 2005, 5, 978–986. [Google Scholar] [CrossRef]
- Judge, T.A.; Wu, Z.; Zheng, X.G.; Sharpe, A.H.; Sayegh, M.H.; Turka, L.A. The role of CD80, CD86, and CTLA4 in alloimmune responses and the induction of long-term allograft survival. J. Immunol. 1999, 162, 1947–1951. [Google Scholar] [CrossRef]
- Vincenti, F.; Charpentier, B.; Vanrenterghem, Y.; Rostaing, L.; Bresnahan, B.; Darji, P.; Massari, P.; Mondragon-Ramirez, G.A.; Agarwal, M.; Di Russo, G.; et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am. J. Transplant. 2010, 10, 535–546. [Google Scholar] [CrossRef]
- Lee, B.T.; Horwich, B.H.; Chopra, S.; Ahearn, A.; Han, H.H. Checkpoint Inhibitor-Induced Rejection of a Liver Allograft: A Combination of Acute T Cell-Mediated and Antibody-Mediated Rejection. Liver Transpl. 2019, 25, 1845–1848. [Google Scholar] [CrossRef]
- Kumar, S. 2235 Nivolumab-Induced Severe Allograft Rejection in Recurrent Post-Transplant Hepatocellular Carcinoma. Off. J. Am. Coll. Gastroenterol. 2019, 114, S1251. [Google Scholar] [CrossRef]
- Gomez, P.; Naim, A.; Zucker, K.; Wong, M. A Case of Hepatocellular Carcinoma (HCC) Immunotherapy Inducing Liver Transplant Rejection: 2416. Off. J. Am. Coll. Gastroenterol. 2018, 113, S1347. [Google Scholar] [CrossRef]
- Anugwom, C.; Leventhal, T. Nivolumab-Induced Autoimmune-Like Cholestatic Hepatitis in a Liver Transplant Recipient. ACG Case Rep. J. 2020, 7, e00416. [Google Scholar] [CrossRef] [PubMed]
- Varkaris, A.; Lewis, D.W.; Nugent, F.W. Preserved Liver Transplant After PD-1 Pathway Inhibitor for Hepatocellular Carcinoma. Am. J. Gastroenterol. 2017, 112, 1895–1896. [Google Scholar] [CrossRef] [PubMed]
- Friend, B.D.; Venick, R.S.; McDiarmid, S.V.; Zhou, X.; Naini, B.; Wang, H.; Farmer, D.G.; Busuttil, R.W.; Federman, N. Fatal orthotopic liver transplant organ rejection induced by a checkpoint inhibitor in two patients with refractory, metastatic hepatocellular carcinoma. Pediatr. Blood Cancer 2017, 64. [Google Scholar] [CrossRef] [PubMed]
- Rammohan, A.; Reddy, M.S.; Farouk, M.; Vargese, J.; Rela, M. Pembrolizumab for metastatic hepatocellular carcinoma following live donor liver transplantation: The silver bullet? Hepatology 2018, 67, 1166–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amjad, W.; Kotiah, S.; Gupta, A.; Morris, M.; Liu, L.; Thuluvath, P.J. Successful Treatment of Disseminated Hepatocellular Carcinoma After Liver Transplantation With Nivolumab. J. Clin. Exp. Hepatol. 2020, 10, 185–187. [Google Scholar] [CrossRef] [PubMed]
- DeLeon, T.T.; Salomao, M.A.; Aqel, B.A.; Sonbol, M.B.; Yokoda, R.T.; Ali, A.H.; Moss, A.A.; Mathur, A.K.; Chascsa, D.M.; Rakela, J.; et al. Pilot evaluation of PD-1 inhibition in metastatic cancer patients with a history of liver transplantation: The Mayo Clinic experience. J. Gastrointest. Oncol. 2018, 9, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, D.; Weiler, S.; Mertens, J.C.; Reiner, C.S.; Vrugt, B.; Nageli, M.; Mangana, J.; Mullhaupt, B.; Jenni, F.; Misselwitz, B. Liver Allograft Failure After Nivolumab Treatment-A Case Report With Systematic Literature Research. Transplant. Direct. 2018, 4, e376. [Google Scholar] [CrossRef]
- De Toni, E.N.; Gerbes, A.L. Tapering of Immunosuppression and Sustained Treatment With Nivolumab in a Liver Transplant Recipient. Gastroenterology 2017, 152, 1631–1633. [Google Scholar] [CrossRef] [Green Version]
- Al Jarroudi, O.; Ulusakarya, A.; Almohamad, W.; Afqir, S.; Morere, J.F. Anti-Programmed Cell Death Protein 1 (PD-1) Immunotherapy for Metastatic Hepatocellular Carcinoma After Liver Transplantation: A Report of Three Cases. Cureus 2020, 12, e11150. [Google Scholar] [CrossRef] [PubMed]
- Kuo, J.C.; Lilly, L.B.; Hogg, D. Immune checkpoint inhibitor therapy in a liver transplant recipient with a rare subtype of melanoma: A case report and literature review. Melanoma Res. 2018, 28, 61–64. [Google Scholar] [CrossRef]
- Wang, G.; Tang, h.; Zhang, Y.; Li, H.; Yi, S.; Jiang, N.; Wang, G.; Zhang, J.; Zhang, Q.; Yang, Y. Programmed death receptor (PD)-1 monoclonal antibody-induced acute immune hepatitis in the treatment; of recurrent hepatocellular carcinoma after liver transplantation: A case report. Organ Transplant. 2016, 7, 44–47. [Google Scholar]
- Nasr, F.; AlGhoche, A.; Diab, S.; Janah, M.; Layal, M.; Ali, K.; El Karim, G. Pembrolizumab Monother-Apy in Relapsed Hepatocellular Carcinoma Post Living Donor Liver Transplantation and Sorafenib. Int. J. Oncol. Res. 2018, 1, 009. [Google Scholar]
- Pandey, A.; Cohen, D.J. Ipilumumab for hepatocellular cancer in a liver transplant recipient, with durable response, tolerance and without allograft rejection. Immunotherapy 2020, 12, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Au, K.P.; Chok, K.S.H. Immunotherapy after liver transplantation: Where are we now? World J. Gastrointest. Surg. 2021, 13, 1267–1278. [Google Scholar] [CrossRef]
- Schvartsman, G.; Perez, K.; Sood, G.; Katkhuda, R.; Tawbi, H. Immune Checkpoint Inhibitor Therapy in a Liver Transplant Recipient With Melanoma. Ann. Intern. Med. 2017, 167, 361–362. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, H.A.; Panella, T.J. Administration of ipilimumab to a liver transplant recipient with unresectable metastatic melanoma. J. Immunother. 2015, 38, 211. [Google Scholar] [CrossRef] [PubMed]
- Dueland, S.; Guren, T.K.; Boberg, K.M.; Reims, H.M.; Grzyb, K.; Aamdal, S.; Julsrud, L.; Line, P.D. Acute liver graft rejection after ipilimumab therapy. Ann. Oncol. 2017, 28, 2619–2620. [Google Scholar] [CrossRef] [PubMed]
- Tio, M.; Rai, R.; Ezeoke, O.M.; McQuade, J.L.; Zimmer, L.; Khoo, C.; Park, J.J.; Spain, L.; Turajlic, S.; Ardolino, L.; et al. Anti-PD-1/PD-L1 immunotherapy in patients with solid organ transplant, HIV or hepatitis B/C infection. Eur. J. Cancer 2018, 104, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Morales, R.E.; Shoushtari, A.N.; Walsh, M.M.; Grewal, P.; Lipson, E.J.; Carvajal, R.D. Safety and efficacy of ipilimumab to treat advanced melanoma in the setting of liver transplantation. J. Immunother. Cancer 2015, 3, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.A.; Esteghamat, N.; Kim, E.J.; Garcia, G.; Gong, J.; Fakih, M.G.; Bold, R.J.; Cho, M.T. PD-1 Blockade in a Liver Transplant Recipient With Microsatellite Unstable Metastatic Colorectal Cancer and Hepatic Impairment. J. Natl. Compr. Canc. Netw. 2019, 17, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Biondani, P.; De Martin, E.; Samuel, D. Safety of an anti-PD-1 immune checkpoint inhibitor in a liver transplant recipient. Ann. Oncol. 2018, 29, 286–287. [Google Scholar] [CrossRef] [PubMed]
- Ogino, S.; Nowak, J.A.; Hamada, T.; Milner, D.A., Jr.; Nishihara, R. Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. Annu. Rev. Pathol. 2019, 14, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Orillion, A.; Damayanti, N.P.; Shen, L.; Adelaiye-Ogala, R.; Affronti, H.; Elbanna, M.; Chintala, S.; Ciesielski, M.; Fontana, L.; Kao, C.; et al. Dietary Protein Restriction Reprograms Tumor-Associated Macrophages and Enhances Immunotherapy. Clin. Cancer Res. 2018, 24, 6383–6395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldati, L.; Di Renzo, L.; Jirillo, E.; Ascierto, P.A.; Marincola, F.M.; De Lorenzo, A. The influence of diet on anti-cancer immune responsiveness. J. Transl. Med. 2018, 16, 75. [Google Scholar] [CrossRef]
- Inamura, K.; Hamada, T.; Bullman, S.; Ugai, T.; Yachida, S.; Ogino, S. Cancer as microenvironmental, systemic and environmental diseases: Opportunity for transdisciplinary microbiomics science. Gut 2022, 71, 2107. [Google Scholar] [CrossRef]
- Vétizou, M.; Pitt, J.M.; Daillère, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.; et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015, 350, 1079–1084. [Google Scholar] [CrossRef] [Green Version]
- Spencer, C.N.; McQuade, J.L.; Gopalakrishnan, V.; McCulloch, J.A.; Vetizou, M.; Cogdill, A.P.; Khan, M.A.W.; Zhang, X.; White, M.G.; Peterson, C.B.; et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 2021, 374, 1632–1640. [Google Scholar] [CrossRef]
- Jin, Y.; Wei, J.; Weng, Y.; Feng, J.; Xu, Z.; Wang, P.; Cui, X.; Chen, X.; Wang, J.; Peng, M. Adjuvant Therapy With PD1/PDL1 Inhibitors for Human Cancers: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 732814. [Google Scholar] [CrossRef]
- Patrinely, J.R., Jr.; Johnson, R.; Lawless, A.R.; Bhave, P.; Sawyers, A.; Dimitrova, M.; Yeoh, H.L.; Palmeri, M.; Ye, F.; Fan, R.; et al. Chronic Immune-Related Adverse Events Following Adjuvant Anti-PD-1 Therapy for High-risk Resected Melanoma. JAMA Oncol. 2021, 7, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Patrinely, J.R., Jr.; Ye, F. Association of Adjuvant Immunotherapy Duration With Chronic Immune-Related Adverse Events—Reply. JAMA Oncol. 2021, 7, 1574–1575. [Google Scholar] [CrossRef]
- Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef] [Green Version]
- Owen, C.N.; Bai, X.; Quah, T.; Lo, S.N.; Allayous, C.; Callaghan, S.; Martínez-Vila, C.; Wallace, R.; Bhave, P.; Reijers, I.L.M.; et al. Delayed immune-related adverse events with anti-PD-1-based immunotherapy in melanoma. Ann. Oncol. 2021, 32, 917–925. [Google Scholar] [CrossRef]
- Tong, J.; Kartolo, B.A.; Yeung, C.; Hopman, W.M.; Baetz, T.D. Long-term toxicities with immune checkpoint inhibitor (ICI) in melanoma patients. J. Clin. Oncol. 2022, 40, e21549. [Google Scholar] [CrossRef]
- Fan, Y.; Xie, W.; Huang, H.; Wang, Y.; Li, G.; Geng, Y.; Hao, Y.; Zhang, Z. Association of Immune Related Adverse Events With Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Cancers: A Systemic Review and Meta-analysis. Front. Oncol. 2021, 11, 633032. [Google Scholar] [CrossRef] [PubMed]
- Haratani, K.; Hayashi, H.; Chiba, Y.; Kudo, K.; Yonesaka, K.; Kato, R.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; Takeda, M.; et al. Association of Immune-Related Adverse Events With Nivolumab Efficacy in Non-Small-Cell Lung Cancer. JAMA Oncol. 2018, 4, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Tarhini, A.A.; Kang, N.; Lee, S.J.; Hodi, F.S.; Cohen, G.I.; Hamid, O.; Hutchins, L.F.; Sosman, J.A.; Kluger, H.M.; Eroglu, Z.; et al. Immune adverse events (irAEs) with adjuvant ipilimumab in melanoma, use of immunosuppressants and association with outcome: ECOG-ACRIN E1609 study analysis. J. Immunother. Cancer 2021, 9, e002535. [Google Scholar] [CrossRef] [PubMed]
- Conroy, M.; Naidoo, J. Immune-related adverse events and the balancing act of immunotherapy. Nat. Commun. 2022, 13, 392. [Google Scholar] [CrossRef]
- Livingstone, A.; Menzies, A.M.; Howard, K.; Stockler, M.R.; Morton, R.L. Preferences for adjuvant immunotherapy in patients with resected stage III melanoma: A discrete choice experiment. J. Clin. Oncol. 2022, 40, 9558. [Google Scholar] [CrossRef]
- Stav, I.; Gyawali, B.; Goldstein, D.A. Duration of adjuvant immunotherapy-biologic, clinical and economic considerations. Med. Oncol. 2018, 35, 160. [Google Scholar] [CrossRef] [PubMed]
Study | Population | Intervention | Duration | Primary Endpoint | OS | Biomarker Stratification |
---|---|---|---|---|---|---|
Cutaneous Melanoma | ||||||
EORTC 18071 | Resected stage IIIA (if N1a, at least 1 metastasis >1 mm), stage IIIB or stage IIIC melanoma, with no in-transit metastasis | IPI 10 mg/kg every 3 weeks for 4 doses then every 12 weeks (n = 475) vs. placebo (n = 476) | Up to 3 years | 7-year RFS: 39.2% vs. 30.9% (HR 0.75; 95% CI 0.63–0.88) | 7-year OS: 60% vs. 51.3% (HR 0.73; 95% CI 0.6–0.89) | None |
Intergroup trial E1609 | Resected cutaneous melanoma stage IIIB, IIIC, and IV M1a or M1b | IPI 3 mg/kg every 3 weeks for 4 doses then every 12 weeks (n = 523) or IPI 10 mg/kg every 3 weeks for 4 doses then every 12 weeks (n = 511) vs. HDI (n = 636) | IPI—60 HDI—52 | RFS events (median follow-up of 57.4 mo): IPI3 vs. HDI: HR 0.85 (99.4% CI, 0.66 to 1.09 IPI10 vs. HDI: HR, 0.84; 99.4% CI, 0.65 to 1.09 | OS events (co-primary endpoint): IPI3 vs. HDI: HR 0.78; 95.6% RCI, 0.61 to 0.99 IPI10 vs. HDI: HR, 0.88; 95.6% CI, 0.69 to 1.12 | None |
CheckMate 238 | Resected stage IIIB, IIIC, or IV (M1a, M1b, or M1c) melanoma | NIV 3 mg/kg every 2 weeks vs. IPI 10 mg/kg every 3 weeks for 4 doses then every 12 weeks (n = 453) vs. Placebo (n = 453) | Up to 1 year | 4-year RFS: 51.7% vs. 41.2% (HR, 0.71; 95% CI 0.60–0.86) | 4-year OS: 77.9% vs. 76.6% (HR 0.87; 95% CI 0.66–1.14) | Benefit of NIV regardless of PD-L1 status Benefit greater in patients with PD-L1 expression ≥ 5% (HR 0.5; 95% CI 0.32–0.78) |
IMMUNED | Stage IV melanoma with NED after surgery or radiotherapy | NIV 1 mg/kg + IPI 3 mg/kg every 3 weeks for 4 doses then NIV 4 mg/kg every 2 weeks (n = 56) or NIV 3 mg/kg every 2 weeks (n = 59) vs. placebo (n = 52) | Up to 1 year | Median RFS (median follow-up of 28.4 mo): IPI + NIV vs. placebo: NR vs. 6.4 mo (HR 0.23; 97.5% CI 0.12–0.45) NIV vs. placebo: 12.4 mo vs. 6.4 mo (HR 0.56; 97.5% CI 0.33–0.94) | NA | No major difference in outcome in patients with PD-L1 expression ≥ 5% |
EORTC 1325-MG/KEYNOTE-054 | Resected stage IIIA with at least one micrometastasis >1 mm, IIIB, and IIIC melanoma | PEM 200 mg every 3 weeks (n = 514) vs. placebo (n = 505) | Up to 1 year | 3.5-year RFS: 59.8% vs. 41.4% (HR 0.59; 95% CI 0.49–0.70) | NA | No major difference in outcome in patients with positive PD-L1 status |
S1404 trial | Resected stage IIIA (N2), IIIB, IIIC, and IV (M1a, b and c) melanoma | PEM 200 mg every 3 weeks (n = 648) vs. HDI (n = 190) or IPI 10 mg/kg every 3 weeks for 4 doses, then every 12 weeks (n = 465) | PEM and HDI -Up to 1 year IPI—Up to 3 years | 3.5-year RFS: HR 0.740 (99.618% CI, 0.571 to 0.958) | 3.5-year OS: HR 0.837 (96.3% CI, 0.622 to 1.297) | No major difference in outcome in patients with positive PD-L1 status |
KEYNOTE-716 | Resected stage IIB or IIC melanoma | PEM 200 mg every 3 weeks (n = 487) vs. placebo (n = 489) | Up to 1 year (17 cycles) | RFS events (median follow up of 20.9 mo): 15% vs. 24% (HR 0.61; 95% CI 0.45–0.82) | NA | None |
Urothelial Cancer | ||||||
CheckMate 274 | Resected muscle-invasive urothelial cancer (pT3, pT4a, or pN+ and ineligible for or declined adjuvant cisplatin-based chemotherapy or ypT2 to ypT4a or ypN+ after neoadjuvant cisplatin) | NIV 240 mg every 2 weeks (n = 353) vs. placebo (n = 356) | Up to 1 year | Median DFS (median follow-up of 24.4 mo for NIV and 22.5 mo for placebo): 22 mo vs. 10.9 mo (HR 0.70; 95% CI, 0.57 to 0.85) | NA | Benefit of NIV regardless of PD-L1 status Benefit greater in patients with PD-L1 expression ≥1% (HR, 0.53; 95% CI, 0.38 to 0.75) |
Renal Cell Carcinoma | ||||||
KEYNOTE-564 | Clear-cell renal-cell carcinoma who were at high risk for recurrence after nephrectomy, with or without metastasectomy | PEM 200 mg every 3 weeks (n = 496) vs. placebo (n = 498) | Up to 1 year | 24-months DFS: 77.3% vs. 68.1% (HR 0.68; 95% CI 0.53 to 0.87) | NA | Not assessed (~75% of the patient population had a PD-L1 CPS ≥ 1) |
Non-small Cell Lung Cancer (NSCLC) | ||||||
IMpower010 | Resected stage IB (tumors ≥4 cm) to IIIA NSCLC after 1–4 cycles of adjuvant platinum-based chemotherapy | ATEZO 1200 mg every 3 weeks (n = 507) vs. BSC (n = 498) | Up to 1 year (16 cycles) | DFS events in stage II–IIIA (median follow-up of 32.2 mo): 39% vs. 45% (HR 0.79; 95% CI 0.64–0.96) | NA | Benefit driven by patients with PD-L1 expression ≥ 1% (HR 0.66; 95% CI 0.50–0.88), and especially PD-L1 expression ≥ 50% (HR 0.43; 95% CI 0.27–0.68) |
PEARLS/KEYNOTE-091 | Resected stage IB (T ≥ 4 cm) to IIIA NSCLC followed by adjuvant chemotherapy | PEM 200 mg every 3 weeks (n = 590) vs. placebo (n = 589) | Up to 1 year (18 cycles) | Median DFS (median follow-up of 35.6 mo): 53.6 mo vs. 42.0 mo (HR 0.76; 95% CI 0.63–0.91) | NA | Benefit of PEM regardless of PD-L1 status |
Esophageal and Gastroesophageal Junction (GEJ) Cancer | ||||||
CheckMate 577 | Resected (R0) stage II or III esophageal or GEJ cancer who had received neoadjuvant chemoradiotherapy and had residual pathological disease | NIV 240 mg every 2 weeks for 16 weeks, followed by 480 mg every 4 weeks (n = 532) vs. placebo (n = 262) | Up to 1 year | Median DFS (median follow-up of 24.4 mo): 22.4 mo vs. 11 mo (HR 0.69; 96.4% CI, 0.56 to 0.86) | NA | Benefit of NIV regardless of PD-L1 status |
Author | Age | Indication for LT | Indication for ICI | Years from Transplant | ICI | Number of Cycles | Tumor PD-L1 Status | Response to Treatment | Graft PDL1 Status | Maintenance IS | Rejection or Immune Hepatitis | Time to Rejection | Treatment of Rejection | Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kumar et al., 2019 [174] | 64 | HCC | HCC | 2 | Nivolumab | 1 | NA | NA | NA | NA | TCMR | 1 week | High-dose steroids, ATG, PLEX (5 sessions) | Resolution of rejection |
Gomez et al., 2018 [175] | 61 | HCC | HCC | 2 | Nivolumab | 2 | NA | NA | NA | NA | TCMR | 2 months | Prolonged course of high-dose steroids | Improvement of rejection |
Anugwom et al., 2020 [176] | 62 | HCC | HCC | 5 | Nivolumab | NA | NA | NA | NA | Tacrolimus | Immune hepatitis | 2 months | High-dose steroids | No improvement; death |
Varkaris et al., 2017 [177] | 70 | HCC | HCC | 8 | Pembrolizumab | NA | NA | PD after 3 months | NA | Tacrolimus (reduced by 50%) | No | - | - | - |
Friend et al., 2017 [178] | 20 | HCC | HCC | ~3.5 | Nivolumab | 2 | NA | NA | + | Sirolimus | TCMR/AMR | 2.5 weeks | Pulse high-dose steroids, IVIG | No improvement; death |
Friend et al., 2017 [178] | 14 | HCC | HCC | 2 | Nivolumab | 1 | NA | NA | + | Tacrolimus | TCMR/AMR | 1 week | High-dose steroids | No improvement; death |
Rammohan et al., 2018 [179] | 57 | HCC | HCC | 4 | Pembrolizumab with sorafenib | NA | NA | Sustained CR (>10 months) | NA | mTOR inhibitor, tacrolimus (target level 2–3 ng/mL) | No | - | - | - |
Amjad et al., 2020 [180] | 62 | HCC | HCC | 1.3 | Nivolumab | NA | + (25%) | Sustained CR (>24 months) | NA | Tacrolimus, MMF | No | - | - | - |
DeLeon et al., 2018 [181] | 56.8 | HCC | HCC | 2.7 | Nivolumab | NA | 10% | PD after 1.2 months | NA | Tacrolimus | No | - | - | - |
DeLeon et al., 2018 [181] | 55.9 | HCC | HCC | 7.8 | Nivolumab | NA | NA | PD after 0.7 months | 0% | MMF, sirolimus | No | - | - | - |
DeLeon et al., 2018 [181] | 34.9 | HCC | HCC | 3.7 | Nivolumab | NA | 0% | PD after 1.3 months | 0% | Tacrolimus | No | - | - | - |
DeLeon et al., 2018 [181] | 63.6 | HCC | HCC | 1.2 | Nivolumab | NA | 0% | NA | NA (death due to multiorgan failure at 0.3 months) | Tacrolimus | No | - | - | - |
DeLeon et al., 2018 [181] | 68 | HCC | HCC | 1.1 | Nivolumab | NA | 0% | PD after 0.9 months | 30% | Sirolimus | TCMR | 0.9 months | NA | Death (due to PD) |
Gassmann et al., 2018 [182] | 53 | HCC | HCC | 3 | Nivolumab | 1 | NA | NA | NA | MMF, everolimus (trough = 3.3 μg/L) | TCMR | 2 weeks | High-dose steroids, tacrolimus (trough level 5 μg/L) | No improvement; death |
De Toni et al., 2017 [183] | 41 | HCC | HCC | 1 | Nivolumab | 15 | NA | PD after 28 weeks | NA | Tacrolimus (trough level <2.5 ng/mL) | No | - | - | - |
Al Jarroudi et al., 2020 [184] | 70 | HCC | HCC | 3 | Nivolumab | 4 | NA | NA | NA | Tacrolimus | Unknown etiology (immune hepatitis vs. graft rejection) | 2 months | High-dose steroids | NA |
Al Jarroudi et al., 2020 [184] | 62 | HCC | HCC | 2 | Nivolumab | 5 | NA | PD after 2.5 months | NA | Tacrolimus | No | - | - | - |
Al Jarroudi et al., 2020 [184] | 66 | HCC | HCC | 5 | Nivolumab | 6 | NA | PD after ~3 months | NA | Tacrolimus | No | - | - | - |
Kuo et al., 2018 [185] | 62 | HCC | Melanoma | 4.5 | Ipilimumab (4 cycles) then pembrolizumab | 4 | NA | Ipilimumab—PR and PFS of 3 months Pemnrolizumab—PR (>17 months) | NA | MMF, sirolimus | No | - | - | - |
Wang et al., 2017 [186] | 48 | HCC | HCC | 1 | Pembrolizumab | 1 | NA | NA | NA | Tacrolimus, sirolimus | Unknown etiology (immune hepatitis vs. graft rejection) | 5 days | NA | No improvement |
Nasr et al., 2018 [187] | 63 | HCC | HCC | 4.6 | Pembrolizumab | NA | NA | CR after 6 cycles sustained >24 months | NA | MMF, tacrolimus | No | - | - | - |
Pandey et al., 2020 [188] | 65 | HCC | HCC | 7.1 | Ipilimumab | NA | NA | Response (~2.4 years) | NA | Tacrolimus, everolimus | No | - | - | - |
AU et al., 2021 [189] | 62 | HCC | HCC | 2.2 | Nivolumab | 4 | NA | PD after 4 months | NA | Tacrolimus/everolimus | No | - | - | - |
AU et al., 2021 [189] | 53 | HCC | HCC | 6 | Nivolumab | 6 | NA | PD after 2.8 months | NA | Sirolimus | No | - | - | - |
AU et al., 2021 [189] | 77 | HCC | HCC | 32 | Pembrolizumav | 16 | NA | SD for 12.4 months | NA | Tacrolimus/everolimus | No | - | - | - |
Schvartzman et al., 2017 [190] | 35 | Biliary atresia | Melanoma | 20 | Pembrolizumab | 2 | NA | CR (>6 months) | NA | Tacrolimus | Immune hepatitis | 1 month | High-dose steroids, MMF | Improvement of hepatitis |
Ranganath et al., 2015 [191] | 59 | Cirrhosis secondary to α-1 antitrypsin deficiency | Melanoma | 8 | Ipilimumab | 4 | NA | PD after 5 months | NA | Tacrolimus | No | - | - | - |
Dueland et al., 2017 [192] | 67 | Liver metastases from melanoma | Melanoma | 1.5 | Ipilimumab | 1 | NA | PD | NA | Prednisone | TCMR | 22 days | High-dose steroids, MMF, sirolimus | Improvement of hepatitis |
Tio et al., 2017 [193] | 63 | NA | Melanoma | NA | Pembrolizumab | 1 | NA | NA | NA | Cyclosporine | Grade 5 acute rejection | NA | NA | Death within 18 days |
DeLeon et al., 2018 [181] | 54.5 | HCC | Melanoma | 8 | Pembrolizumab | NA | 5% | Sustained CR (21.1 months) | 0% | Everolimus, MMF | No | - | - | - |
DeLeon et al., 2018 [181] | 63.4 | Cholangiocarcinoma | Melanoma | 3.1 | Pembrolizumab | NA | NA | NA | 25% | MMF, prednisone | TCMR | 0.7 months | ATG, MMF, tacrolimus, prednisone | Improvement of rejection |
Morales et al., 2015 [194] | 67 | HCC | Melanoma | 8 | Ipilimumab | 4 | NA | Sustained PR (>10 months) | NA | Sirolimus | Immune hepatitis | 2 months | None | Improvement of hepatitis |
Chen et al., 2019 [195] | 61 | Alcoholic cirrhosis | CRC | 3.6 | Pembrolizumab | 15 | NA | Sustained PR (~10.5 months) | NA | Prednisone (10 mg/day with 1 mg/kg on infusion days), tacrolimus (target trough 3–5 ng/mL) | No | - | - | - |
Biondani et al., 2018 [196] | 54 | HCV cirrhosis | Metastatic Squamous NSCLC | 13 | Nivolumab | 3 | NA | PD | NA | Prednisone (60 mg/day tapered to 5 mg/day), tacrolimus, everolimus | No | - | - | - |
Lee et al., 2019 [173] | 73 | HCC | Cutaneous SCC | 12 | Nivolumab | 2 | NA | NA | NA | Everolimus | TCMR/AMR | 1 month | High-dose steroids, cyclosporine, sirolimus, MMF | Improvement in TCMR but not AMR |
Study | ICI | All irAE (%) | Grade 3–5 irAE (%) | Most Common Grade 3–5 irAE (%) | Median Time to Onset (Weeks) | Median Time to Resolution (Weeks) | Discontinuation Due to AE (%) |
---|---|---|---|---|---|---|---|
Melanoma | |||||||
EORTC 18071 | IPI 10 mg/kg | 90.4 | 43.3 | GI (16.1) Hepatic (10.6) Endocrine (8.5) | Skin—4.3 GI—6.3 Hepatic—8.7 Endocrine—10.8 Neurological—13.1 | Skin—5.5 GI—4 Hepatic—5 Endocrine—31 Neurological—8 | 52% |
Intergroup trial E1609 | IPI 10 mg/kg | 92.6 | 45.7 | NS | NS | NS | 35 |
IPI 3 mg/kg | 84.5 | 28.5 | NS | NS | NS | 54 | |
CheckMate 238 | IPI 10 mg/kg | NS | NS | NS | Skin—2.6 GI—4.4 Hepatic—8.1 Endocrine—8.9 Pulmonary—10 Renal—9.71 | Skin—9.3 GI—3.1 Hepatic—4.6 Endocrine—NR Pulmonary—3.71 Renal—52.7 | 41.7 |
NIV 3 mg/kg | NS | NS | NS | Skin—8.4 GI—7.7 Hepatic—12.3 Endocrine—8.2 Pulmonary—7.8 Renal—14.2 | Skin—22.1 GI—2.4 Hepatic—6.1 Endocrine—48.1 Pulmonary—15.1 Renal—10.5 | 7.7 | |
IMMUNED | IPI 3 mg/kg + NIV 1 mg/kg for 4 doses followed by NIV 3 mg/kg | 92.7 | 69.1 | Hepatic (47.3) GI (14.5) Endocrine (12.7) | Skin—3 GI—4 Hepatic—6 Pancreatic—8 Endocrine—4 Pulmonary—8.5 Renal—3.5 Neurological—5 | Skin—9.6 GI—1.4 Hepatic- 11 Pancreatic—5.4 Endocrine—4.9 Pulmonary—10.1 Renal—7.7 Neurological—6.7 | 62 |
NIV 3 mg/kg | 71.4 | 25 | Hepatic (8.9) Pancreatic (5.4) GI (3.6) Endocrine (3.6) | Skin—8 GI—3 Hepatic—10 Pancreatic—3.5 Endocrine—8.5 Pulmonary—23 Renal—26 Neurological—2 | Skin—63.9 GI—2 Hepatic—7 Pancreatic—3.5 Endocrine—17 Pulmonary—100.6 Renal—3 Neurological—1.4 | 13 | |
EORTC 1325-MG/KEYNOTE-054 | PEM 200 mg | 37.3 | 7.1 | GI (2) Endocrine (1.8) Hepatobiliary (1.4) | NS | NS | 13 |
KEYNOTE-716 | PEM 200 mg | 37.7 | 10.1 | Skin (2.7) Hepatic (1.9) GI (1.7) | NS | NS | 18 |
Urothelial Cancer | |||||||
CheckMate 274 | NIV 240 mg | NS | NS | Skin (1.7) Hepatic (1.7) GI (1.7) | NS | NS | 13.9 |
Renal Cell Carcinoma | |||||||
KEYNOTE-564 | PEM 200 mg | 34.6 | 8.6 | Endocrine (T1DM, 1.8; adrenal insufficiency, 1.2) Skin (1.6) GI (1) | NS | NS | 17.6 |
Non-Small Cell Lung Cancer | |||||||
IMpower010 | ATEZO 1200 mg | 52 | 8 | Hepatic (4) Skin (1) Pulmonary (<1) | NS | NS | 18 |
PEARLS/KEYNOTE-091 | PEM 200 mg | 39 | 7 | Skin (2) Pulmonary (<1) Hepatic (1) | NS | NS | 17 |
Esophageal and Gastroesophageal Junction (GEJ) Cancer | |||||||
CheckMate 577 | NIV 240 mg for 16 weeks then 480 mg | NS | NS | Hepatic (1) Skin (1) Pulmonary (1) | NS | NS | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abboud, K.; Umoru, G.; Esmail, A.; Abudayyeh, A.; Murakami, N.; Al-Shamsi, H.O.; Javle, M.; Saharia, A.; Connor, A.A.; Kodali, S.; et al. Immune Checkpoint Inhibitors for Solid Tumors in the Adjuvant Setting: Current Progress, Future Directions, and Role in Transplant Oncology. Cancers 2023, 15, 1433. https://doi.org/10.3390/cancers15051433
Abboud K, Umoru G, Esmail A, Abudayyeh A, Murakami N, Al-Shamsi HO, Javle M, Saharia A, Connor AA, Kodali S, et al. Immune Checkpoint Inhibitors for Solid Tumors in the Adjuvant Setting: Current Progress, Future Directions, and Role in Transplant Oncology. Cancers. 2023; 15(5):1433. https://doi.org/10.3390/cancers15051433
Chicago/Turabian StyleAbboud, Karen, Godsfavour Umoru, Abdullah Esmail, Ala Abudayyeh, Naoka Murakami, Humaid O. Al-Shamsi, Milind Javle, Ashish Saharia, Ashton A. Connor, Sudha Kodali, and et al. 2023. "Immune Checkpoint Inhibitors for Solid Tumors in the Adjuvant Setting: Current Progress, Future Directions, and Role in Transplant Oncology" Cancers 15, no. 5: 1433. https://doi.org/10.3390/cancers15051433
APA StyleAbboud, K., Umoru, G., Esmail, A., Abudayyeh, A., Murakami, N., Al-Shamsi, H. O., Javle, M., Saharia, A., Connor, A. A., Kodali, S., Ghobrial, R. M., & Abdelrahim, M. (2023). Immune Checkpoint Inhibitors for Solid Tumors in the Adjuvant Setting: Current Progress, Future Directions, and Role in Transplant Oncology. Cancers, 15(5), 1433. https://doi.org/10.3390/cancers15051433