Impact of Whole Genome Doubling on Detection of Circulating Tumor DNA in Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Patient Selection
2.2. Sample Collection
2.3. DNA Extraction
2.4. Whole Exome Sequencing
2.5. Detection of ctDNA
2.6. Deep Targeted cfDNA Sequencing
2.7. ddPCR ctDNA Analysis
2.8. WGD Estimation
2.9. Statistics
3. Results
3.1. Study Population
3.2. WGD and Tumor Size Correlate with ctDNA Detection in Stage-Stratified Analysis
3.3. WGD Increases ctDNA Detection in a Multivariable Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schøler, L.V.; Reinert, T.; Ørntoft, M.W.; Kassentoft, C.G.; Árnadóttir, S.S.; Vang, S.; Nordentoft, I.; Knudsen, M.; Lamy, P.; Andreasen, D.; et al. Clinical Implications of Monitoring Circulating Tumor DNA in Patients with Colorectal Cancer. Clin. Cancer Res. 2017, 23, 5437–5445. [Google Scholar] [CrossRef]
- Klein, E.A.; Richards, D.; Cohn, A.; Tummala, M.; Lapham, R.; Cosgrove, D.; Chung, G.; Clement, J.; Gao, J.; Hunkapiller, N.; et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 2021, 32, 1167–1177. [Google Scholar] [CrossRef]
- Øgaard, N.; Reinert, T.; Henriksen, T.V.; Frydendahl, A.; Aagaard, E.; Ørntoft, M.W.; Larsen, M.; Knudsen, A.R.; Mortensen, F.V.; Andersen, C.L. Tumour-agnostic circulating tumour DNA analysis for improved recurrence surveillance after resection of colorectal liver metastases: A prospective cohort study. Eur. J. Cancer 2022, 163, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Reinert, T.; Petersen, L.M.S.; Henriksen, T.V.; Larsen, M.; Rasmussen, M.H.; Johansen, A.F.B.; Øgaard, N.; Knudsen, M.; Nordentoft, I.; Vang, S.; et al. Circulating tumor DNA for prognosis assessment and postoperative management after curative-intent resection of colorectal liver metastases. Int. J. Cancer 2022, 150, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.; Øgaard, N.; Ørntoft, M.W.; Rasmussen, M.H.; Bramsen, J.B.; Kristensen, H.; Mouritzen, P.; Madsen, M.R.; Madsen, A.H.; Sunesen, K.G.; et al. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study. Clin. Epigenet. 2019, 11, 158. [Google Scholar] [CrossRef]
- Jensen, S.; Øgaard, N.; Nielsen, H.J.; Bramsen, J.B.; Andersen, C.L. Enhanced Performance of DNA Methylation Markers by Simultaneous Measurement of Sense and Antisense DNA Strands after Cytosine Conversion. Clin. Chem. 2020, 66, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Coombes, R.C.; Page, K.; Salari, R.; Hastings, R.K.; Armstrong, A.; Ahmed, S.; Ali, S.; Cleator, S.; Kenny, L.; Stebbing, J.; et al. Personalized Detection of Circulating Tumor DNA Antedates Breast Cancer Metastatic Recurrence. Clin. Cancer Res. 2019, 25, 4255–4263. [Google Scholar] [CrossRef]
- Henriksen, T.V.; Tarazona, N.; Frydendahl, A.; Reinert, T.; Gimeno-Valiente, F.; Carbonell-Asins, J.A.; Sharma, S.; Renner, D.; Hafez, D.; Roda, D.; et al. Circulating Tumor DNA in Stage III Colorectal Cancer, beyond Minimal Residual Disease Detection, toward Assessment of Adjuvant Therapy Efficacy and Clinical Behavior of Recurrences. Clin. Cancer Res. 2021, 28, 507–517. [Google Scholar] [CrossRef]
- Xia, L.; Mei, J.; Kang, R.; Deng, S.; Chen, Y.; Yang, Y.; Feng, G.; Deng, Y.; Gan, F.; Lin, Y.; et al. Perioperative ctDNA-Based Molecular Residual Disease Detection for Non-Small Cell Lung Cancer: A Prospective Multicenter Cohort Study (LUNGCA-1). Clin. Cancer Res. 2022, 28, 3308–3317. [Google Scholar] [CrossRef]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.S.; Park, C.H.; Lee, S.; Park, H.S. Clinicopathological parameters for circulating tumor DNA shedding in surgically resected non-small cell lung cancer with EGFR or KRAS mutation. PLoS ONE 2020, 15, e0230622. [Google Scholar] [CrossRef] [PubMed]
- Hsiehchen, D.; Espinoza, M.; Gerber, D.E.; Beg, M.S. Clinical and biological determinants of circulating tumor DNA detection and prognostication using a next-generation sequencing panel assay. Cancer Biol. Ther. 2021, 22, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Lam, V.K.; Zhang, J.; Wu, C.C.; Tran, H.T.; Li, L.; Diao, L.; Wang, J.; Rinsurongkawong, W.; Raymond, V.M.; Lanman, R.B.; et al. Genotype-Specific Differences in Circulating Tumor DNA Levels in Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 601–609. [Google Scholar] [CrossRef]
- Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E.; et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017, 9, eaan2415. [Google Scholar] [CrossRef]
- Sánchez-Herrero, E.; Serna-Blasco, R.; Robado de Lope, L.; González-Rumayor, V.; Romero, A.; Provencio, M. Circulating Tumor DNA as a Cancer Biomarker: An Overview of Biological Features and Factors That may Impact on ctDNA Analysis. Front. Oncol. 2022, 12, 943253. [Google Scholar] [CrossRef]
- Dewhurst, S.M.; McGranahan, N.; Burrell, R.A.; Rowan, A.J.; Grönroos, E.; Endesfelder, D.; Joshi, T.; Mouradov, D.; Gibbs, P.; Ward, R.L.; et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 2014, 4, 175–185. [Google Scholar] [CrossRef]
- Lens, S.M.A.; Medema, R.H. Cytokinesis defects and cancer. Nat. Rev. Cancer 2019, 19, 32–45. [Google Scholar] [CrossRef]
- Zack, T.I.; Schumacher, S.E.; Carter, S.L.; Cherniack, A.D.; Saksena, G.; Tabak, B.; Lawrence, M.S.; Zhsng, C.Z.; Wala, J.; Mermel, C.H.; et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 2013, 45, 1134–1140. [Google Scholar] [CrossRef]
- Bielski, C.M.; Zehir, A.; Penson, A.V.; Donoghue, M.T.A.; Chatila, W.; Armenia, J.; Chang, M.T.; Schram, A.M.; Jonsson, P.; Bandlamudi, C.; et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 2018, 50, 1189–1195. [Google Scholar] [CrossRef]
- Reinert, T.; Schøler, L.V.; Thomsen, R.; Tobiasen, H.; Vang, S.; Nordentoft, I.; Lamy, P.; Kannerup, A.S.; Mortensen, F.V.; Stribolt, K.; et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut 2016, 65, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Henriksen, T.V.; Drue, S.O.; Frydendahl, A.; Demuth, C.; Rasmussen, M.H.; Reinert, T.; Pedersen, J.S.; Andersen, C.L. Error Characterization and Statistical Modeling Improves Circulating Tumor DNA Detection by Droplet Digital PCR. Clin. Chem. 2022, 68, 657–667. [Google Scholar] [CrossRef]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef]
- Creasy, T.Z.W.; Kuziora, M.W.B.H. BubbleTree: An Intuitive Visualization to Elucidate Tumoral Aneuploidy and Clonality in Somatic Mosaicism Using Next Generation Sequencing Data; R Package Version 2.26.0; 2022. Available online: https://www.bioconductor.org/packages/release/bioc/html/BubbleTree.html (accessed on 15 December 2022).
- Oh, S.; Geistlinger, L.; Ramos, M.; Morgan, M.; Waldron, L.; Riester, M. Reliable Analysis of Clinical Tumor-Only Whole-Exome Sequencing Data. JCO Clin. Cancer Inform. 2020, 4, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Riester, M.; Singh, A.P.; Brannon, A.R.; Yu, K.; Campbell, C.D.; Chiang, D.Y.; Morrissey, M.P. PureCN: Copy number calling and SNV classification using targeted short read sequencing. Source Code Biol. Med. 2016, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, T.V.; Reinert, T.; Rasmussen, M.H.; Demuth, C.; Løve, U.S.; Madsen, A.H.; Gotschalck, K.A.; Iversen, L.H.; Andersen, C.L. Comparing single-target and multitarget approaches for postoperative circulating tumour DNA detection in stage II-III colorectal cancer patients. Mol. Oncol. 2022, 16, 3654–3665. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Program. Available online: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga (accessed on 15 December 2022).
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Smith, T.; Heger, A.; Sudbery, I. UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017, 27, 491–499. [Google Scholar] [CrossRef]
- Fennel, T.; Homer, N. Fgbio. Available online: https://github.com/fulcrumgenomics/fgbio (accessed on 15 December 2022).
- Miles, A. Pysamstats. Available online: https://github.com/alimanfoo/pysamstats (accessed on 15 December 2022).
- Gerstung, M.; Papaemmanuil, E.; Campbell, P.J. Subclonal variant calling with multiple samples and prior knowledge. Bioinformatics 2014, 30, 1198–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loo, P.; Nilsen, G.; Nordgard, S.H.; Vollan, H.K.; Børresen-Dale, A.L.; Kristensen, V.N.; Lingjærde, O.C. Analyzing cancer samples with SNP arrays. Methods Mol. Biol. 2012, 802, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, P.; Nordgard, S.H.; Lingjærde, O.C.; Russnes, H.G.; Rye, I.H.; Sun, W.; Weigman, V.J.; Marynen, P.; Zetterberg, A.; Naume, B.; et al. Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 16910–16915. [Google Scholar] [CrossRef]
- Lyskjaer, I.; Lindsay, D.; Tirabosco, R.; Steele, C.D.; Lombard, P.; Strobl, A.C.; Rocha, A.M.; Davies, C.; Ye, H.; Bekers, E.; et al. H3K27me3 expression and methylation status in histological variants of malignant peripheral nerve sheath tumours. J. Pathol. 2020, 252, 151–164. [Google Scholar] [CrossRef]
- CoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef]
- Parkinson, C.A.; Gale, D.; Piskorz, A.M.; Biggs, H.; Hodgkin, C.; Addley, H.; Freeman, S.; Moyle, P.; Sala, E.; Sayal, K.; et al. Exploratory Analysis of TP53 Mutations in Circulating Tumour DNA as Biomarkers of Treatment Response for Patients with Relapsed High-Grade Serous Ovarian Carcinoma: A Retrospective Study. PLoS Med. 2016, 13, e1002198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Full Cohort, N = 833 | Study Cohort, N = 701 |
---|---|---|
Age—Median (Range) | 71 (26, 93) | 71 (26, 92) |
Sex—n (%) | ||
Female | 377 (45%) | 318 (45%) |
Male | 456 (55%) | 383 (55%) |
UICC Stage 1—n (%) | ||
I | 168 (20%) | 141 (20%) |
II | 404 (48%) | 336 (48%) |
III | 261 (31%) | 224 (32%) |
Tumor Location—n (%) | ||
Right Colon 2 | 400 (48%) | 318 (45%) |
Left Colon | 258 (31%) | 223 (32%) |
Rectum | 175 (21%) | 160 (23%) |
Tumor Size (mm) 3—Median (Range) | 40 (5, 180) | 40 (5, 180) |
Unknown 4—n | 3 | 3 |
Tumor Histological Type | ||
Adenocarcinoma | 765 (92%) | 650 (93%) |
Mucinous Adenocarcinoma | 62 (7%) | 46 (6%) |
Medullary Carcinoma | 5 (<1%) | 4 (<1%) |
Signet Ring Cell Carcinoma | 1 (<1%) | 1 (<1%) |
Venous Invasion—n (%) | ||
Detected | 244 (30%) | 204 (30%) |
Not Detected | 577 (70%) | 486 (70%) |
Unknown 5 | 12 | 11 |
MMR Status 1—n (%) | ||
Proficient | 644 (79%) | 565 (82%) |
Deficient | 169 (21%) | 121 (18%) |
Unknown | 20 | 15 |
ctDNA Status 1—n (%) | ||
Detected | 527 (63%) | 444 (63%) |
Not Detected | 306 (37%) | 257 (37%) |
Overall | UICC Stage I | UICC Stage II | UICC Stage III | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | ctDNA+ 1 n = 444 | ctDNA− 1 n = 257 | OR 1 (95% CI 1) | p-Value | ctDNA+ n = 53 | ctDNA− n = 88 | OR (95% CI) | p-Value | ctDNA+ n = 226 | ctDNA− n = 110 | OR (95% CI) | p-Value | ctDNA+ n = 165 | ctDNA− n = 59 | OR (95% CI) | p-Value |
UICC Stage 1 —n (%) | ||||||||||||||||
I | 53 (12%) | 88 (34%) | — | |||||||||||||
II | 226 (51%) | 110 (43%) | 3.41 (2.27, 5.16) | <0.001 | ||||||||||||
III | 165 (37%) | 59 (23%) | 4.64 (2.97, 7.34) | <0.001 | ||||||||||||
Tumor Location—n (%) | ||||||||||||||||
Right Colon | 185 (58%) | 133 (42%) | — | 17 (32%) | 37 (42%) | — | 105 (46%) | 68 (62%) | — | 63 (38%) | 28 (47%) | — | ||||
Left Colon | 152 (68%) | 71 (32%) | 1.54 (1.08, 2.21) | 0.019 | 13 (25%) | 24 (27%) | 1.18 (0.48, 2.86) | 0.7 | 79 (35%) | 29 (26%) | 1.76 (1.05, 3.01) | 0.034 | 60 (36%) | 18 (31%) | 1.48 (0.75, 2.99) | 0.3 |
Rectum | 107 (67%) | 53 (33%) | 1.45 (0.98, 2.17) | 0.066 | 23 (43%) | 27 (31%) | 1.85 (0.84, 4.17) | 0.13 | 42 (19%) | 13 (12%) | 2.09 (1.07, 4.32) | 0.037 | 42 (25%) | 13 (22%) | 1.44 (0.68, 3.16) | 0.4 |
Tumor Size (mm)—Median (Range) | 48 (7, 180) | 30 (5, 110) | 1.05 (1.04, 1.06) | <0.001 | 30 (13, 95) | 20 (5, 55) | 1.06 (1.03, 1.09) | <0.001 | 52 (15, 180) | 35 (10, 110) | 1.05 (1.04, 1.07) | <0.001 | 45 (7, 170) | 33 (12, 90) | 1.04 (1.02, 1.06) | <0.001 |
Unknown—n (%) | 1 | 2 | 0 | 2 | 1 | 0 | ||||||||||
Tumor type—n (%) | ||||||||||||||||
Adenocarcinoma | 414 (93%) | 236 (92%) | — | 51 (96%) | 83 (94%) | — | 208 (92%) | 96 (87%) | — | 155 (94%) | 57 (97%) | — | ||||
Other 2 | 30 (7%) | 21 (8%) | 0.81 (0.46, 1.47) | 0.5 | 2 (4%) | 5 (6%) | 0.65 (0.09, 3.14) | 0.6 | 18 (8%) | 14 (13%) | 0.59 (0.28, 1.26) | 0.2 | 10 (6%) | 2 (3%) | 1.84 (0.47, 12.2) | 0.4 |
Venous invasion—n (%) | ||||||||||||||||
Not detected | 291 (67%) | 195 (77%) | — | 45 (85%) | 78 (91%) | — | 169 (77%) | 86 (79%) | — | 77 (47%) | 31 (53%) | — | ||||
Detected | 145 (33%) | 59 (23%) | 1.65 (1.16, 2.36) | 0.006 | 8 (15%) | 8 (9%) | 1.73 (0.60, 5.02) | 0.3 | 50 (23%) | 23 (21%) | 1.11 (0.64, 1.96) | 0.7 | 87 (53%) | 28 (47%) | 1.25 (0.69, 2.28) | 0.5 |
Unknown | 8 | 3 | 0 | 2 | 7 | 1 | 1 | 0 | ||||||||
MMR Status 1—n (%) | ||||||||||||||||
Proficient | 355 (63%) | 210 (37%) | — | 41 (77%) | 73 (85%) | — | 169 (76%) | 84 (79%) | — | 145 (90%) | 53 (93%) | — | ||||
Deficient | 81 (67%) | 40 (33%) | 1.20 (0.80, 1.83) | 0.4 | 12 (23%) | 13 (15%) | 1.64 (0.68, 3.96) | 0.3 | 52 (24%) | 23 (21%) | 1.12 (0.65, 1.99) | 0.7 | 17 (10%) | 4 (7%) | 1.55 (0.55, 5.58) | 0.4 |
Unknown | 8 | 7 | 0 | 2 | 5 | 3 | 3 | 2 | ||||||||
WGD 1—n (%) | ||||||||||||||||
No | 188 (42%) | 136 (53%) | 18 (34%) | 49 (56%) | — | 104 (46%) | 66 (60%) | — | 66 (40%) | 21 (36%) | — | |||||
Yes | 256 (58%) | 121 (47%) | 1.53 (1.12, 2.09) | 0.007 | 35 (66%) | 39 (44%) | 2.44 (1.22, 5.03) | 0.013 | 122 (54%) | 44 (40%) | 1.76 (1.11, 2.81) | 0.017 | 99 (60%) | 38 (64%) | 0.83 (0.44, 1.53) | 0.6 |
Characteristic | OR 1,2 | 95% CI 1 | p-Value |
---|---|---|---|
Whole Genome Doubling | |||
No | — | — | |
Yes | 1.74 | 1.20, 2.52 | 0.004 |
UICC Stage 1 | |||
I | — | — | |
II | 1.43 | 0.86, 2.37 | 0.2 |
III | 2.23 | 1.29, 3.87 | 0.004 |
Tumor Location | |||
Right Colon | — | — | |
Left Colon | 2.14 | 1.37, 3.36 | <0.001 |
Rectum | 2.51 | 1.54, 4.15 | <0.001 |
Tumor Type | |||
Adenocarcinoma | — | — | |
Other 3 | 0.71 | 0.35, 1.45 | 0.3 |
Venous Invasion | |||
Not Detected | — | — | |
Detected | 0.95 | 0.62, 1.46 | 0.8 |
MMR Status | |||
Proficient | — | — | |
Deficient | 1.64 | 0.94, 2.89 | 0.082 |
Tumor Size (mm) | 1.05 | 1.04, 1.06 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabel, J.; Henriksen, T.V.; Demuth, C.; Frydendahl, A.; Rasmussen, M.H.; Nors, J.; Birkbak, N.J.; Madsen, A.H.; Løve, U.S.; Andersen, P.V.; et al. Impact of Whole Genome Doubling on Detection of Circulating Tumor DNA in Colorectal Cancer. Cancers 2023, 15, 1136. https://doi.org/10.3390/cancers15041136
Kabel J, Henriksen TV, Demuth C, Frydendahl A, Rasmussen MH, Nors J, Birkbak NJ, Madsen AH, Løve US, Andersen PV, et al. Impact of Whole Genome Doubling on Detection of Circulating Tumor DNA in Colorectal Cancer. Cancers. 2023; 15(4):1136. https://doi.org/10.3390/cancers15041136
Chicago/Turabian StyleKabel, Jonas, Tenna Vesterman Henriksen, Christina Demuth, Amanda Frydendahl, Mads Heilskov Rasmussen, Jesper Nors, Nicolai J. Birkbak, Anders Husted Madsen, Uffe S. Løve, Per Vadgaard Andersen, and et al. 2023. "Impact of Whole Genome Doubling on Detection of Circulating Tumor DNA in Colorectal Cancer" Cancers 15, no. 4: 1136. https://doi.org/10.3390/cancers15041136
APA StyleKabel, J., Henriksen, T. V., Demuth, C., Frydendahl, A., Rasmussen, M. H., Nors, J., Birkbak, N. J., Madsen, A. H., Løve, U. S., Andersen, P. V., Kolbro, T., Monti, A., Thorlacius-Ussing, O., Gögenur, M., Kildsig, J., Schlesinger, N. H., Bondeven, P., Iversen, L. H., Gotschalck, K. A., & Andersen, C. L. (2023). Impact of Whole Genome Doubling on Detection of Circulating Tumor DNA in Colorectal Cancer. Cancers, 15(4), 1136. https://doi.org/10.3390/cancers15041136