Prognostic Value of the Lung Immune Prognosis Index Score for Patients Treated with Immune Checkpoint Inhibitors for Advanced or Metastatic Urinary Tract Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design and Patient Cohorts
2.2. Statistical Analysis
3. Results
3.1. Study Cohorts
3.2. Prognostic Value of LIPI Score in the ICI and SAUL Cohorts
3.3. Prognostic Value of LIPI Score in Chemo Cohort
3.4. Comparison of LIPI and Bellmunt Scores in Patients Receiving ICI sin the SAUL Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; von der Maase, H.; Mead, G.M.; Skoneczna, I.; De Santis, M.; Daugaard, G.; Boehle, A.; Chevreau, C.; Paz-Ares, L.; Laufman, L.R.; et al. Randomized Phase III Study Comparing Paclitaxel/Cisplatin/ Gemcitabine and Gemcitabine/Cisplatin in Patients With Locally Advanced or Metastatic Urothelial Cancer Without Prior Systemic Therapy: EORTC Intergroup Study 30987. J. Clin. Oncol.. 2012, 30, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- von der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef]
- De Santis, M.; Bellmunt, J.; Mead, G.; Kerst, J.M.; Leahy, M.; Maroto, P.; Gil, T.; Marreaud, S.; Daugaard, G.; Skoneczna, I.; et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J. Clin. Oncol. 2012, 30, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Durán, I.; van der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.; Bamias, A.; et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018, 391, 748–757. [Google Scholar] [CrossRef]
- Massard, C.; Gordon, M.S.; Sharma, S.; Rafii, S.; Wainberg, Z.A.; Luke, J.; Curiel, T.J.; Colon-Otero, G.; Hamid, O.; Sanborn, R.E.; et al. Safety and Efficacy of Durvalumab (MEDI4736), an Anti–Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients With Advanced Urothelial Bladder Cancer. J. Clin. Oncol.. 2016, 34, 3119–3125. [Google Scholar] [CrossRef]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic Inflammation and Cytokines in the Tumor Microenvironment. J. Immunol. Res. 2014, 2014, 149185. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sionov, R.V.; Fridlender, Z.G.; Granot, Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron. 2015, 8, 125–158. [Google Scholar] [CrossRef] [PubMed]
- Wculek, S.K.; Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 2015, 528, 413–417. [Google Scholar] [CrossRef]
- Coffelt, S.B.; Kersten, K.; Doornebal, C.W.; Weiden, J.; Vrijland, K.; Hau, C.-S.; Verstegen, N.J.M.; Ciampricotti, M.; Hawinkels, L.J.A.C.; Jonkers, J.; et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015, 522, 345–348. [Google Scholar] [CrossRef]
- Park, J.; Wysocki, R.W.; Amoozgar, Z.; Maiorino, L.; Fein, M.R.; Jorns, J.; Schott, A.F.; Kinugasa-Katayama, Y.; Lee, Y.; Won, N.H.; et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 2016, 8, ra138–ra361. [Google Scholar] [CrossRef]
- Schernberg, A.; Mezquita, L.; Boros, A.; Botticella, A.; Caramella, C.; Besse, B.; Escande, A.; Planchard, D.; Le Péchoux, C.; Deutsch, E. Neutrophilia as prognostic biomarker in locally advanced stage III lung cancer. PLoS ONE 2018, 13, e0204490. [Google Scholar] [CrossRef]
- Capone, M.; Giannarelli, D.; Mallardo, D.; Madonna, G.; Festino, L.; Grimaldi, A.M.; Vanella, V.; Simeone, E.; Paone, M.; Palmieri, G.; et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer 2018, 6, 74. [Google Scholar] [CrossRef]
- Petrelli, F.; Cabiddu, M.; Coinu, A.; Borgonovo, K.; Ghilardi, M.; Lonati, V.; Barni, S. Prognostic role of lactate dehydrogenase in solid tumors: A systematic review and meta-analysis of 76 studies. Acta Oncol. 2015, 54, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non–Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 351. [Google Scholar] [CrossRef] [PubMed]
- Meyers, D.E.; Stukalin, I.; Vallerand, I.A.; Lewinson, R.T.; Suo, A.; Dean, M.; North, S.; Pabani, A.; Cheng, T.; Heng, D.Y.C.; et al. The Lung Immune Prognostic Index Discriminates Survival Outcomes in Patients with Solid Tumors Treated with Immune Checkpoint Inhibitors. Cancers 2019, 11, 1713. [Google Scholar] [CrossRef] [PubMed]
- Kazandjian, D.; Gong, Y.; Keegan, P.; Pazdur, R.; Blumenthal, G.M. Prognostic Value of the Lung Immune Prognostic Index for Patients Treated for Metastatic Non–Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 1481. [Google Scholar] [CrossRef] [PubMed]
- Benitez, J.C.; Recondo, G.; Rassy, E.; Mezquita, L. The LIPI score and inflammatory biomarkers for selection of patients with solid tumors treated with checkpoint inhibitors. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N.; Loriot, Y.; James, N.; Choy, E.; Castellano, D.; Lopez-Rios, F.; Banna, G.L.; De Giorgi, U.; Masini, C.; Bamias, A.; et al. Primary Results from SAUL, a Multinational Single-arm Safety Study of Atezolizumab Therapy for Locally Advanced or Metastatic Urothelial or Nonurothelial Carcinoma of the Urinary Tract. Eur. Urol. 2019, 76, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Choueiri, T.K.; Fougeray, R.; Schutz, F.A.B.; Salhi, Y.; Winquist, E.; Culine, S.; von der Maase, H.; Vaughn, D.J.; Rosenberg, J.E. Prognostic Factors in Patients With Advanced Transitional Cell Carcinoma of the Urothelial Tract Experiencing Treatment Failure With Platinum-Containing Regimens. J. Clin. Oncol.. 2010, 28, 1850–1855. [Google Scholar] [CrossRef]
- Gönen, M.; Heller, G. Concordance probability and discriminatory power in proportional hazards regression. Biometrika 2005, 92, 965–970. [Google Scholar] [CrossRef]
- Powles, T.; Morrison, L. Biomarker challenges for immune checkpoint inhibitors in urothelial carcinoma. Nat. Rev. Urol. 2018, 15, 585–587. [Google Scholar] [CrossRef]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef]
- Bi, H.; Tian, Y.; Song, C.; Li, J.; Liu, T.; Chen, Z.; Chen, C.; Huang, Y.; Zhang, Y. Urinary microbiota—A potential biomarker and therapeutic target for bladder cancer. J. Med. Microbiol. 2019, 68, 1471–1478. [Google Scholar] [CrossRef]
- Vandekerkhove, G.; Lavoie, J.-M.; Annala, M.; Murtha, A.J.; Sundahl, N.; Walz, S.; Sano, T.; Taavitsainen, S.; Ritch, E.; Fazli, L.; et al. Plasma ctDNA is a tumor tissue surrogate and enables clinical-genomic stratification of metastatic bladder cancer. Nat. Commun. 2021, 12, 184. [Google Scholar] [CrossRef]
- Raja, R.; Kuziora, M.; Brohawn, P.Z.; Higgs, B.W.; Gupta, A.; Dennis, P.A.; Ranade, K. Early Reduction in ctDNA Predicts Survival in Patients with Lung and Bladder Cancer Treated with Durvalumab. Clin. Cancer Res. 2018, 24, 6212–6222. [Google Scholar] [CrossRef] [PubMed]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, S.T.; Balar, A.V.; Petrylak, D.P.; Kalebasty, A.R.; Loriot, Y.; Fléchon, A.; Jain, R.K.; Agarwal, N.; Bupathi, M.; Barthelemy, P.; et al. TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients With Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors. J. Clin. Oncol.. 2021, 39, 2274. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.-L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Du, P.; Yang, Y. The clinical use of neutrophil-to-lymphocyte ratio in bladder cancer patients: A systematic review and meta-analysis. Int. J. Clin. Oncol. 2017, 22, 817–825. [Google Scholar] [CrossRef]
- Vartolomei, M.D.; Kimura, S.; Ferro, M.; Vartolomei, L.; Foerster, B.; Abufaraj, M.; Shariat, S.F. Is neutrophil-to-lymphocytes ratio a clinical relevant preoperative biomarker in upper tract urothelial carcinoma? A meta-analysis of 4385 patients. World J. Urol 2018, 36, 1019–1029. [Google Scholar] [CrossRef]
- Wu, M.; Lin, P.; Xu, L.; Yu, Z.; Chen, Q.; Gu, H.; Liu, C. Prognostic Role of Serum Lactate Dehydrogenase in Patients With Urothelial Carcinoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 677. [Google Scholar] [CrossRef]
- Black, A.J.; Zargar, H.; Zargar-Shoshtari, K.; Fairey, A.S.; Mertens, L.S.; Dinney, C.P.; Mir, M.C.; Krabbe, L.-M.; Cookson, M.S.; Jacobsen, N.-E.; et al. The prognostic value of the neutrophil-to-lymphocyte ratio in patients with muscle-invasive bladder cancer treated with neoadjuvant chemotherapy and radical cystectomy. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 3.e17–3.e27. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ito, K.; Kojima, T.; Kato, M.; Kanda, S.; Hatakeyama, S.; Matsui, Y.; Matsushita, Y.; Naito, S.; Shiga, M.; et al. Risk stratification for the prognosis of patients with chemoresistant urothelial cancer treated with pembrolizumab. Cancer Sci. 2021, 112, 760–773. [Google Scholar] [CrossRef]
- Guru, S.; Juliane, M.; Chen, G.; Darren, T.; Constanze, K.; Daniel, H.; Doris, M.; Ashok, G.; Essa, A.S.; Guenter, N.; et al. Five-Factor Prognostic Model for Survival of Post-Platinum Patients with Metastatic Urothelial Carcinoma Receiving PD-L1 Inhibitors. J. Urol. 2020, 204, 1173–1179. [Google Scholar] [CrossRef]
- Khaki, A.R.; Li, A.; Diamantopoulos, L.N.; Miller, N.J.; Carril-Ajuria, L.; Castellano, D.; De Kouchkovsky, I.; Koshkin, V.; Park, J.; Alva, A.; et al. A New Prognostic Model in Patients with Advanced Urothelial Carcinoma Treated with First-line Immune Checkpoint Inhibitors. Eur. Urol. Oncol. 2021, 4, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.; Klee, M.; Palshof, T.; Hansen, H. Performance status assessment in cancer patients. An inter-observer variability study. Br. J. Cancer 1993, 67, 773–775. [Google Scholar] [CrossRef]
- Leal, A.D.; Allmer, C.; Maurer, M.J.; Shanafelt, T.D.; Cerhan, J.R.; Link, B.K.; Thompson, C.A. Variability of performance status assessment between patients with hematologic malignancies and their physicians. Leuk. Lymphoma. 2018, 59, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.H.; Mouw, K.W.; Jegede, O.; Shinagare, A.B.; Kim, J.; Liu, C.-J.; Pomerantz, M.; Harshman, L.C.; Van Allen, E.M.; Wei, X.X.; et al. A model combining clinical and genomic factors to predict response to PD-1/PD-L1 blockade in advanced urothelial carcinoma. Br. J. Cancer 2020, 122, 555–563. [Google Scholar] [CrossRef]
- Powles, T.; Loriot, Y.; Ravaud, A.; Vogelzang, N.J.; Duran, I.; Retz, M.; De Giorgi, U.; Oudard, S.; Bamias, A.; Koeppen, H.; et al. Atezolizumab (atezo) vs. chemotherapy (chemo) in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC): Immune biomarkers, tumor mutational burden (TMB), and clinical outcomes from the phase III IMvigor211 study. JCO 2018, 36, 409. [Google Scholar] [CrossRef]
- Narang, J.; Bajpai, S.; Jarecha, R.; Sharma, M.; Bohnsack, O. Comparison of response using mRECIST versus RECIST 1.1 Criteria in advanced hepatocellular carcinoma: A retrospective analysis of multicenter clinical trials. JCO 2020, 38, 4595. [Google Scholar] [CrossRef]
Characteristics | ICI Cohort N = 137 | SAUL Cohort N = 541 | Chemo Cohort N = 67 |
---|---|---|---|
Gender (n, %) | |||
Male | 112 (82) | 408 (75) | 52 (78) |
Age at diagnosis (yrs) (median, range) | 68 [58;74] | 67 [60;74] | 68 [60;74] |
Smoking history (n, %) | |||
>10 PYs | 95 (69) | 361 (67) | 37 (55) |
<10 PYs | 31 (23) | 180 (33) | 19 (28) |
Unknown | 11 (8) | 0 (0) | 11 (17) |
Primary tumor (n, %) | |||
Bladder | 109 (80) | 412 (76) | 46 (69) |
Upper tract | 25 (18) | 111(21) | 21 (31) |
Urethra | 3 (2) | 5 (1) | 0 (0) |
Other | 0 (0) | 13 (2) | 0 (0) |
Histology (n, %) | |||
Pure urothelial or mixed histology | 128 (93) | 519 (96) | 64 (96) |
Non-urothelial histology | |||
- Bellini collecting duct | 0 (0) | 5 (0) | 0 (0) |
- Glandular | 1 (0) | 3 (0) | 0 (0) |
- Neuroendocrine | 2 (0) | 4 (0) | 2 (0) |
- Squamous | 6 (1) | 8 (0) | 1 (0) |
Unknown | 0 (0) | 2 (0) | 0 (0) |
Molecular FGFR alteration (n, %) | |||
Yes | 15 (11) | 3 (4) | |
No | 22 (16) | NA | 8 (12) |
Unknown | 100 (73) | 56 (84) | |
PD-L1 status (n, %) | |||
Positive | 18 (13) | 150 (28) | 0 (0) |
Negative | 34 (25) | 351 (65) | 8 (12) |
Unknown | 85 (62) | 40 (7) | 59 (88) |
Type of prior treatment (n, %) | |||
Platinum-based therapy | 105 (77) | 527 (97) | 63 (94) |
Gemcitabine | 2 (1) | 12 (2) | 2 (3) |
Vinflunine | 7 (5) | 1 (0) | 7 (10) |
Taxane | 30 (22) | 0 (0) | 15 (22) |
Other | 8 (6) | 3 (1) | 7 (10) |
Pretreatment performance status (ECOG) (n, %) | |||
0–1 | 106 (77) | 489 (90) | 46 (69) |
≥2 | 29 (21) | 52 (10) | 21 (31) |
Unknown | 2 (2) | 0 (0) | 0 (0) |
Liver metastatic site (n, %) | 31 (23) | 185 (34) | 19 (28) |
No of prior treatment lines (median, range) | 1 (1–1) | 1 (0–1) | 2 (1–3) |
ICI treatment (n, %) | |||
PD-L1 inhibitor | 65 (47) | 541 (100) | 0 (0) |
PD-1 inhibitor | 72 (53) | 0 (0) | 0 (0) |
Circulating inflammatory markers (median, range) | |||
Hemoglobin (g/dL) | 12 (10.4; 13.1) | 11.7 (10.5; 13.0) | 11.9 (10.6; 13.2) |
Leukocytes (Giga/L) | 7.4 (5.9; 9.7) | 7.5 (5.8; 9.5) | 7.4 (5.8; 9.8) |
ANC (Giga/L) | 5.0 (3.7; 6.5) | 5.0 (3.7; 7) | 5.1 (3.4; 7.2) |
Albumin (g/L) | 40 (36; 42) | 39 (35; 43) | 36.5 (33; 41) |
LIPI score components (n, %) | |||
LDH > ULN | 33 (24) | 169 (31) | 16 (23) |
dNLR > 3 | 39 (28) | 155 (29) | 19 (28) |
Follow-up (mo) (median, 95% CI) | 24 (19.8; 30.4) | 13 (1.8; 13.2) | 39 (33.7; NR) |
Radiological response (n, %) | |||
Complete response | 17 (12) | 14 (3) | 3 (5) |
Partial response | 27 (20) | 48 (9) | 24 (36) |
Stable disease | 26 (19) | 175 (32) | 21 (31) |
Progressive disease | 66 (48) | 161 (30) | 17 (25) |
Non-valuable | 1 (1) | 143 (26) | 2 (3) |
Progression-free survival (mo) (median, range) | 3.7 (2.7; 5.9) | 2.2 (2.1; 2.3) | 6.1 (4.7; 7.1) |
Overall survival (mo) (median, range) | 14.4 (10.8; 20.2) | 8.7 (7.8; 9.9) | 8.5 (6.3; 11.3) |
ICI Cohort | SAUL Cohort | Chemo Cohort | |||
---|---|---|---|---|---|
Variables | HR (95% CI) PFS | HR (95% CI) OS | HR (95% CI) PFS | HR (95% CI) OS | HR (95% CI) OS |
Number of events/number of patients | 100/130 | 74/127 | 476/489 | 276/489 | 45/49 |
Metastatic site | |||||
Liver | |||||
Yes | 1.55 (0.92; 2.61) | 2.03 (1.15; 3.56) | 1.68 (1.37; 2.05) | 1.91 (1.48; 2.46) | NA |
p value | 0.096 | 0.013 | <0.0001 | <0.0001 | |
Central nervous system | |||||
Yes | 5.50 (2.01; 14.60) | NR | 1.05 (0.50; 2.40) | 0.88 (0.32; 2.39) | |
p value | 0.001 | 0.91 | 0.79 | ||
Pretreatment Performance status | |||||
≥2 | 2.53 (1.47; 4.33) | 4.43 (2.48; 7.90) | 2.73 (1.94; 3.83) | 3.80 (2.58; 5.58) | 0.83 (0.41; 1.66) |
p value | 0.001 | <0.001 | <0.0001 | <0.0001 | 0.592 |
Pretreatment | |||||
Albumin | |||||
>35 g/L | 1.00 (0.54; 1.85) | 1.08 (0.53; 2.17) | 0.81 (0.64; 1.02) | 0.63 (0.48; 0.84) | 0.22 (0.10; 0.45) |
p value | 0.99 | 0.84 | 0.08 | 0.002 | <0.0001 |
Pretreatment | |||||
Hemoglobin | |||||
>10 g/dL | 0.51 (0.28; 0.84) | 0.50 (0.30; 1.98) | 0.90 (0.68; 1.19) | 0.93 (0.66; 1.30) | |
p value | 0.032 | 0.044 | 0.47 | 0.66 | |
Pretreatment LIPI | |||||
Good LIPI | 1 [reference] | 1 [reference] | 1 [reference] | 1 [reference] | 1 [reference] |
Intermediate LIPI | 1.68 (1.08; 2.61) | 1.45 (0.86; 2.41) | 1.24 (1.01; 1.51) | 1.78 (1.35; 2.33) | 1.25 (0.63; 2.33) |
Poor LIPI | 4.36 (2.04; 9.33) | 2.69 (1.24; 5.84) | 1.78 (1.29; 2.45) | 2.89 (1.93; 4.32) | 3.14 (1.07; 9.16) |
p value | 0.0003 | 0.035 | 0.001 | <0.0001 | 0.05 |
Characteristics | LIPI Score | Bellmunt Score | |||||
---|---|---|---|---|---|---|---|
Good | Intermediate | Poor | 0 Factor | 1 Factor | 2 Factors | 3 Factors | |
Patients (n, %) | 280 (52) | 198 (36) | 63 (12) | 212 (26) | 306 (37) | 201 (24) | 106 (13) |
Overall Survival | |||||||
Hazard ratio (95% CI) | 1 [ref] | 1.78 (1.35; 2.33) | 2.89 (1.93; 4.32) | 1 [ref] | 1.84 (1.37; 2.47) | 4.47 (3.28; 6.09) | 4.39 (2.70; 7.13) |
Median OS (mo) (range) | 12.4 (10.0; NR) | 5.4 (4.5; 6.9) | 2.4 (1.6; 3.7) | 17.9 (14.5; NR) | 8.6 (7.4; 11.9) | 3.5 (3.0; 4.4) | 2.0 (1.1; 4.7) |
Global log rank p value | <0.0001 | <0.0001 | |||||
Progression-Free Survival according to mRECIST criteria | |||||||
Hazard ratio (95% CI) | 1 [ref] | 1.24 (1.01; 1.51 | 1.77 (1.29; 2.45) | 1 [ref] | 1.25 (1.03; 1.51) | 2.47 (1.97; 3.11) | 3.05 (1.99; 4.66) |
Median PFS (mo) (95% CI) | 4.0 (3.1; 4.5) | 2.2 (2.1; 2.4) | 1.7 (1.4; 2.0) | 5.3 (4.2; 6.2) | 2.7 (2.8; 3.9) | 2.0 (1.9; 2.1) | 1.46 (1.1; 2.0) |
Global log rank p value | 0.001 | 0.001 | |||||
Radiological response | |||||||
Disease control rate (n, %) | 137 (55) | 59 (38) | 8 (32) | 125 (64) | 125 (49) | 44 (34) | 6 (32) |
p value | 0.001 | <0.001 | |||||
Objective response rate (n, %) | 38 (15) | 17 (11) | 5 (20) | 41 (21) | 44 (17) | 12 (9) | 1 (5) |
p value | 0.334 | 0.024 | |||||
Fast progressors (n, %) | 34 (12) | 69 (35) | 39 (62) | 11 (5) | 63 (21) | 98 (49) | 22 (61) |
p value | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parent, P.; Auclin, E.; Patrikidou, A.; Mezquita, L.; Martínez Chanzá, N.; Dumont, C.; Rodriguez-Vida, A.; Llacer, C.; Lozano, R.; Ratta, R.; et al. Prognostic Value of the Lung Immune Prognosis Index Score for Patients Treated with Immune Checkpoint Inhibitors for Advanced or Metastatic Urinary Tract Carcinoma. Cancers 2023, 15, 1066. https://doi.org/10.3390/cancers15041066
Parent P, Auclin E, Patrikidou A, Mezquita L, Martínez Chanzá N, Dumont C, Rodriguez-Vida A, Llacer C, Lozano R, Ratta R, et al. Prognostic Value of the Lung Immune Prognosis Index Score for Patients Treated with Immune Checkpoint Inhibitors for Advanced or Metastatic Urinary Tract Carcinoma. Cancers. 2023; 15(4):1066. https://doi.org/10.3390/cancers15041066
Chicago/Turabian StyleParent, Pauline, Edouard Auclin, Anna Patrikidou, Laura Mezquita, Nieves Martínez Chanzá, Clément Dumont, Alejo Rodriguez-Vida, Casilda Llacer, Rebeca Lozano, Raffaele Ratta, and et al. 2023. "Prognostic Value of the Lung Immune Prognosis Index Score for Patients Treated with Immune Checkpoint Inhibitors for Advanced or Metastatic Urinary Tract Carcinoma" Cancers 15, no. 4: 1066. https://doi.org/10.3390/cancers15041066
APA StyleParent, P., Auclin, E., Patrikidou, A., Mezquita, L., Martínez Chanzá, N., Dumont, C., Rodriguez-Vida, A., Llacer, C., Lozano, R., Ratta, R., Merseburger, A. S., Sternberg, C. N., Baciarello, G., Colomba, E., Fuerea, A., Besse, B., Loriot, Y., & Lavaud, P. (2023). Prognostic Value of the Lung Immune Prognosis Index Score for Patients Treated with Immune Checkpoint Inhibitors for Advanced or Metastatic Urinary Tract Carcinoma. Cancers, 15(4), 1066. https://doi.org/10.3390/cancers15041066