Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Landscape of ICIs in MSI mCRC
2.1. Rationale for the Use of ICIs
2.2. Current Treatments Approved
3. Current Landscape and Challenges of ICIs in MSS mCRC
3.1. Does ICIs Work in MSS mCRC?
3.2. Challenges
3.2.1. Combination of Anti-VEGF Agents and Chemotherapy with ICIs
3.2.2. Combination of Anti-EGFR Agents and Chemotherapy with ICIs
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
AVETUX (NCT03174405) [52] | Avelumab + cetuximab + irinotecan | II | PFS | 1st line mCRC | 80% | 11.1 | NA | Completed |
AVETUXIRI (NCT03608046) [53] | Avelumab + cetuximab + irinotecan | II | PFS | Refractory mCRC | 60.0% (RASwt), 11.5% (RASm) | 4.2 (RASwt), 3.8 (RASm) | 12.7 (RASwt), 14 (RASm) | Completed |
CAVE Colon (NCT04561336) [55] | Avelumab + cetuximab | II | OS | Refractory RASwt mCRC | NA | 3.6 | 11.6 | Completed |
NCT04017650 [57] | Nivolumab + cetuximab + encorafenib | I/II | ORR | BRAF V600E mutant pMMR mCRC | 45% | 7.3 | 11.4 | Active, not recruiting |
AVETRIC (NCT04513951) [58] | FOLFOXIRI + cetuximab + avelumab | II | PFS | 1st line mCRC | NA | NA | NA | Recruiting |
3.2.3. Combination of Temozolomide with ICIs
3.2.4. Combination of ICIs with DNA Damage Response (DDR) Inhibitors
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
DAPPER (NCT03851614) [77] | Durvalumab + Olaparib/Cediranib | II | Changes in genomic and immune biomarkers | A refractory solid tumor (only pMMR CCR) | NA | NA | NA | Active, not recruiting |
NCT02484404 [77] | Durvalumab + Olaparib +/o Cediranib | I/II | ORR Safety and tolerability, MTD | Refractory solid tumors | NA | NA | NA | Recruiting |
NCT04123366 [81] | Olaparib + Pembrolizumab | II | ORR | Refractory solid tumor + mutation in HRR/HRD | NA | NA | NA | Recruiting |
NCT03842228 [80] | Copanlisib + Olaparib + durvalumab | I | MTD | Refractory solid tumor + germline or somatic mutations in DDR genes | NA | NA | NA | Recruiting |
NCT03772561 [79] | AZD5363 + Olaparib + Durvalumab | I | ORR/BOR | Refractory solid tumors | NA | NA | NA | Recruiting |
NCT04266912 [83] | Avelumab and Berzosertib | I/II | Safety and tolerability, MTD | Refractory solid tumors with a mutation in DDR genes | NA | NA | NA | Recruiting |
NCT02617277 [82] | Adavosertib + Durvalumab | I | DLTs | Refractory solid tumors | NA | NA | NA | Active, not recruiting |
3.2.5. Combination of Multikinase Inhibitors (Anti-VEGFR) with ICIs
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
REGONIVO (NCT03406871) [90] | Nivolumab + Regorafenib MSS mCRC cohort | I/II | MTD and RD | Refractory to standard treatments (≥3rd line) | 33.3% (MSS patients) | 7.9 | NR | Completed |
REGNIVO (NCT04126733) [91] | Nivolumab + Regorafenib | II | ORR | Refractory to standard treatment | 7.1% | 2 | 13 | Completed |
REGOMUNE (NCT03475953) [92] | Avelumab+Regorafenib MSS mCRC cohort | I/II | I: Safety and tolerability II: DCR | Refractory to standard treatment | NA | 3.6 | 10.8 | Recruiting |
NCT03712943 [94] | Nivolumab + Regorafenib | I | DLT and MTD | Refractory to standard treatment | 10% | 4.3 | 11.1 | Active, not recruiting |
NCT03657641 [95] | Pembrolizumab + Regorafenib | I/II | DLT, PFS, and OS | Refractory to standard treatment | 0% | 2 | 10.9 | Active, not recruiting |
LEAP-005 (NCT03797326) [97] | Pembrolizumab + Lenvatinib MSS mCRC cohort | II | ORR | Refractory to standard treatments (≥3rd line) | 22% | 2.3 | 7.5 | Active, not recruiting |
LEAP-017 (NCT04776148) [98] | Pembrolizumab + Lenvatinib vs. TAS-102/Regorafenib | III | OS | Refractory to standard treatment | NA | NA | NA | Active, not recruiting |
CAMILLA (NCT03539822) [100] | Cabozantinib + Durvalumab mCRC cohort (all MSS) | I/II | MTD and ORR | Refractory to standard treatments (≥3rd line) | 27.6% | 4.4 | 9.1 | Recruiting |
COSMIC-O21 (NCT03170960) [101] | Cabozantinib + Atezolizumab | I/II | MTD and ORR | Refractory to standard treatment | 9.7% | 3 | 14 | Active, not recruiting |
NCT04483219 [106] | TKI (fruquintinib or regorafenib) + Toripalimab | II | 9-month PFS | Refractory to standard treatment | NA | NA | NA | Recruiting |
NCT04577963 [105] | Fruquintinib+ tislelizumab | I/II | ORR | IO-Naïve | NA | NA | NA | Recruiting |
3.2.6. Targeting MAPK Pathway in Combination with ICIs
3.2.7. Targeting PIK3CA/AKT/mTOR Pathway
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
NCT01988896 [114] | Atezolizumab + Cobimetinib | I | Safety and tolerability, MTD | Refractory solid tumors | 8% | 1.9 | 9.8 | Completed |
IMblaze 370 (NCT02788279) [112] | Atezolizumab + Cobimetinib vs. Atezolizumab vs. Regorafenib | III | OS | Refractory to standard treatments (≥3rd line) | 3% | 1.9 vs. 1.9 vs. 2 | 8.9 vs. 7.1 vs. 8.5 | Completed |
NCT02586987 [117] | Selumetinib + Durvalumab +/- Tremelimumab | I | DLT Safety and tolerability | Refractory solid tumors | NA | NA | NA | Completed |
NCT03668431 [120] MSS patients | Dabrafenib + Trametinib + PDR001 (Spartalizumab) | II | ORR | First or subsequent lines BRAFV600E | 42% | NA | NA | Recruiting |
NCT04294160 [122] | Dabrafenib + LTT462 (ERK inhibitor) + PDR001 (Spartalizumab)/Tislelizumab [122] | I | DLT Safety and tolerability | ≥Second line BRAFV600 | NA | NA | NA | Recruiting |
CodeBreaK 100 (NCT03600883) [126] | Sotorasib + AntiPD-1/L1 | I/II | DLT Safety and tolerability ORR | Refractory KRAS G12C | NA | NA | NA | Active, not recruiting |
KontRASt-01 (NCT04699188) [127] | Tislelizumab + JDQ443 +/- TNO155 | I/II | DLT Safety and tolerability | Refractory to standard treatments | NA | NA | NA | Recruiting |
NCT03711058 [130] | Copanlisib + Nivolumab | I/II | MTD ORR | Refractory to standard treatments (≥third line) | NA | NA | NA | Active, not recruiting |
3.2.8. Combination with Other ICIs
3.2.9. Combination of ICIs with Radiotherapy
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
NCT03122509 [143] | Radiotherapy + Durvalumab + Tremelimumab | II | ORR | Refractory to standard treatments (≥3rd line) | 8.3% | 1.8 | 11.4 | Completed |
NCT03104439 [142] | Radiotherapy + Nivolumab + Ipilimumab | II | DCR (17.5%) | Refractory to standard treatments (≥3rd line) | 7.5% | NA | NA | Recruiting |
NCT02992912 [145] | Atezolizumab With Stereotactic Ablative Radiotherapy | II | PFS | Refractory | NA | NA | NA | Unknown |
3.2.10. Blocking TGF-β and Wnt Pathway + ICIs
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
NCT03436563 [154]—cOHORT D | Anti-PD-L1/TGFbetaRII Fusion Protein M7824 (Bintrafusp-α) | Ib/II | Clearance of ctDNA | Completion of standard-of-care perioperative therapy | 0% | NA | NA | Completed (other cohorts active, not recruiting) |
NCT03724851 [147] | TEW-7197 (Vactosertib) + Pembrolizumab | I/II | MTD | Refractory to standard treatment | 15.2% | NA | NA | Active, not recruiting |
NCT02947165 [150]—Group 4 | NIS793 +/- PDR001 (spartalizumab) | I/Ib | Incidence of DLTs and safety and tolerability | Refractory to standard treatment | NA | NA | NA | Completed |
NCT03192345 [155] | SAR439459 + Cemiplimab | I | DLT and ORR | Refractory to standard treatment | NA | NA | NA | Terminated (competitive landscape and toxicity) |
NCT02423343 [156] | Galunisertib +/- Nivolumab | I/II | MTD | Refractory solid tumors | NA | NA | NA | Completed |
3.2.11. Other Combinations: Epigenetic Therapy and Novel Agents
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | MpfS (Months) | MoS (Months) | Status |
---|---|---|---|---|---|---|---|---|
NCT03821935 [167] | ABBV-151 +/- budigalimab (ABBV-181) | I | Dose escalation and dose expansion | Progression on two prior chemotherapy regimens. | NA | NA | NA | Recruiting |
NCT02260440 [158] | Azacitidine + Pembrolizumab | II | ORR | Refractory to standard treatment | 3% | 1.9 | 6.3 | Completed |
CAROSELL (NCT03993626) [159] | Zabadinostat + Nivolumab | I/II | IdcR | Refractory to standard treatments (≥3rd line) | NA | NA | 7 | Unknown |
ENCORE 601 (NCT02437136) [161] | Entinostat + Pembrolizumab MSS McrC cohort | II | MTD and ORR | Refractory to standard treatments | 6% | NA | NA | Active, not recruiting |
PICCASSO (NCT03274804) [165] | Pembrolizumab + maraviroc | I | Feasibility Rate of a Combined Therapy | Refractory to standard treatments | 5.3% | 2.1 | 9.83 | Completed |
NCT02650713 [163] | Cibisatamab (RO6958688) + atezolizumab | I | DLT, MTD Safety and tolerability | Refractory to standard treatments | 10% | NA | NA | Completed |
NCT03332498 [166] | Ibrutinib + Pembrolizumab | I/II | DCR 4 months | Refractory to standard treatments | 0% | 1.4 | 6.6 | Completed |
3.3. Biomarkers in MSS CRC
3.3.1. PD-L1
3.3.2. POLE and POLD1 Mutations
3.3.3. Tumor Mutational Burden
3.3.4. Immunoscore
3.3.5. Microbiome
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keum, N.; Giovannucci, E. Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Przegląd Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669. [Google Scholar] [CrossRef]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic Colorectal Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 34, S0923753422041928. [Google Scholar] [CrossRef]
- Havel, J.J.; Chowell, D.; Chan, T.A. The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Arrichiello, G.; Poliero, L.; Borrelli, C.; Paragliola, F.; Nacca, V.; Napolitano, S.; Corte, C.M.D.; Martini, G.; Martinelli, E. Immunotherapy in Colorectal Cancer: Is the Long-Awaited Revolution Finally Happening? Cancer Treat. Res. Commun. 2021, 28, 100442. [Google Scholar] [CrossRef]
- Fan, A.; Wang, B.; Wang, X.; Nie, Y.; Fan, D.; Zhao, X.; Lu, Y. Immunotherapy in Colorectal Cancer: Current Achievements and Future Perspective. Int. J. Biol. Sci. 2021, 17, 3837–3849. [Google Scholar] [CrossRef]
- Venderbosch, S.; Nagtegaal, I.D.; Maughan, T.S.; Smith, C.G.; Cheadle, J.P.; Fisher, D.; Kaplan, R.; Quirke, P.; Seymour, M.T.; Richman, S.D.; et al. Mismatch Repair Status and BRAF Mutation Status in Metastatic Colorectal Cancer Patients: A Pooled Analysis of the CAIRO, CAIRO2, COIN, and FOCUS Studies. Clin. Cancer Res. 2014, 20, 5322–5330. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Farkas, L.; et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 329–359. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E–Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.; Pudlarz, T.; Delattre, J.-F.; Colle, R.; André, T. Molecular Targets for the Treatment of Metastatic Colorectal Cancer. Cancers 2020, 12, 2350. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Network Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. Nature 2012, 487, 330–337. [CrossRef] [Green Version]
- Kawakami, H.; Zaanan, A.; Sinicrope, F.A. Microsatellite Instability Testing and Its Role in the Management of Colorectal Cancer. Curr. Treat. Options Oncol. 2015, 16, 30. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in Cancer Immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Llosa, N.J.; Cruise, M.; Tam, A.; Wicks, E.C.; Hechenbleikner, E.M.; Taube, J.M.; Blosser, R.L.; Fan, H.; Wang, H.; Luber, B.S.; et al. The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints. Cancer Discov. 2015, 5, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.; Kemberling, H.; Eyring, A.; Azad, N.S.; Laheru, D.; Donehower, R.C.; Crocenzi, T.S.; et al. Programmed Death-1 Blockade in Mismatch Repair Deficient Colorectal Cancer. J. Clin. Oncol. 2016, 34, 103. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Andre, T.; Lonardi, S.; Wong, M.; Lenz, H.-J.; Gelsomino, F.; Aglietta, M.; Morse, M.; Van Cutsem, E.; McDermott, R.S.; Hill, A.G.; et al. Nivolumab + Ipilimumab Combination in Patients with DNA Mismatch Repair-Deficient/Microsatellite Instability-High (DMMR/MSI-H) Metastatic Colorectal Cancer (MCRC): First Report of the Full Cohort from CheckMate-142. J. Clin. Oncol. 2018, 36, 553. [Google Scholar] [CrossRef]
- Andre, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.J.A.; Smith, D.M.; Garcia-Carbonero, R.; Alcaide, J.; Gibbs, P.; et al. Final Overall Survival for the Phase III KN177 Study: Pembrolizumab versus Chemotherapy in Microsatellite Instability-High/Mismatch Repair Deficient (MSI-H/DMMR) Metastatic Colorectal Cancer (MCRC). J. Clin. Oncol. 2021, 39, 3500. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.-J.; Lonardi, S.; Zagonel, V.; Van Cutsem, E.; Limon, M.L.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; Garcia-Alfonso, P.; Neyns, B.; et al. Nivolumab plus Low-Dose Ipilimumab as First-Line Therapy in Microsatellite Instability-High/DNA Mismatch Repair Deficient Metastatic Colorectal Cancer: Clinical Update. J. Clin. Oncol. 2020, 38, 11. [Google Scholar] [CrossRef]
- André, T.; Van Cutsem, E.; Elez, E.; Bennouna, J.; de la Fouchardière, C.; Yoshino, T.; Jensen, L.; Mendez, G.; Li, J.; Goekkurt, E.; et al. P-12 A Phase 3 Study of Nivolumab (NIVO), NIVO + Ipilimumab (IPI), or Chemotherapy for Microsatellite Instability-High (MSI-H)/Mismatch Repair-Deficient (DMMR) Metastatic Colorectal Cancer (MCRC): CheckMate 8HW. Ann. Oncol. 2022, 33, S250. [Google Scholar] [CrossRef]
- Lee, J.J.; Yothers, G.; Jacobs, S.A.; Sanoff, H.K.; Cohen, D.J.; Guthrie, K.A.; Henry, N.L.; Ganz, P.A.; Kopetz, S.; Lucas, P.C.; et al. Colorectal Cancer Metastatic DMMR Immuno-Therapy (COMMIT) Study (NRG- GI004/SWOG-S1610): A Randomized Phase III Study of MFOLFOX6/Bevacizumab Combination Chemotherapy with or without Atezolizumab or Atezolizumab Monotherapy in the First-Line Treatment of Patients with Deficient DNA Mismatch Repair (DMMR) Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, TPS3615. [Google Scholar] [CrossRef]
- Overman, M.J.; Yothers, G.; Jacobs, S.A.; Sanoff, H.K.; Cohen, D.J.; Guthrie, K.A.; Henry, N.L.; Ganz, P.A.; Kopetz, S.; Lucas, P.C.; et al. Colorectal Cancer Metastatic DMMR Immuno-Therapy (COMMIT) Study: A Randomized Phase III Study of Atezolizumab (Atezo) Monotherapy versus MFOLFOX6/Bevacizumab/Atezo in the First-Line Treatment of Patients (Pts) with Deficient DNA Mismatch Repair (DMMR) or Microsatellite Instability High (MSI-H) Metastatic Colorectal Cancer (MCRC)—NRG-GI004/SWOG-S1610. J. Clin. Oncol. 2021, 39, TPS3618. [Google Scholar] [CrossRef]
- Andre, T.; Berton, D.; Curigliano, G.; Ellard, S.; Trigo Pérez, J.M.; Arkenau, H.-T.; Abdeddaim, C.; Moreno, V.; Guo, W.; Im, E.; et al. Safety and Efficacy of Anti–PD-1 Antibody Dostarlimab in Patients (Pts) with Mismatch Repair-Deficient (DMMR) Solid Cancers: Results from GARNET Study. J. Clin. Oncol. 2021, 39, 9. [Google Scholar] [CrossRef]
- Marmorino, F.; Boccaccino, A.; Germani, M.M.; Falcone, A.; Cremolini, C. Immune Checkpoint Inhibitors in PMMR Metastatic Colorectal Cancer: A Tough Challenge. Cancers 2020, 12, 2317. [Google Scholar] [CrossRef]
- O’Neil, B.H.; Wallmark, J.; Lorente, D.; Elez, E.; Raimbourg, J.; Gomez-Roca, C.; Ejadi, S.; Piha-Paul, S.A.; Moss, R.A.; Siu, L.L.; et al. 502 Pembrolizumab (MK-3475) for Patients (Pts) with Advanced Colorectal Carcinoma (CRC): Preliminary Results from KEYNOTE-028. Eur. J. Cancer 2015, 51, S103. [Google Scholar] [CrossRef]
- Picard, E.; Verschoor, C.P.; Ma, G.W.; Pawelec, G. Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front. Immunol. 2020, 11, 369. [Google Scholar] [CrossRef]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The Consensus Molecular Subtypes of Colorectal Cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.; Emi, M.; Tanabe, K. Cancer Immunoediting from Immune Surveillance to Immune Escape. Immunology 2007, 121, 9–27. [Google Scholar] [CrossRef]
- Newey, A.; Griffiths, B.; Michaux, J.; Pak, H.S.; Stevenson, B.J.; Woolston, A.; Semiannikova, M.; Spain, G.; Barber, L.J.; Matthews, N.; et al. Immunopeptidomics of Colorectal Cancer Organoids Reveals a Sparse HLA Class I Neoantigen Landscape and No Increase in Neoantigens with Interferon or MEK-Inhibitor Treatment. J. Immunother. Cancer 2019, 7, 309. [Google Scholar] [CrossRef]
- Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The Future of Cancer Treatment: Immunomodulation, CARs and Combination Immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Grasso, C.S.; Giannakis, M.; Wells, D.K.; Hamada, T.; Mu, X.J.; Quist, M.; Nowak, J.A.; Nishihara, R.; Qian, Z.R.; Inamura, K.; et al. Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discov. 2018, 8, 730–749. [Google Scholar] [CrossRef] [Green Version]
- Lote, H.; Starling, N.; Pihlak, R.; Gerlinger, M. Advances in Immunotherapy for MMR Proficient Colorectal Cancer. Cancer Treat. Rev. 2022, 111, 102480. [Google Scholar] [CrossRef]
- Vanneman, M.; Dranoff, G. Combining Immunotherapy and Targeted Therapies in Cancer Treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef]
- Chen, D.S.; Hurwitz, H. Combinations of Bevacizumab with Cancer Immunotherapy. Cancer J. 2018, 24, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Dosset, M.; Vargas, T.R.; Lagrange, A.; Boidot, R.; Végran, F.; Roussey, A.; Chalmin, F.; Dondaine, L.; Paul, C.; Marie-Joseph, E.L.; et al. PD-1/PD-L1 Pathway: An Adaptive Immune Resistance Mechanism to Immunogenic Chemotherapy in Colorectal Cancer. OncoImmunology 2018, 7, e1433981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terme, M.; Pernot, S.; Marcheteau, E.; Sandoval, F.; Benhamouda, N.; Colussi, O.; Dubreuil, O.; Carpentier, A.F.; Tartour, E.; Taieb, J. VEGFA-VEGFR Pathway Blockade Inhibits Tumor-Induced Regulatory T-Cell Proliferation in Colorectal Cancer. Cancer Res. 2013, 73, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elamin, Y.Y.; Rafee, S.; Toomey, S.; Hennessy, B.T. Immune Effects of Bevacizumab: Killing Two Birds with One Stone. Cancer Microenviron. 2015, 8, 15–21. [Google Scholar] [CrossRef]
- Grothey, A.; Tabernero, J.; Arnold, D.; De Gramont, A.; Ducreux, M.P.; O’Dwyer, P.J.; Van Cutsem, E.; Bosanac, I.; Srock, S.; Mancao, C.; et al. Fluoropyrimidine (FP) + Bevacizumab (BEV) + Atezolizumab vs. FP/BEV in BRAFwt Metastatic Colorectal Cancer (MCRC): Findings from Cohort 2 of MODUL—A Multicentre, Randomized Trial of Biomarker-Driven Maintenance Treatment Following First-Line Induction Therapy. Ann. Oncol. 2018, 29, viii714–viii715. [Google Scholar] [CrossRef]
- Mettu, N.B.; Niedzwiecki, D.; Boland, P.M.; Fakih, M.; Arrowood, C.; Bolch, E.; Hurwitz, H.; Grothey, A. BACCI: A Phase II Randomized, Double-Blind, Placebo-Controlled Study of Capecitabine Bevacizumab plus Atezolizumab versus Capecitabine Bevacizumab plus Placebo in Patients with Refractory Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, TPS873. [Google Scholar] [CrossRef]
- Bocobo, A.G.; Wang, R.; Behr, S.; Carnevale, J.C.; Cinar, P.; Collisson, E.A.; Fong, L.; Kidder, W.A.; Ko, A.H.; Kolli, K.P.; et al. Phase II Study of Pembrolizumab plus Capecitabine and Bevacizumab in Microsatellite Stable (MSS) Metastatic Colorectal Cancer (MCRC): Interim Analysis. J. Clin. Oncol. 2021, 39, 77. [Google Scholar] [CrossRef]
- Lenz, H.-J.; Parikh, A.R.; Spigel, D.R.; Cohn, A.L.; Yoshino, T.; Kochenderfer, M.D.; Elez, E.; Shao, S.H.; Deming, D.A.; Holdridge, R.C.; et al. Nivolumab (NIVO) + 5-Fluorouracil/Leucovorin/Oxaliplatin (MFOLFOX6)/Bevacizumab (BEV) versus MFOLFOX6/BEV for First-Line (1L) Treatment of Metastatic Colorectal Cancer (MCRC): Phase 2 Results from CheckMate 9X8. J. Clin. Oncol. 2022, 40, 8. [Google Scholar] [CrossRef]
- Antoniotti, C.; Rossini, D.; Pietrantonio, F.; Catteau, A.; Salvatore, L.; Lonardi, S.; Boquet, I.; Tamberi, S.; Marmorino, F.; Moretto, R.; et al. Upfront FOLFOXIRI plus Bevacizumab with or without Atezolizumab in the Treatment of Patients with Metastatic Colorectal Cancer (AtezoTRIBE): A Multicentre, Open-Label, Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 2022, 23, 876–887. [Google Scholar] [CrossRef]
- Van den Eynde, M.; Mlecnik, B.; Bindea, G.; Fredriksen, T.; Church, S.E.; Lafontaine, L.; Haicheur, N.; Marliot, F.; Angelova, M.; Vasaturo, A.; et al. The Link between the Multiverse of Immune Microenvironments in Metastases and the Survival of Colorectal Cancer Patients. Cancer Cell 2018, 34, 1012–1026.e3. [Google Scholar] [CrossRef]
- Trivedi, S.; Srivastava, R.M.; Concha-Benavente, F.; Ferrone, S.; Garcia-Bates, T.M.; Li, J.; Ferris, R.L. Anti-EGFR Targeted Monoclonal Antibody Isotype Influences Antitumor Cellular Immunity in Head and Neck Cancer Patients. Clin. Cancer Res. 2016, 22, 5229–5237. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.; Binder, M.; Goekkurt, E.; Lorenzen, S.; Riera-Knorrenschild, J.; Depenbusch, R.; Ettrich, T.J.; Doerfel, S.; Al-Batran, S.-E.; Karthaus, M.; et al. Avelumab and Cetuximab in Combination with FOLFOX in Patients with Previously Untreated Metastatic Colorectal Cancer (MCRC): Final Results of the Phase II AVETUX Trial (AIO-KRK-0216). J. Clin. Oncol. 2020, 38, 96. [Google Scholar] [CrossRef]
- Van Den Eynde, M.; Huyghe, N.; De Cuyper, A.; Sinapi, I.; Ferrier, M.; Gilet, M.; Van Maanen, A.; Castella, M.-L.; Galon, J.; Carrasco, J. Interim Analysis of the AVETUXIRI Trial: Avelumab Combined with Cetuximab and Irinotecan for Treatment of Refractory Microsatellite Stable (MSS) Metastatic Colorectal Cancer (MCRC)—A Proof of Concept, Open-Label, Nonrandomized Phase IIa Study. J. Clin. Oncol. 2021, 39, 80. [Google Scholar] [CrossRef]
- Martinelli, E.; Martini, G.; Troiani, T.; Pietrantonio, F.; Avallone, A.; Normanno, N.; Nappi, A.; Maiello, E.; Falcone, A.; Santabarbara, G.; et al. 397O Avelumab plus Cetuximab in Pre-Treated RAS Wild Type Metastatic Colorectal Cancer Patients as a Rechallenge Strategy: The Phase II CAVE (Cetuximab-Avelumab) MCRC Study. Ann. Oncol. 2020, 31, S409–S410. [Google Scholar] [CrossRef]
- Napolitano, S.; Martini, G.; Ciardiello, D.; Di Maio, M.; Normanno, N.; Avallone, A.; Martinelli, E.; Maiello, E.; Troiani, T.; Ciardiello, F. CAVE-2 (Cetuximab-AVElumab) MCRC: A Phase II Randomized Clinical Study of the Combination of Avelumab Plus Cetuximab as a Rechallenge Strategy in Pre-Treated RAS/BRAF Wild-Type MCRC Patients. Front. Oncol. 2022, 12, 940523. [Google Scholar] [CrossRef]
- Lee, M.S.; Loehrer, P.J.; Imanirad, I.; Cohen, S.; Ciombor, K.K.; Moore, D.T.; Carlson, C.A.; Sanoff, H.K.; McRee, A.J. Phase II Study of Ipilimumab, Nivolumab, and Panitumumab in Patients with KRAS/NRAS/BRAF Wild-Type (WT) Microsatellite Stable (MSS) Metastatic Colorectal Cancer (MCRC). J. Clin. Oncol. 2021, 39, 7. [Google Scholar] [CrossRef]
- Morris, V.K.; Parseghian, C.M.; Escano, M.; Johnson, B.; Raghav, K.P.S.; Dasari, A.; Huey, R.; Overman, M.J.; Willis, J.; Lee, M.S.; et al. Phase I/II Trial of Encorafenib, Cetuximab, and Nivolumab in Patients with Microsatellite Stable, BRAF V600E Metastatic Colorectal Cancer. JCO 2022, 40, 12. [Google Scholar] [CrossRef]
- Martinelli, E.; Ciardiello, D.; Martini, G.; Troiani, T.; Cardone, C.; Vitiello, P.P.; Normanno, N.; Rachiglio, A.M.; Maiello, E.; Latiano, T.; et al. Implementing Anti-Epidermal Growth Factor Receptor (EGFR) Therapy in Metastatic Colorectal Cancer: Challenges and Future Perspectives. Ann. Oncol. 2020, 31, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Pietrantonio, F.; Lobefaro, R.; Antista, M.; Lonardi, S.; Raimondi, A.; Morano, F.; Mosconi, S.; Rimassa, L.; Murgioni, S.; Sartore-Bianchi, A.; et al. Capecitabine and Temozolomide versus FOLFIRI in RAS-Mutated, MGMT-Methylated Metastatic Colorectal Cancer. Clin. Cancer Res. 2020, 26, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Esteller, M.; Sanchez-Cespedes, M.; Rosell, R.; Sidransky, D.; Baylin, S.B.; Herman, J.G. Detection of Aberrant Promoter Hypermethylation of Tumor Suppressor Genes in Serum DNA from Non-Small Cell Lung Cancer Patients. Cancer Res. 1999, 59, 67–70. [Google Scholar]
- Esteller, M.; Herman, J.G. Generating Mutations but Providing Chemosensitivity: The Role of O6-Methylguanine DNA Methyltransferase in Human Cancer. Oncogene 2004, 23, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hochhauser, D.; Glynne-Jones, R.; Potter, V.; Grávalos, C.; Doyle, T.J.; Pathiraja, K.; Zhang, Q.; Zhang, L.; Sausville, E.A. A Phase II Study of Temozolomide in Patients with Advanced Aerodigestive Tract and Colorectal Cancers and Methylation of the O 6-Methylguanine-DNA Methyltransferase Promoter. Mol. Cancer Ther. 2013, 12, 809–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amatu, A.; Barault, L.; Moutinho, C.; Cassingena, A.; Bencardino, K.; Ghezzi, S.; Palmeri, L.; Bonazzina, E.; Tosi, F.; Ricotta, R.; et al. Tumor MGMT Promoter Hypermethylation Changes over Time Limit Temozolomide Efficacy in a Phase II Trial for Metastatic Colorectal Cancer. Ann. Oncol. 2016, 27, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Calegari, M.A.; Inno, A.; Monterisi, S.; Orlandi, A.; Santini, D.; Basso, M.; Cassano, A.; Martini, M.; Cenci, T.; de Pascalis, I.; et al. A Phase 2 Study of Temozolomide in Pretreated Metastatic Colorectal Cancer with MGMT Promoter Methylation. Br. J. Cancer 2017, 116, 1279–1286. [Google Scholar] [CrossRef]
- Barault, L.; Amatu, A.; Bleeker, F.E.; Moutinho, C.; Falcomatà, C.; Fiano, V.; Cassingena, A.; Siravegna, G.; Milione, M.; Cassoni, P.; et al. Digital PCR Quantification of MGMT Methylation Refines Prediction of Clinical Benefit from Alkylating Agents in Glioblastoma and Metastatic Colorectal Cancer. Ann. Oncol. 2015, 26, 1994–1999. [Google Scholar] [CrossRef]
- Sartore-Bianchi, A.; Pietrantonio, F.; Amatu, A.; Milione, M.; Cassingena, A.; Ghezzi, S.; Caporale, M.; Berenato, R.; Falcomatà, C.; Pellegrinelli, A.; et al. Digital PCR Assessment of MGMT Promoter Methylation Coupled with Reduced Protein Expression Optimises Prediction of Response to Alkylating Agents in Metastatic Colorectal Cancer Patients. Eur. J. Cancer 2017, 71, 43–50. [Google Scholar] [CrossRef]
- Hunter, C.; Smith, R.; Cahill, D.P.; Stephens, P.; Stevens, C.; Teague, J.; Greenman, C.; Edkins, S.; Bignell, G.; Davies, H.; et al. A Hypermutation Phenotype and Somatic MSH6 Mutations in Recurrent Human Malignant Gliomas after Alkylator Chemotherapy. Cancer Res. 2006, 66, 3987–3991. [Google Scholar] [CrossRef] [Green Version]
- Yip, S.; Miao, J.; Cahill, D.P.; Iafrate, A.J.; Aldape, K.; Nutt, C.L.; Louis, D.N. MSH6 Mutations Arise in Glioblastomas during Temozolomide Therapy and Mediate Temozolomide Resistance. Clin. Cancer Res. 2009, 15, 4622–4629. [Google Scholar] [CrossRef] [Green Version]
- Hervieu, A.; Rébé, C.; Végran, F.; Chalmin, F.; Bruchard, M.; Vabres, P.; Apetoh, L.; Ghiringhelli, F.; Mignot, G. Dacarbazine-Mediated Upregulation of NKG2D Ligands on Tumor Cells Activates NK and CD8 T Cells and Restrains Melanoma Growth. J. Investig. Dermatol. 2013, 133, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Germano, G.; Lamba, S.; Rospo, G.; Barault, L.; Magrì, A.; Maione, F.; Russo, M.; Crisafulli, G.; Bartolini, A.; Lerda, G.; et al. Inactivation of DNA Repair Triggers Neoantigen Generation and Impairs Tumour Growth. Nature 2017, 552, 116–120. [Google Scholar] [CrossRef]
- Morano, F.; Raimondi, A.; Pagani, F.; Lonardi, S.; Salvatore, L.; Cremolini, C.; Murgioni, S.; Randon, G.; Palermo, F.; Antonuzzo, L.; et al. Temozolomide Followed by Combination with Low-Dose Ipilimumab and Nivolumab in Patients With Microsatellite-Stable, O 6 -Methylguanine–DNA Methyltransferase–Silenced Metastatic Colorectal Cancer: The MAYA Trial. J. Clin. Oncol. 2022, 40, 1562–1573. [Google Scholar] [CrossRef]
- Siena, S.; Sartore-Bianchi, A.; Personeni, N.; Pietrantonio, F.; Germano, G.; Amatu, A.; Bonoldi, E.; Valtorta, E.; Barault, L.; Di Nicolantonio, F.; et al. Pembrolizumab in MMR-Proficient Metastatic Colorectal Cancer Pharmacologically Primed to Trigger Dynamic Hypermutation Status: The ARETHUSA Trial. J. Clin. Oncol. 2019, 37, TPS2659. [Google Scholar] [CrossRef]
- Temozolomide, Cisplatin, and Nivolumab in People with Colorectal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04457284 (accessed on 13 November 2022).
- Deng, S.; Vlatkovic, T.; Li, M.; Zhan, T.; Veldwijk, M.R.; Herskind, C. Targeting the DNA Damage Response and DNA Repair Pathways to Enhance Radiosensitivity in Colorectal Cancer. Cancers 2022, 14, 4874. [Google Scholar] [CrossRef]
- Nosho, K.; Yamamoto, H.; Mikami, M.; Taniguchi, H.; Takahashi, T.; Adachi, Y.; Imamura, A.; Imai, K.; Shinomura, Y. Overexpression of Poly(ADP-Ribose) Polymerase-1 (PARP-1) in the Early Stage of Colorectal Carcinogenesis. Eur. J. Cancer 2006, 42, 2374–2381. [Google Scholar] [CrossRef]
- Vikas, P.; Borcherding, N.; Chennamadhavuni, A.; Garje, R. Therapeutic Potential of Combining PARP Inhibitor and Immunotherapy in Solid Tumors. Front. Oncol. 2020, 10, 570. [Google Scholar] [CrossRef]
- Phase I/II Study of the Anti-Programmed Death Ligand-1 Durvalumab Antibody (MEDI4736) in Combination with Olaparib and/or Cediranib for Advanced Solid Tumors and Advanced or Recurrent Ovarian, Triple Negative Breast, Lung, Prostate and Colorectal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT02484404 (accessed on 21 November 2022).
- Zimmer, A.S.; Nichols, E.; Cimino-Mathews, A.; Peer, C.; Cao, L.; Lee, M.-J.; Kohn, E.C.; Annunziata, C.M.; Lipkowitz, S.; Trepel, J.B.; et al. A Phase I Study of the PD-L1 Inhibitor, Durvalumab, in Combination with a PARP Inhibitor, Olaparib, and a VEGFR1–3 Inhibitor, Cediranib, in Recurrent Women’s Cancers with Biomarker Analyses. J. Immunother. Cancer 2019, 7, 197. [Google Scholar] [CrossRef]
- Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients with Advanced or Metastatic Solid Tumor Malignancies. Available online: https://clinicaltrials.gov/ct2/show/NCT03772561 (accessed on 21 November 2022).
- Testing the Combination of the Anti-Cancer Drugs Copanlisib, Olaparib, and MEDI4736 (Durvalumab) in Patients with Advanced Solid Tumors with Selected Mutations. Available online: https://clinicaltrials.gov/ct2/show/NCT03842228 (accessed on 21 November 2022).
- Study of Olaparib (MK-7339) in Combination with Pembrolizumab (MK-3475) in the Treatment of Homologous Recombination Repair Mutation (HRRm) and/or Homologous Recombination Deficiency (HRD)-Positive Advanced Cancer (MK-7339-007/KEYLYNK-007. Available online: https://clinicaltrials.gov/ct2/show/NCT04123366 (accessed on 21 November 2022).
- Safety, Tolerability and Pharmacokinetics of AZD1775 (Adavosertib) Plus MEDI4736 (Durvalumab) in Patients with Advanced Solid Tumours. Available online: https://clinicaltrials.gov/ct2/show/NCT02617277 (accessed on 21 November 2022).
- Avelumab and M6620 for the Treatment of DDR Deficient Metastatic or Unresectable Solid Tumors. Available online: https://clinicaltrials.gov/ct2/show/NCT04266912 (accessed on 21 November 2022).
- Ohm, J.E.; Gabrilovich, D.I.; Sempowski, G.D.; Kisseleva, E.; Parman, K.S.; Nadaf, S.; Carbone, D.P. VEGF Inhibits T-Cell Development and May Contribute to Tumor-Induced Immune Suppression. Blood 2003, 101, 4878–4886. [Google Scholar] [CrossRef]
- Galon, J.; Bruni, D. Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Grothey, A.; Prager, G.; Yoshino, T. The Mechanism of Action of Regorafenib in Colorectal Cancer: A Guide for the Community Physician. Clin. Adv. Hematol. Oncol. 2019, 17 (Suppl. 12), 1–19. [Google Scholar] [PubMed]
- Abou-Elkacem, L.; Arns, S.; Brix, G.; Gremse, F.; Zopf, D.; Kiessling, F.; Lederle, W. Regorafenib Inhibits Growth, Angiogenesis, and Metastasis in a Highly Aggressive, Orthotopic Colon Cancer Model. Mol. Cancer Ther. 2013, 12, 1322–1331. [Google Scholar] [CrossRef] [Green Version]
- Ou, D.-L.; Chen, C.-W.; Hsu, C.-L.; Chung, C.-H.; Feng, Z.-R.; Lee, B.-S.; Cheng, A.-L.; Yang, M.-H.; Hsu, C. Regorafenib Enhances Antitumor Immunity via Inhibition of P38 Kinase/Creb1/Klf4 Axis in Tumor-Associated Macrophages. J. Immunother. Cancer 2021, 9, e001657. [Google Scholar] [CrossRef] [PubMed]
- Doleschel, D.; Hoff, S.; Koletnik, S.; Rix, A.; Zopf, D.; Kiessling, F.; Lederle, W. Regorafenib Enhances Anti-PD1 Immunotherapy Efficacy in Murine Colorectal Cancers and Their Combination Prevents Tumor Regrowth. J. Exp. Clin. Cancer Res. 2021, 40, 288. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; et al. Regorafenib Plus Nivolumab in Patients with Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, EPOC1603). J. Clin. Oncol. 2020, 38, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Fakih, M.; Raghav, K.P.S.; Chang, D.Z.; Bendell, J.C.; Larson, T.; Cohn, A.L.; Huyck, T.K.; Cosgrove, D.; Fiorillo, J.A.; Garbo, L.E.; et al. Single-Arm, Phase 2 Study of Regorafenib plus Nivolumab in Patients with Mismatch Repair-Proficient (PMMR)/Microsatellite Stable (MSS) Colorectal Cancer (CRC). J. Clin. Oncol. 2021, 39, 3560. [Google Scholar] [CrossRef]
- Cousin, S.; Cantarel, C.; Guegan, J.-P.; Gomez-Roca, C.; Metges, J.-P.; Adenis, A.; Pernot, S.; Bellera, C.; Kind, M.; Auzanneau, C.; et al. Regorafenib-Avelumab Combination in Patients with Microsatellite Stable Colorectal Cancer (REGOMUNE): A Single-Arm, Open-Label, Phase II Trial. Clin. Cancer Res. 2021, 27, 2139–2147. [Google Scholar] [CrossRef]
- Grothey, A.; Cutsem, E.V.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib Monotherapy for Previously Treated Metastatic Colorectal Cancer (CORRECT): An International, Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Kim, R.D.; Kovari, B.P.; Martinez, M.; Xie, H.; Sahin, I.H.; Mehta, R.; Strosberg, J.; Imanirad, I.; Ghayouri, M.; Kim, Y.; et al. A Phase I/Ib Study of Regorafenib and Nivolumab in Mismatch Repair Proficient Advanced Refractory Colorectal Cancer. Eur. J. Cancer 2022, 169, 93–102. [Google Scholar] [CrossRef]
- Barzi, A.; Azad, N.S.; Yang, Y.; Tsao-Wei, D.; Rehman, R.; Fakih, M.; Iqbal, S.; El-Khoueiry, A.B.; Millstein, J.; Jayachandran, P.; et al. Phase I/II Study of Regorafenib (Rego) and Pembrolizumab (Pembro) in Refractory Microsatellite Stable Colorectal Cancer (MSSCRC). J. Clin. Oncol. 2022, 40, 15. [Google Scholar] [CrossRef]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the Diagnosis, Staging and Treatment of Patients with Metastatic Breast Cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef]
- Gomez-Roca, C.; Yanez, E.; Im, S.-A.; Castanon Alvarez, E.; Senellart, H.; Doherty, M.; García-Corbacho, J.; Lopez, J.S.; Basu, B.; Maurice-Dror, C.; et al. LEAP-005: A Phase II Multicohort Study of Lenvatinib plus Pembrolizumab in Patients with Previously Treated Selected Solid Tumors—Results from the Colorectal Cancer Cohort. J. Clin. Oncol. 2021, 39, 94. [Google Scholar] [CrossRef]
- Merck Sharp & Dohme LLC A Phase 3 Randomized Study of Lenvatinib in Combination with Pembrolizumab Versus Standard of Care in Participants with Metastatic Colorectal Cancer Who Have Received and Progressed On or After or Became Intolerant to Prior Treatment. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04776148 (accessed on 21 November 2022).
- Kato, Y.; Tabata, K.; Kimura, T.; Yachie-Kinoshita, A.; Ozawa, Y.; Yamada, K.; Ito, J.; Tachino, S.; Hori, Y.; Matsuki, M.; et al. Lenvatinib plus Anti-PD-1 Antibody Combination Treatment Activates CD8+ T Cells through Reduction of Tumor-Associated Macrophage and Activation of the Interferon Pathway. PLoS ONE 2019, 14, e0212513. [Google Scholar] [CrossRef]
- Saeed, A.; Park, R.; Dai, J.; Al-Rajabi, R.M.T.; Kasi, A.; Saeed, A.; Collins, Z.; Thompson, K.; Barbosa, L.; Mulvaney, K.; et al. Phase II Trial of Cabozantinib (Cabo) plus Durvalumab (Durva) in Chemotherapy Refractory Patients with Advanced Mismatch Repair Proficient/Microsatellite Stable (PMMR/MSS) Colorectal Cancer (CRC): CAMILLA CRC Cohort Results. J. Clin. Oncol. 2022, 40, 135. [Google Scholar] [CrossRef]
- Abrams, T.A.; Kazmi, S.M.A.; Winer, I.S.; Subbiah, V.; Falchook, G.S.; Reilley, M.; Kunk, P.R.; Goel, S.; Garrido-Laguna, I.; Kochenderfer, M.D.; et al. A Phase 1b Multitumor Cohort Study of Cabozantinib plus Atezolizumab in Advanced Solid Tumors (COSMIC-021): Results of the Colorectal Cancer Cohort. J. Clin. Oncol. 2022, 40, 121. [Google Scholar] [CrossRef]
- Salem, M.E.; Andre, T.; El-Refai, S.M.; Kopetz, S.; Tabernero, J.; Sinicrope, F.A.; Tie, J.; George, T.J.; VanCutsem, E.; Mauer, E.; et al. Impact of RAS Mutations on Immunologic Characteristics of the Tumor Microenvironment (TME) in Patients with Microsatellite Instability-High (MSI-H) or Mismatch-Repair–Deficient (DMMR) Colorectal Cancer (CRC). J. Clin. Oncol. 2022, 40, 3067. [Google Scholar] [CrossRef]
- Sun, L.; Huang, S.; Li, D.; Mao, Y.; Wang, Y.; Wu, J. Efficacy and Safety of Fruquintinib Plus PD-1 Inhibitors Versus Regorafenib Plus PD-1 Inhibitors in Refractory Microsatellite Stable Metastatic Colorectal Cancer. Front. Oncol. 2021, 11, 754881. [Google Scholar] [CrossRef]
- Nie, C.; Lv, H.; Chen, B.; Xu, W.; Wang, J.; Liu, Y.; Wang, S.; Zhao, J.; He, Y.; Chen, X. Microsatellite Stable Metastatic Colorectal Cancer without Liver Metastasis May Be Preferred Population for Regorafenib or Fruquintinib plus Sintilimab as Third-Line or above Therapy:A Real-World Study. Front. Oncol. 2022, 12, 917353. [Google Scholar] [CrossRef]
- Hutchison Medipharma Limited. An Open-Label, Phase 1b/2 Study to Evaluate the Safety and Efficacy of Fruquintinib in Combination With Tislelizumab in Patients With Advanced Solid Tumors. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04577963 (accessed on 21 November 2022).
- Zhang, J. A Single-Arm, Multicenter Phase II Clinical Study to Evaluate the Efficacy and Safety of Tyrosine Kinase Inhibitor (TKI) in Combination with Anti-PD-1 Antibody in TKI-Responded Microsatellite Stability/Proficient Mismatch Repair (MSS/PMMR) Metastatic Colorectal Adenocarcinoma. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04483219 (accessed on 21 November 2022).
- Tolba, M.F. Revolutionizing the Landscape of Colorectal Cancer Treatment: The Potential Role of Immune Checkpoint Inhibitors. Int. J. Cancer 2020, 147, 2996–3006. [Google Scholar] [CrossRef]
- Coelho, M.A.; de Carné Trécesson, S.; Rana, S.; Zecchin, D.; Moore, C.; Molina-Arcas, M.; East, P.; Spencer-Dene, B.; Nye, E.; Barnouin, K.; et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 MRNA. Immunity 2017, 47, 1083–1099.e6. [Google Scholar] [CrossRef] [Green Version]
- Mimura, K.; Shiraishi, K.; Mueller, A.; Izawa, S.; Kua, L.-F.; So, J.; Yong, W.-P.; Fujii, H.; Seliger, B.; Kiessling, R.; et al. The MAPK Pathway Is a Predominant Regulator of HLA-A Expression in Esophageal and Gastric Cancer. J. Immunol. 2013, 191, 6261–6272. [Google Scholar] [CrossRef] [Green Version]
- Ebert, P.J.R.; Cheung, J.; Yang, Y.; McNamara, E.; Hong, R.; Moskalenko, M.; Gould, S.E.; Maecker, H.; Irving, B.A.; Kim, J.M.; et al. MAP Kinase Inhibition Promotes T Cell and Anti-Tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity 2016, 44, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Mayes, P.A.; Eastman, S.; Shi, H.; Yadavilli, S.; Zhang, T.; Yang, J.; Seestaller-Wehr, L.; Zhang, S.-Y.; Hopson, C.; et al. The BRAF and MEK Inhibitors Dabrafenib and Trametinib: Effects on Immune Function and in Combination with Immunomodulatory Antibodies Targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res. 2015, 21, 1639–1651. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Kim, T.W.; Bendell, J.; Argilés, G.; Tebbutt, N.C.; Di Bartolomeo, M.; Falcone, A.; Fakih, M.; Kozloff, M.; Segal, N.H.; et al. Atezolizumab with or without Cobimetinib versus Regorafenib in Previously Treated Metastatic Colorectal Cancer (IMblaze370): A Multicentre, Open-Label, Phase 3, Randomised, Controlled Trial. Lancet Oncol. 2019, 20, 849–861. [Google Scholar] [CrossRef] [PubMed]
- McGregor, M.; Price, T.J. IMblaze 370: Lessons Learned and Future Strategies in Colorectal Cancer Treatment. Ann. Transl. Med. 2019, 7, 602. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Kim, T.-W.; Lee, C.B.; Goh, B.-C.; Miller, W.H.; Oh, D.-Y.; Jamal, R.; Chee, C.-E.; Chow, L.Q.M.; Gainor, J.F.; et al. Phase Ib Study of Atezolizumab Combined with Cobimetinib in Patients with Solid Tumors. Ann. Oncol. 2019, 30, 1134–1142. [Google Scholar] [CrossRef]
- Friedrich, T.; Blatchford, P.J.; Lentz, R.W.; Davis, S.L.; Kim, S.S.; Leal, A.D.; Voorde, Z.V.D.; Lee, M.R.; Waring, M.; Cull, T.; et al. A Phase II Study of Pembrolizumab, Binimetinib, and Bevacizumab in Patients with Microsatellite-Stable, Refractory, Metastatic Colorectal Cancer (MCRC). J. Clin. Oncol. 2022. [Google Scholar] [CrossRef]
- Lee, J.J.; Chu, E. Recent Advances in the Clinical Development of Immune Checkpoint Blockade Therapy for Mismatch Repair Proficient (PMMR)/Non-MSI-H Metastatic Colorectal Cancer. Clin. Color. Cancer 2018, 17, 258–273. [Google Scholar] [CrossRef]
- A Study to Assess the Safety, Tolerability and Anti-Tumour Activity of Ascending Doses of Selumetinib in Combination with MEDI4736 and Selumetinib in Combination with MEDI4736 and Tremelimumab in Patients with Advanced Solid Tumours. Available online: https://clinicaltrials.gov/ct2/show/NCT02586987 (accessed on 12 November 2022).
- Goel, A.; Nagasaka, T.; Arnold, C.N.; Inoue, T.; Hamilton, C.; Niedzwiecki, D.; Compton, C.; Mayer, R.J.; Goldberg, R.; Bertagnolli, M.M.; et al. The CpG Island Methylator Phenotype and Chromosomal Instability Are Inversely Correlated in Sporadic Colorectal Cancer. Gastroenterology 2007, 132, 127–138. [Google Scholar] [CrossRef]
- Molina-Cerrillo, J.; San Román, M.; Pozas, J.; Alonso-Gordoa, T.; Pozas, M.; Conde, E.; Rosas, M.; Grande, E.; García-Bermejo, M.L.; Carrato, A. BRAF Mutated Colorectal Cancer: New Treatment Approaches. Cancers 2020, 12, 1571. [Google Scholar] [CrossRef]
- Corcoran, R.; Giannakis, M.; Allen, J.; Chen, J.; Pelka, K.; Chao, S.; Meyerhardt, J.; Enzinger, A.; Enzinger, P.; McCleary, N.; et al. SO-26 Clinical Efficacy of Combined BRAF, MEK, and PD-1 Inhibition in BRAFV600E Colorectal Cancer Patients. Ann. Oncol. 2020, 31, S226–S227. [Google Scholar] [CrossRef]
- Ros, J.; Baraibar, I.; Sardo, E.; Mulet, N.; Salvà, F.; Argilés, G.; Martini, G.; Ciardiello, D.; Cuadra, J.L.; Tabernero, J.; et al. BRAF, MEK and EGFR Inhibition as Treatment Strategies in BRAF V600E Metastatic Colorectal Cancer. Adv. Med. Oncol 2021, 13, 175883592199297. [Google Scholar] [CrossRef]
- A Study of Select Drug Combinations in Adult Patients with Advanced/Metastatic BRAF V600 Colorectal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04294160 (accessed on 13 November 2022).
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; et al. KRAS G12C Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Fakih, M.G.; Kopetz, S.; Kuboki, Y.; Kim, T.W.; Munster, P.N.; Krauss, J.C.; Falchook, G.S.; Han, S.-W.; Heinemann, V.; Muro, K.; et al. Sotorasib for Previously Treated Colorectal Cancers with KRASG12C Mutation (CodeBreaK100): A Prespecified Analysis of a Single-Arm, Phase 2 Trial. Lancet Oncol. 2022, 23, 115–124. [Google Scholar] [CrossRef]
- A Phase 1/2, Study Evaluating the Safety, Tolerability, PK, and Efficacy of Sotorasib (AMG 510) in Subjects with Solid Tumors with a Specific KRAS Mutation. Available online: https://clinicaltrials.gov/ct2/show/NCT03600883 (accessed on 13 November 2022).
- Study of JDQ443 in Patients with Advanced Solid Tumors Harboring the KRAS G12C Mutation. Available online: https://clinicaltrials.gov/ct2/show/NCT04699188 (accessed on 13 November 2022).
- Chen, X.; Zou, F.; Hu, Z.; Du, G.; Yu, P.; Wang, W.; Wang, H.; Ye, L.; Tian, J. PCC0208023, a Potent SHP2 Allosteric Inhibitor, Imparts an Antitumor Effect against KRAS Mutant Colorectal Cancer. Toxicol. Appl. Pharmacol. 2020, 398, 115019. [Google Scholar] [CrossRef]
- Baraibar, I.; Mirallas, O.; Saoudi, N.; Ros, J.; Salvà, F.; Tabernero, J.; Élez, E. Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers 2021, 13, 6311. [Google Scholar] [CrossRef]
- Morschhauser, F.; Machiels, J.-P.; Salles, G.; Rottey, S.; Rule, S.A.J.; Cunningham, D.; Peyrade, F.; Fruchart, C.; Arkenau, H.-T.; Genvresse, I.; et al. On-Target Pharmacodynamic Activity of the PI3K Inhibitor Copanlisib in Paired Biopsies from Patients with Malignant Lymphoma and Advanced Solid Tumors. Mol. Cancer Ther. 2020, 19, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Jakubowski, C.; Collins, N.B.; Sugar, E.A.; Berg, M.; Cao, H.; Giannakis, M.; Jaffee, E.M.; Azad, N.S. A Phase I/II Study of PI3Kinase Inhibition with Copanlisib Combined with the Anti-PD-1 Antibody Nivolumab in Relapsed/Refractory Solid Tumors with Expansions in MSS Colorectal Cancer. J. Clin. Oncol. 2020, 38, TPS4114. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; et al. Phase I Study of Single-Agent Anti–Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates. J. Clin. Oncol. 2010, 28, 3167–3175. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. CheckMate 067: 6.5-Year Outcomes in Patients (Pts) with Advanced Melanoma. J. Clin. Oncol. 2021, 39, 9506. [Google Scholar] [CrossRef]
- Chen, E.X.; Jonker, D.J.; Loree, J.M.; Kennecke, H.F.; Berry, S.R.; Couture, F.; Ahmad, C.E.; Goffin, J.R.; Kavan, P.; Harb, M.; et al. Effect of Combined Immune Checkpoint Inhibition vs. Best Supportive Care Alone in Patients with Advanced Colorectal Cancer: The Canadian Cancer Trials Group CO.26 Study. JAMA Oncol. 2020, 6, 831. [Google Scholar] [CrossRef]
- Vaccaro, G.M.; Rothe, M.; Mangat, P.K.; Garrett-Mayer, E.; Hwang, J.J.; Alese, O.B.; Khalil, M.F.; Hameed, M.K.; Duvivier, H.L.; Cannon, T.L.; et al. Nivolumab plus Ipilimumab (N+I) in Patients (Pts) with Colorectal Cancer (CRC) with High Tumor Mutational Burden (HTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. J. Clin. Oncol. 2022, 40, 107. [Google Scholar] [CrossRef]
- Bullock, A.; Grossman, J.; Fakih, M.; Lenz, H.; Gordon, M.; Margolin, K.; Wilky, B.; Mahadevan, D.; Trent, J.; Bockorny, B.; et al. LBA O-9 Botensilimab, a Novel Innate/Adaptive Immune Activator, plus Balstilimab (Anti-PD-1) for Metastatic Heavily Pretreated Microsatellite Stable Colorectal Cancer. Ann. Oncol. 2022, 33, S376. [Google Scholar] [CrossRef]
- Fc-Engineered Anti-CTLA-4 Monoclonal Antibody in Advanced Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03860272 (accessed on 17 November 2022).
- Yu, J.; Green, M.D.; Li, S.; Sun, Y.; Journey, S.N.; Choi, J.E.; Rizvi, S.M.; Qin, A.; Waninger, J.J.; Lang, X.; et al. Liver Metastasis Restrains Immunotherapy Efficacy via Macrophage-Mediated T Cell Elimination. Nat. Med. 2021, 27, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Garralda, E.; Sukari, A.; Lakhani, N.J.; Patnaik, A.; Lou, Y.; Im, S.-A.; Golan, T.; Geva, R.; Wermke, M.; De Miguel, M.; et al. A Phase 1 First-in-Human Study of the Anti-LAG-3 Antibody MK4280 (Favezelimab) plus Pembrolizumab in Previously Treated, Advanced Microsatellite Stable Colorectal Cancer. J. Clin. Oncol. 2021, 39, 3584. [Google Scholar] [CrossRef]
- Whiteside, T.L.; Demaria, S.; Rodriguez-Ruiz, M.E.; Zarour, H.M.; Melero, I. Emerging Opportunities and Challenges in Cancer Immunotherapy. Clin. Cancer Res. 2016, 22, 1845–1855. [Google Scholar] [CrossRef] [Green Version]
- Segal, N.H.; Kemeny, N.E.; Cercek, A.; Reidy, D.L.; Raasch, P.J.; Warren, P.; Hrabovsky, A.E.; Campbell, N.; Shia, J.; Goodman, K.A.; et al. Non-Randomized Phase II Study to Assess the Efficacy of Pembrolizumab (Pem) plus Radiotherapy (RT) or Ablation in Mismatch Repair Proficient (PMMR) Metastatic Colorectal Cancer (MCRC) Patients. J. Clin. Oncol. 2016, 34, 3539. [Google Scholar] [CrossRef]
- Parikh, A.R.; Clark, J.W.; Wo, J.Y.-L.; Yeap, B.Y.; Allen, J.N.; Blaszkowsky, L.S.; Ryan, D.P.; Giantonio, B.J.; Weekes, C.D.; Zhu, A.X.; et al. A Phase II Study of Ipilimumab and Nivolumab with Radiation in Microsatellite Stable (MSS) Metastatic Colorectal Adenocarcinoma (MCRC). JCO 2019, 37, 3514. [Google Scholar] [CrossRef]
- Segal, N.H.; Cercek, A.; Ku, G.; Wu, A.J.; Rimner, A.; Khalil, D.N.; Reidy-Lagunes, D.; Cuaron, J.; Yang, T.J.; Weiser, M.R.; et al. Phase II Single-Arm Study of Durvalumab and Tremelimumab with Concurrent Radiotherapy in Patients with Mismatch Repair–Proficient Metastatic Colorectal Cancer. Clin. Cancer Res. 2021, 27, 2200–2208. [Google Scholar] [CrossRef]
- Zheng, W.; Skowron, K.B.; Namm, J.P.; Burnette, B.; Fernandez, C.; Arina, A.; Liang, H.; Spiotto, M.T.; Posner, M.C.; Fu, Y.-X.; et al. Combination of Radiotherapy and Vaccination Overcomes Checkpoint Blockade Resistance. Oncotarget 2016, 7, 43039–43051. [Google Scholar] [CrossRef] [Green Version]
- Atezolizumab with Stereotactic Ablative Radiotherapy in Patients with Metastatic Tumours. Available online: https://clinicaltrials.gov/ct2/show/NCT02992912 (accessed on 12 November 2022).
- Tauriello, D.V.F.; Palomo-Ponce, S.; Stork, D.; Berenguer-Llergo, A.; Badia-Ramentol, J.; Iglesias, M.; Sevillano, M.; Ibiza, S.; Cañellas, A.; Hernando-Momblona, X.; et al. TGFβ Drives Immune Evasion in Genetically Reconstituted Colon Cancer Metastasis. Nature 2018, 554, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.W.; Lee, K.W.; Ahn, J.B.; Lee, J.; Ryu, J.; Oh, B.; Ock, C.-Y.; Hwang, S.; Hahm, K.B.; Kim, S.-J.; et al. Efficacy and Safety of Vactosertib and Pembrolizumab Combination in Patients with Previously Treated Microsatellite Stable Metastatic Colorectal Cancer. J. Clin. Oncol. 2021, 39, 3573. [Google Scholar] [CrossRef]
- Morris, V.K.; Overman, M.J.; Lam, M.; Parseghian, C.M.; Johnson, B.; Dasari, A.; Raghav, K.; Kee, B.K.; Huey, R.; Wolff, R.A.; et al. Bintrafusp Alfa, an Anti-PD-L1:TGFβ Trap Fusion Protein, in Patients with CtDNA-Positive, Liver-Limited Metastatic Colorectal Cancer. Cancer Res. Commun. 2022, 2, 979–986. [Google Scholar] [CrossRef]
- Dodagatta-Marri, E.; Meyer, D.S.; Reeves, M.Q.; Paniagua, R.; To, M.D.; Binnewies, M.; Broz, M.L.; Mori, H.; Wu, D.; Adoumie, M.; et al. α-PD-1 Therapy Elevates Treg/Th Balance and Increases Tumor Cell PSmad3 That Are Both Targeted by α-TGFβ Antibody to Promote Durable Rejection and Immunity in Squamous Cell Carcinomas. J. Immunother. Cancer 2019, 7, 62. [Google Scholar] [CrossRef]
- Novartis Pharmaceuticals. A Phase I/Ib, Open-Label, Multi-Center Dose Escalation Study of NIS793 in Combination with PDR001 in Adult Patients with Advanced Malignancies. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT02947165 (accessed on 27 December 2022).
- Seshagiri, S.; Stawiski, E.W.; Durinck, S.; Modrusan, Z.; Storm, E.E.; Conboy, C.B.; Chaudhuri, S.; Guan, Y.; Janakiraman, V.; Jaiswal, B.S.; et al. Recurrent R-Spondin Fusions in Colon Cancer. Nature 2012, 488, 660–664. [Google Scholar] [CrossRef] [Green Version]
- Eisai Inc. An Open-Label, Multicenter, Phase 1b/2 Study of E7386 in Combination with Pembrolizumab in Previously Treated Subjects With Selected Solid Tumors. 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT05091346 (accessed on 27 December 2022).
- Yamada, K.; Hori, Y.; Inoue, S.; Yamamoto, Y.; Iso, K.; Kamiyama, H.; Yamaguchi, A.; Kimura, T.; Uesugi, M.; Ito, J.; et al. E7386, a Selective Inhibitor of the Interaction between β-Catenin and CBP, Exerts Antitumor Activity in Tumor Models with Activated Canonical Wnt Signaling. Cancer Res. 2021, 81, 1052–1062. [Google Scholar] [CrossRef]
- M.D. Anderson Cancer Center. A Phase Ib/II Trial of M7824 in Solid Tumors with Microsatellite Instability with Consensus Molecular Subtype 4 Metastatic Colorectal Cancer in Combination with Radiation, or in Colorectal Cancer Patients With Detectable Circulating Tumor DNA Following Definitive Therapy. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT03436563 (accessed on 27 December 2022).
- Greco, R.; Qu, H.; Qu, H.; Theilhaber, J.; Shapiro, G.; Gregory, R.; Winter, C.; Malkova, N.; Sun, F.; Jaworski, J.; et al. Pan-TGFβ Inhibition by SAR439459 Relieves Immunosuppression and Improves Antitumor Efficacy of PD-1 Blockade. OncoImmunology 2020, 9, 1811605. [Google Scholar] [CrossRef]
- Eli Lilly and Company. A Phase 1b/2 Dose Escalation and Cohort Expansion Study of the Safety, Tolerability and Efficacy of a Novel Transforming Growth Factor-Beta Receptor I Kinase Inhibitor (Galunisertib) Administered in Combination with Anti-PD-1 (Nivolumab) in Advanced Refractory Solid Tumors (Phase 1b) and in Recurrent or Refractory Non-Small Cell Lung Cancer or Hepatocellular Carcinoma (Phase 2). 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT02734160 (accessed on 27 December 2022).
- Jones, P.A.; Ohtani, H.; Chakravarthy, A.; De Carvalho, D.D. Epigenetic Therapy in Immune-Oncology. Nat. Rev. Cancer 2019, 19, 151–161. [Google Scholar] [CrossRef]
- Kuang, C.; Park, Y.; Augustin, R.C.; Lin, Y.; Hartman, D.J.; Seigh, L.; Pai, R.K.; Sun, W.; Bahary, N.; Ohr, J.; et al. Pembrolizumab plus Azacitidine in Patients with Chemotherapy Refractory Metastatic Colorectal Cancer: A Single-Arm Phase 2 Trial and Correlative Biomarker Analysis. Clin. Epigenet. 2022, 14, 3. [Google Scholar] [CrossRef]
- Celleron Therapeutics Reports 3-Year Survival Data from Phase II Clinical Trial in MSS Colorectal Cancer Patients Treated with Zabadinostat and Nivolumab Combination—Celleron Therapeutics. Available online: https://cellerontherapeutics.com/ (accessed on 29 November 2022).
- A Trial of CXD101 in Combination with Nivolumab in Patients with Metastatic Microsatellite-Stable Colorectal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03993626 (accessed on 19 November 2022).
- Azad, N.S.; Shirai, K.; McRee, A.J.; Opyrchal, M.; Johnson, D.B.; Ordentlich, P.; Brouwer, S.; Sankoh, S.; Schmidt, E.V.; Meyers, M.L.; et al. ENCORE 601: A Phase 2 Study of Entinostat in Combination with Pembrolizumab in Patients with Microsatellite Stable Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, 3557. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Jin, X.; Song, S.; Chen, S.; Zhou, P.; Li, H.; Liang, J.; Li, B.; Zhang, C.; et al. BET Inhibitor JQ1 Enhances Anti-Tumor Immunity and Synergizes with PD-1 Blockade in CRC. J. Cancer 2022, 13, 2126–2137. [Google Scholar] [CrossRef]
- Tabernero, J.; Melero, I.; Ros, W.; Argiles, G.; Marabelle, A.; Rodriguez-Ruiz, M.E.; Albanell, J.; Calvo, E.; Moreno, V.; Cleary, J.M.; et al. Phase Ia and Ib Studies of the Novel Carcinoembryonic Antigen (CEA) T-Cell Bispecific (CEA CD3 TCB) Antibody as a Single Agent and in Combination with Atezolizumab: Preliminary Efficacy and Safety in Patients with Metastatic Colorectal Cancer (MCRC). J. Clin. Oncol. 2017, 35, 3002. [Google Scholar] [CrossRef]
- Haag, G.M.; Halama, N.; Springfeld, C.; Grün, B.; Apostolidis, L.; Zschaebitz, S.; Dietrich, M.; Berger, A.-K.; Weber, T.F.; Zoernig, I.; et al. Combined PD-1 Inhibition (Pembrolizumab) and CCR5 Inhibition (Maraviroc) for the Treatment of Refractory Microsatellite Stable (MSS) Metastatic Colorectal Cancer (MCRC): First Results of the PICCASSO Phase I Trial. J. Clin. Oncol. 2020, 38, 3010. [Google Scholar] [CrossRef]
- Haag, G.M.; Springfeld, C.; Grün, B.; Apostolidis, L.; Zschäbitz, S.; Dietrich, M.; Berger, A.-K.; Weber, T.F.; Zoernig, I.; Schaaf, M.; et al. Pembrolizumab and Maraviroc in Refractory Mismatch Repair Proficient/Microsatellite-Stable Metastatic Colorectal Cancer—The PICCASSO Phase I Trial. Eur. J. Cancer 2022, 167, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Tan, E.; Zhou, J.-M.; Schell, M.J.; Martinez, M.; Yu, J.; Carballido, E.; Mehta, R.; Strosberg, J.; Imanirad, I.; et al. A Phase 1/2 Trial of Ibrutinib in Combination with Pembrolizumab in Patients with Mismatch Repair Proficient Metastatic Colorectal Cancer. Br. J. Cancer 2021, 124, 1803–1808. [Google Scholar] [CrossRef]
- AbbVie. A Phase 1 First-in Human, Multi-Center, Open Label Dose-Escalation Study to Determine the Safety, Tolerability, Pharmacokinetics and RP2D of ABBV-151 as a Single Agent and in Combination With ABBV-181 in Subjects with Locally Advanced or Metastatic Solid Tumors. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT03821935 (accessed on 15 December 2022).
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in Patients with Metastatic DNA Mismatch Repair-Deficient or Microsatellite Instability-High Colorectal Cancer (CheckMate 142): An Open-Label, Multicentre, Phase 2 Study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Shlien, A.; Campbell, B.B.; de Borja, R.; Alexandrov, L.B.; Merico, D.; Wedge, D.; Van Loo, P.; Tarpey, P.S.; Coupland, P.; Behjati, S.; et al. Combined Hereditary and Somatic Mutations of Replication Error Repair Genes Result in Rapid Onset of Ultra-Hypermutated Cancers. Nat. Genet. 2015, 47, 257–262. [Google Scholar] [CrossRef]
- The CORGI Consortium; The WGS500 Consortium; Palles, C.; Cazier, J.-B.; Howarth, K.M.; Domingo, E.; Jones, A.M.; Broderick, P.; Kemp, Z.; Spain, S.L.; et al. Germline Mutations Affecting the Proofreading Domains of POLE and POLD1 Predispose to Colorectal Adenomas and Carcinomas. Nat. Genet. 2013, 45, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Keshinro, A.; Vanderbilt, C.; Kim, J.K.; Firat, C.; Chen, C.-T.; Yaeger, R.; Ganesh, K.; Segal, N.H.; Gonen, M.; Shia, J.; et al. Tumor-Infiltrating Lymphocytes, Tumor Mutational Burden, and Genetic Alterations in Microsatellite Unstable, Microsatellite Stable, or Mutant POLE/POLD1 Colon Cancer. JCO Precis. Oncol. 2021, 5, 817–826. [Google Scholar] [CrossRef]
- Garmezy, B.; Gheeya, J.; Lin, H.Y.; Huang, Y.; Kim, T.; Jiang, X.; Thein, K.Z.; Pilié, P.G.; Zeineddine, F.; Wang, W.; et al. Clinical and Molecular Characterization of POLE Mutations as Predictive Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced Cancers. JCO Precis. Oncol. 2022, 6, e2100267. [Google Scholar] [CrossRef]
- High Activity of Nivolumab in Patients with Pathogenic Exonucleasic Domain POLE (EdPOLE) Mutated Mismatch Repair Proficient (MMRp) Advanced Tumours|OncologyPRO. Available online: https://oncologypro.esmo.org/meeting-resources/esmo-virtual-congress-2020/high-activity-of-nivolumab-in-patients-with-pathogenic-exonucleasic-domain-pole-edpole-mutated-mismatch-repair-proficient-mmrp-advanced-tumours (accessed on 22 November 2022).
- Canadian Cancer Trials Group. A Phase II Open Label, Randomized Non-Comparative Trial of Nivolumab Alone or in Combination with Ipilimumab for the Treatment of Patients With Advanced Hypermutated Solid Tumors Detected by a Blood Based Assay. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT03461952 (accessed on 15 December 2022).
- Kim, T.W. A Phase II Study of Durvalumab in Patients with Mismatch Repair Deficient or POLE Mutated Metastatic Colorectal Cancer. 2020. Available online: https://clinicaltrials.gov (accessed on 21 November 2022).
- Addeo, A.; Friedlaender, A.; Banna, G.L.; Weiss, G.J. TMB or Not TMB as a Biomarker: That Is the Question. Crit. Rev. Oncol. Hematol. 2021, 163, 103374. [Google Scholar] [CrossRef]
- Fabrizio, D.A.; George, T.J., Jr.; Dunne, R.F.; Frampton, G.; Sun, J.; Gowen, K.; Kennedy, M.; Greenbowe, J.; Schrock, A.B.; Hezel, A.F.; et al. Beyond Microsatellite Testing: Assessment of Tumor Mutational Burden Identifies Subsets of Colorectal Cancer Who May Respond to Immune Checkpoint Inhibition. J. Gastrointest. Oncol. 2018, 9, 610–617. [Google Scholar] [CrossRef]
- Büttner, R.; Longshore, J.W.; López-Ríos, F.; Merkelbach-Bruse, S.; Normanno, N.; Rouleau, E.; Penault-Llorca, F. Implementing TMB Measurement in Clinical Practice: Considerations on Assay Requirements. ESMO Open 2019, 4, e000442. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ma, Y.; Wu, Z.; Zeng, F.; Song, B.; Zhang, Y.; Li, J.; Lui, S.; Wu, M. Tumor Mutational Burden Predicting the Efficacy of Immune Checkpoint Inhibitors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 751407. [Google Scholar] [CrossRef]
- Research, C. for D.E. and FDA Approves Pembrolizumab for Adults and Children with TMB-H Solid Tumors; FDA: Silver Spring, MD, USA, 2020.
- Friedman, C.F.; Hainsworth, J.D.; Kurzrock, R.; Spigel, D.R.; Burris, H.A.; Sweeney, C.J.; Meric-Bernstam, F.; Wang, Y.; Levy, J.; Grindheim, J.; et al. Atezolizumab Treatment of Tumors with High Tumor Mutational Burden from MyPathway, a Multicenter, Open-Label, Phase IIa Multiple Basket Study. Cancer Discov. 2022, 12, 654–669. [Google Scholar] [CrossRef]
- Mlecnik, B.; Bindea, G.; Angell, H.K.; Maby, P.; Angelova, M.; Tougeron, D.; Church, S.E.; Lafontaine, L.; Fischer, M.; Fredriksen, T.; et al. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity 2016, 44, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Angell, H.K.; Bruni, D.; Barrett, J.C.; Herbst, R.; Galon, J. The Immunoscore: Colon Cancer and Beyond. Clin. Cancer Res. 2020, 26, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.-S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International Validation of the Consensus Immunoscore for the Classification of Colon Cancer: A Prognostic and Accuracy Study. Lancet 2018, 391, 2128–2139. [Google Scholar] [CrossRef]
- Bi, K.; Zhang, X.; Chen, W.; Diao, H. MicroRNAs Regulate Intestinal Immunity and Gut Microbiota for Gastrointestinal Health: A Comprehensive Review. Genes 2020, 11, 1075. [Google Scholar] [CrossRef]
- Tarallo, S.; Ferrero, G.; Gallo, G.; Francavilla, A.; Clerico, G.; Realis Luc, A.; Manghi, P.; Thomas, A.M.; Vineis, P.; Segata, N.; et al. Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples. mSystems 2019, 4, e00289-19. [Google Scholar] [CrossRef] [Green Version]
- Urbanska, A.M.; Bhathena, J.; Martoni, C.; Prakash, S. Estimation of the Potential Antitumor Activity of Microencapsulated Lactobacillus Acidophilus Yogurt Formulation in the Attenuation of Tumorigenesis in Apc(Min/+) Mice. Dig. Dis Sci 2009, 54, 264–273. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, W.-C.; Kong, M.-S.; Shi, H.N.; Walker, W.A.; Lin, C.-Y.; Huang, C.-T.; Lin, Y.-C.; Jung, S.-M.; Lin, T.-Y. Oral Inoculation of Probiotics Lactobacillus Acidophilus NCFM Suppresses Tumour Growth Both in Segmental Orthotopic Colon Cancer and Extra-Intestinal Tissue. Br. J. Nutr. 2012, 107, 1623–1634. [Google Scholar] [CrossRef] [PubMed]
- Khodaii, Z.; Mehrabani Natanzi, M.; Khalighfard, S.; Ghandian Zanjan, M.; Gharghi, M.; Khori, V.; Amiriani, T.; Rahimkhani, M.; Alizadeh, A.M. Novel Targets in Rectal Cancer by Considering LncRNA–MiRNA–MRNA Network in Response to Lactobacillus Acidophilus Consumption: A Randomized Clinical Trial. Sci. Rep. 2022, 12, 9168. [Google Scholar] [CrossRef] [PubMed]
- Goubet, A.-G.; Daillère, R.; Routy, B.; Derosa, L.M.; Roberti, P.; Zitvogel, L. The Impact of the Intestinal Microbiota in Therapeutic Responses against Cancer. Comptes Rendus Biol. 2018, 341, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Man Lei, Y.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti–PD-L1 Efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Vétizou, M.; Pitt, J.M.; Daillère, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.M.; et al. Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science 2015, 350, 1079–1084. [Google Scholar] [CrossRef] [Green Version]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The Commensal Microbiome Is Associated with Anti–PD-1 Efficacy in Metastatic Melanoma Patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Sumransub, N.; Vantanasiri, K.; Prakash, A.; Lou, E. Advances and New Frontiers for Immunotherapy in Colorectal Cancer: Setting the Stage for Neoadjuvant Success? Mol. Ther. Oncolytics 2021, 22, 1–12. [Google Scholar] [CrossRef]
- Cremonesi, E.; Governa, V.; Garzon, J.F.G.; Mele, V.; Amicarella, F.; Muraro, M.G.; Trella, E.; Galati-Fournier, V.; Oertli, D.; Däster, S.R.; et al. Gut Microbiota Modulate T Cell Trafficking into Human Colorectal Cancer. Gut 2018, 67, 1984–1994. [Google Scholar] [CrossRef]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal Microbiota Transplant Promotes Response in Immunotherapy-Refractory Melanoma Patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef]
- Lin, S. Investigator-Initiated Trial of Fecal Microbiota Transplant (FMT) Capsule for Improving the Efficacy of Anti-PD-1 in Patients with PD-1 Resistant Digestive System Cancers. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04130763 (accessed on 26 December 2022).
- Park, S.R. Utilization of Microbiome as Biomarkers and Therapeutics in Immuno-Oncology. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04264975 (accessed on 26 December 2022).
- Zhou, A. Phase II, Single-Arm Study of FMT Combined with Immune Checkpoint Inhibitor and TKI in the Treatment of Colorectal Cancer Patients with Advanced Stage. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT05279677 (accessed on 26 December 2022).
- Chen, E.X.; Jonker, D.J.; Loree, J.M.; Kennecke, H.F.; Berry, S.R.; Couture, F.; Ahmad, C.E.; Goffin, J.R.; Kavan, P.; Harb, M.; et al. CCTG CO.26: Updated Analysis and Impact of Plasma-Detected Microsatellite Stability (MSS) and Tumor Mutation Burden (TMB) in a Phase II Trial of Durvalumab (D) plus Tremelimumab (T) and Best Supportive Care (BSC) versus BSC Alone in Patients (Pts) with Refractory Metastatic Colorectal Carcinoma (RmCRC). J. Clin. Oncol. 2019, 37, 3512. [Google Scholar]
- Popat, S.; Hubner, R.; Houlston, R.S. Systematic Review of Microsatellite Instability and Colorectal Cancer Prognosis. J. Clin. Oncol. 2005, 23, 609–618. [Google Scholar] [CrossRef]
- Ghiringhelli, F.; Fumet, J.-D. Is There a Place for Immunotherapy for Metastatic Microsatellite Stable Colorectal Cancer? Front. Immunol. 2019, 10, 1816. [Google Scholar] [CrossRef]
- Dechant, M.; Weisner, W.; Berger, S.; Peipp, M.; Beyer, T.; Schneider-Merck, T.; Lammerts van Bueren, J.J.; Bleeker, W.K.; Parren, P.W.H.I.; van de Winkel, J.G.J.; et al. Complement-Dependent Tumor Cell Lysis Triggered by Combinations of Epidermal Growth Factor Receptor Antibodies. Cancer Res. 2008, 68, 4998–5003. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, A.; Cammarata, I.; Martire, C.; Focaccetti, C.; Piconese, S.; Buccilli, M.; Mancone, C.; Buzzacchino, F.; Berrios, J.R.G.; D’Alessandris, N.; et al. Combination of Chemotherapy and PD-1 Blockade Induces T Cell Responses to Tumor Non-Mutated Neoantigens. Commun. Biol. 2020, 3, 85. [Google Scholar] [CrossRef] [Green Version]
- Pietrantonio, F.; Morano, F.; Lonardi, S.; Raimondi, A.; Salvatore, L.; Marmorino, F.; Murgioni, S.; Pella, N.; Antonuzzo, L.; Ritorto, G.; et al. 383O MAYA Trial: Temozolomide (TMZ) Priming Followed by Combination with Low-Dose Ipilimumab and Nivolumab in Patients with Microsatellite Stable (MSS), MGMT Silenced Metastatic Colorectal Cancer (MCRC). Ann. Oncol. 2021, 32, S530–S531. [Google Scholar] [CrossRef]
- Elez, E.; Baraibar, I. Immunotherapy in Colorectal Cancer: An Unmet Need Deserving of Change. Lancet Oncol. 2022, 23, 830–831. [Google Scholar] [CrossRef]
Study | Treatment | Line | Phase | Endpoint 1 | ORR (%) | mPFS (Months) | OS |
---|---|---|---|---|---|---|---|
KEYNOTE-016 [20] | Pembrolizumab | After standard treatment based on CT | II | ORR | 50% | 61% at 24 m | 24 m: 66% |
KEYNOTE-177 [21] | Pembrolizumab vs. standard treatment | 1st line | III | mPFS, mOS | 45.1% vs. 33.1% | 16.5 vs. 8.2 | NR vs. 36.7 m |
CheckMate 142 [22] | Nivolumab Nivolumab + ipilimumab | After standard treatment based on CT | II | ORR | 31.1% vs. 65% | 14.3 vs. NR | NR in both arms |
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
MODUL (NCT02291289) [45] | Atezolizumab + bevacizumab + fluropyrimidine vs. bevacizumab + fluopyrimidine | II | PFS, OS | BRAF wt pMMR mCRC | NA | 7.39 vs. 7.2 | 21.91 vs. 22.05 | Active, not recruiting |
BACCI (NCT02873195) [46] | Atezolizumab + capecitabine + bevacizumab vs. capecitabine+bevacizumab | II | PFS | Refractory mCRC | NA | 4.4 vs. 3.3 | 52% vs. 43% (12 m OS) | Active, not recruiting |
NCT03396926 [47] | Pembrolizumab + capecitabine + bevacizumab | II | ORR | MSS mCRC | 5% | 4.3 | 9.6 | Active, not recruiting |
CheckMate 9 × 8 (NCT03414983) [48] | Nivolumab + FOLFOX + bevacizumab vs. FOLFOX + bevacizumab | II | PFS | 1st line mCRC | 60% vs. 46% | 11.9 vs. 11.9 | 29.2 vs. NR | Active, not recruiting |
AtezoTRIBE (NCT03721653) [49] | Atezolizumab + FOLFOXIRI + bevacizumab vs. FOLFOXIRI + bevacizumab | II | PFS | 1st line mCRC | NA | 12.9 vs. 11.4 | NA | Active, not recruiting |
Scheme 1. | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
MAYA (NCT03832621) [71] | Nivolumab+ipilimumab+TMZ | II | PFS | MSS MGMT-silenced mCRC | 45% | 7 | 18.4 | Active, not recruiting |
ARETHUSA (NCT03519412) [72] | Pembrolizumab +/- TMZ | II | ORR | Refractory MSI mCRC | NA | NA | NA | Recruiting |
NCT04457284 [73] | TMZ + cisplatin + nivolumab | II | ORR | MSS mCRC | NA | NA | NA | Recruiting |
Study | Treatment | Phase | Endpoint 1 | Setting | ORR (%) | mPFS (Months) | mOS (Months) | Status |
---|---|---|---|---|---|---|---|---|
NCT02870920 [134] | Durvalumab + Tremelimumab | II | OS | Refractory to standard treatments | 0.8% | 1.8 vs. 1.9 | 6.6 vs. 4.1 MSS: significantly improved | Completed |
TAPUR [135] CRC cohort | Nivolumab + ipilimumab High TMB (≥9 Mut/Mb) | II | ORR | Refractory to standard treatments | 10% | 3.4 | 10.7 | Recruiting (CRC cohort closed due to futility) |
NCT03860272 [137] | Botensilimab + Balstilimab | I | DLT Safety and tolerability | Refractory to standard treatments | 24% | NA | NA | Recruiting |
NCT02720068 [139] | Pembrolizumab + Favezelimab MSS mCRC cohort | I | DLT Safety and tolerability | Refractory to standard treatments (≥3rd line) | 6.3% | 2.1 | 8.3 | Active, not recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
San-Román-Gil, M.; Torres-Jiménez, J.; Pozas, J.; Esteban-Villarrubia, J.; Albarrán-Fernández, V.; Álvarez-Ballesteros, P.; Chamorro-Pérez, J.; Rosero-Rodríguez, D.; Orejana-Martín, I.; Martínez-Delfrade, Í.; et al. Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers 2023, 15, 863. https://doi.org/10.3390/cancers15030863
San-Román-Gil M, Torres-Jiménez J, Pozas J, Esteban-Villarrubia J, Albarrán-Fernández V, Álvarez-Ballesteros P, Chamorro-Pérez J, Rosero-Rodríguez D, Orejana-Martín I, Martínez-Delfrade Í, et al. Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers. 2023; 15(3):863. https://doi.org/10.3390/cancers15030863
Chicago/Turabian StyleSan-Román-Gil, María, Javier Torres-Jiménez, Javier Pozas, Jorge Esteban-Villarrubia, Víctor Albarrán-Fernández, Pablo Álvarez-Ballesteros, Jesús Chamorro-Pérez, Diana Rosero-Rodríguez, Inmaculada Orejana-Martín, Íñigo Martínez-Delfrade, and et al. 2023. "Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma" Cancers 15, no. 3: 863. https://doi.org/10.3390/cancers15030863
APA StyleSan-Román-Gil, M., Torres-Jiménez, J., Pozas, J., Esteban-Villarrubia, J., Albarrán-Fernández, V., Álvarez-Ballesteros, P., Chamorro-Pérez, J., Rosero-Rodríguez, D., Orejana-Martín, I., Martínez-Delfrade, Í., Reguera-Puertas, P., Fuentes-Mateos, R., & Ferreiro-Monteagudo, R. (2023). Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers, 15(3), 863. https://doi.org/10.3390/cancers15030863