Combination of Local Ablative Techniques with Radiotherapy for Primary and Recurrent Lung Cancer: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Items
2.6. Quality Assessment
2.7. Statistical Analysis
2.8. Review Registration
3. Results
3.1. First Group: Image-Guided LAT Followed by Radiotherapy
3.2. Second Group: Radiotherapy Followed by Image-Guided LAT
3.3. Local Control and Tumor Dimensions
4. Discussion
4.1. LAT Technique
4.2. RT Techniques
4.3. Combined Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.; Bsc, M.F.B.; Me, J.F.; Soerjomataram, M.I.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Themat. Rev. Neoplast. Hematol. Med. Oncol. 2019, 94, 1623–1640. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.C.; Kehrer, J.D.; Kahn, J.; Koneru, B.N.; Narayan, R.; Thomas, T.O.; Camphausen, K.; Mehta, M.P.; Kaushal, A. Primary Treatment Options for High-Risk/Medically Inoperable Early Stage NSCLC Patients. Clin. Lung Cancer 2015, 16, 413–430. [Google Scholar] [CrossRef] [PubMed]
- Olive, G.; Yung, R.; Marshall, H.; Fong, K.M. Alternative methods for local ablation—Interventional pul-monology: A narrative review. Transl. Lung Cancer Res. 2021, 10, 3432–3445. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, D.E.; Zagoria, R.J.; Akerley, W.; Mayo-Smith, W.W.; Kavanagh, P.V.; Safran, H. Percutaneous Radiofrequency Ablation of Malignancies in the Lung. AJR Am. J. Roentgenol. 2000, 174, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.V.; Naguib, N.N.N.; Lehnert, T.; Nour-Eldin, N.E.A. Radiofrequency, microwave and laser ablation of pulmonary neoplasms: Clinical studies and technical considerations—Review article. Eur. J. Radiol. 2011, 77, 346–357. [Google Scholar]
- Ye, X.; Fan, W.; Wang, Z.; Wang, J.; Wang, H.; Niu, L.; Fang, Y.; Gu, S.; Liu, L.; Liu, B.; et al. Clinical practice guidelines on image-guided thermal ablation of primary and metastatic lung tumors (2022 edition). J. Cancer Res. Ther. 2022, 18, 1213–1230. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology. Non-Small Cell Lung Cancer Versions 5.2023. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450 (accessed on 3 November 2023).
- Timmerman, R.; McGarry, R.; Yiannoutsos, C.; Papiez, L.; Tudor, K.; DeLuca, J.; Ewing, M.; Abdulrahman, R.; DesRosiers, C.; Williams, M.; et al. Excessive Toxicity When Treating Central Tumors in a Phase II Study of Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Lung Cancer. J. Clin. Oncol. 2006, 24, 4833–4839. [Google Scholar] [CrossRef]
- Ricardi, U.; Filippi, A.R.; Guarneri, A.; Giglioli, F.R.; Ciammella, P.; Franco, P.; Mantovani, C.; Borasio, P.; Scagliotti, G.V.; Ragona, R. Stereotactic body radiation therapy for early stage non-small cell lung cancer: Results of a prospective trial. Lung Cancer 2010, 68, 72–77. [Google Scholar] [CrossRef]
- Buchberger, D.S.; Videtic, G.M. Stereotactic Body Radiotherapy for the Management of Early-Stage Non–Small-Cell Lung Cancer: A Clinical Overview. JCO Oncol. Pr. 2023, 19, 239–249. [Google Scholar] [CrossRef]
- Wachsberger, P.; Burd, R.; Dicker, A.P. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: Exploring mechanisms of interaction. Clin. Cancer Res. 2003, 9, 1957–1971. [Google Scholar] [PubMed]
- DiPetrillo, T.A.; Dupuy, D.E. Radiofrequency Ablation and Radiotherapy: Complementing Treatments for Solid Tumors. Semin. Interv. Radiol. 2003, 20, 341–345. [Google Scholar] [CrossRef]
- Gadaleta, C.; Mattioli, V.; Colucci, G.; Cramarossa, A.; Lorusso, V.; Canniello, E.; Timurian, A.; Ranieri, G.; Fiorentini, G.; De Lena, M.; et al. Radiofrequency Ablation of 40 Lung Neoplasms: Preliminary Results. Am. J. Roentgenol. 2004, 183, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Steber, C.R.; Hughes, R.T.; Urbanic, J.; Clark, H.; Petty, W.J.; Blackstock, A.W.; Farris, M.K. Long-Term Outcomes from a Phase 2 Trial of Radiofrequency Ablation Combined with External Beam Radiation Therapy for Patients With Inoperable Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Grieco, C.A.; Simon, C.J.; Mayo-Smith, W.W.; DiPetrillo, T.A.; Ready, N.E.; Dupuy, D.E. Percutaneous Image-guided Thermal Ablation and Radiation Therapy: Outcomes of Combined Treatment for 41 Patients with Inoperable Stage I/II Non–Small-Cell Lung Cancer. J. Vasc. Interv. Radiol. 2006, 17, 1117–1124. [Google Scholar] [CrossRef]
- Dupuy, D.E.; DiPetrillo, T.; Gandhi, S.; Ready, N.; Ng, T.; Donat, W.; Mayo-Smith, W.W. Radiofrequency Ablation Followed by Conventional Radiotherapy for Medically Inoperable Stage I Non-small Cell Lung Cancer. Chest 2006, 129, 738–745. [Google Scholar] [CrossRef]
- Institute of Health Economics (2016) Case Series Studies Quality Appraisal Checklist. Available online: https://www.ihe.ca/research-programs/rmd/cssqac/cssqac-about (accessed on 11 May 2018).
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Cheng, M.; Fay, M.; Steinke, K. Percutaneous CT-guided thermal ablation as salvage therapy for recurrent non-small cell lung cancer after external beam radiotherapy: A retrospective study. Int. J. Hyperth. 2016, 32, 316–323. [Google Scholar] [CrossRef]
- Leung, V.A.; DiPetrillo, T.A.; Dupuy, D.E. Image-guided tumor ablation for the treatment of recurrent non-small cell lung cancer within the radiation field. Eur. J. Radiol. 2011, 80, e491–e499. [Google Scholar] [CrossRef]
- Brooks, E.D.; Sun, B.; Feng, L.; Verma, V.; Zhao, L.; Gomez, D.R.; Liao, Z.; Jeter, M.; O’reilly, M.; Welsh, J.W.; et al. Association of Long-term Outcomes and Survival with Multidisciplinary Salvage Treatment for Local and Regional Recurrence After Stereotactic Ablative Radiotherapy for Early-Stage Lung Cancer. JAMA Netw. Open 2018, 1, e181390. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Lai, L.; Zhou, H.; Mo, Y.-J.; Lu, X.-Q.; Liu, M.; Lu, Y.-X.; Hou, E.-C. Stereotactic body ra-diotherapy plus transcatheter arterial chemoembolization for inoperable hepatocellular carcinoma patients with portal vein tumour thrombus: A meta analysis. PLoS ONE 2022, 17, e0268779. [Google Scholar]
- Blitzer, G.C.; Wojcieszynski, A.; Abel, E.J.; Best, S.; Lee, F.T., Jr.; Hinshaw, J.L.; Wells, S.; Ziemlewicz, T.J.; Lubner, M.G.; Alexander, M.; et al. Com-bining Stereotactic Body Radiotherapy and Microwave Ablation Appears Safe and Feasible for Renal Cell Carcinoma in an Early Series. Clin. Genitourin Cancer 2021, 19, e313–e318. [Google Scholar] [CrossRef] [PubMed]
- Horkan, C.; Dalal, K.; Coderre, J.A.; Kiger, J.L.; Dupuy, D.E.; Signoretti, S.; Halpern, E.F.; Goldberg, S.N. Reduced Tumor Growth with Combined Radiofrequency Ablation and Radiation Therapy in a Rat Breast Tumor Model. Radiology 2005, 235, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Dupuy, D.E.; Cardarelli, G.A.; Zheng, Z.; DiPetrillo, T.A. Percutaneous radiofrequency ablation of pulmonary malig-nancies: Combined treatment with brachytherapy. Am. J. Roentgenol. 2003, 181, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Kosterev, V.V.; Kramer-Ageev, E.A.; Mazokhin, V.N.; van Rhoon, G.C.; Crezee, J. Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Int. J. Hyperth. 2015, 31, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Singh, M. Incorporating vascular-stasis based blood perfusion to evaluate the thermal signatures of cell-death using modified Arrhenius equation with regeneration of living tissues during nanoparticle-assisted thermal therapy. Int. Commun. Heat Mass Transf. 2022, 135, 106046. [Google Scholar] [CrossRef]
- Singh, M.; Singh, T.; Soni, S. Pre-operative Assessment of Ablation Margins for Variable Blood Perfusion Metrics in a Magnetic Resonance Imaging Based Complex Breast Tumour Anatomy: Simulation Paradigms in Thermal Therapies. Comput. Methods Programs Biomed. 2021, 198, 105781. [Google Scholar] [CrossRef]
- Seror, O. Ablative therapies: Advantages and disadvantages of radiofrequency, cryotherapy, microwave and electroporation methods, or how to choose the right method for an individual patient. Diagn. Interv. Imaging 2015, 96, 617–624. [Google Scholar] [CrossRef]
- Simon, C.J.; Dupuy, D.E.; DiPetrillo, T.A.; Safran, H.P.; Grieco, C.A.; Ng, T.; Mayo-Smith, W.W. Pulmonary Radiofrequency Ablation: Long-term Safety and Efficacy in 153 Patients. Radiology 2007, 243, 268–275. [Google Scholar] [CrossRef]
- Zhu, J.C.; Yan, T.D.; Morris, D.L. A systematic review of radiofrequency ablation for lung tumours. Ann. Surg. Oncol. 2008, 15, 1765.e74. [Google Scholar] [CrossRef]
- Lencioni, R.; Crocetti, L.; Cioni, R.; Suh, R.; Glenn, D.; Regge, D.; Helmberger, T.; Gillams, A.R.; Frilling, A.; Ambrogi, M.; et al. Response to radiofrequency ablation of pulmonary tumours: A prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008, 9, 621.e8. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, S.J.; Liou, H.; Saini, G.; Segaran, N.; Kriegshauser, J.S.; Naidu, S.G.; Patel, I.J.; Oklu, R. Percutaneous Image-Guided Ablation of Lung Tumors. J. Clin. Med. 2021, 10, 5783. [Google Scholar] [CrossRef] [PubMed]
- De Baere, T.; Tselikas, L.; Gravel, G.; Deschamps, F. Lung ablation: Best practice/results/response assessment/role alongside other ablative Therapies. Clin. Radiol. 2017, 72, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ye, X.; Zheng, A.; Huang, G.; Ni, X.; Wang, J.; Han, X.; Li, W.; Wei, Z. Percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: Clinical evaluation of 47 cases. J. Surg. Oncol. 2014, 110, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Lu, M.; Fan, W.; Huang, J.; Gu, Y.; Gao, F.; Wang, Y.; Li, J.; Zhu, Z. Comparison between microwave ablation and lobectomy for stage I non-small cell lung cancer: A propensity score analysis. Int. J. Hyperth. 2018, 34, 1329–1336. [Google Scholar] [CrossRef]
- Pusceddu, C.; Melis, L.; Sotgia, B.; Guerzoni, D.; Porcu, A.; Fancellu, A. Usefulness of percutaneous microwave ablation for large non-small cell lung cancer: A preliminary report. Oncol. Lett. 2019, 18, 659–666. [Google Scholar] [CrossRef]
- Aufranc, V.; Farouil, G.; Abdel-Rehim, M.; Smadja, P.; Tardieu, M.; Aptel, S.; Guibal, A. Percutaneous thermal ablation of primary and secondary lung tumors: Comparison between microwave and radiofrequency ablation. Diagn. Interv. Imaging 2019, 100, 781–791. [Google Scholar] [CrossRef]
- Aarts, B.M.; Klompenhouwer, E.G.; Rice, S.L.; Imani, F.; Baetens, T.; Bex, A.; Horenblas, S.; Kok, M.; Haanen, J.B.A.G. Cryoablation and immunotherapy: An overview of evidence on its synergy. Insights Imaging 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Izumi, Y.; Hashimoto, K.; Yashiro, H.; Inoue, M.; Nakatsuka, S.; Goto, T.; Anraku, M.; Ohtsuka, T.; Kohno, M.; et al. Percutaneous cryoablation for the treatment of medically in-operable stage I nonsmall cell lung cancer. PLoS ONE 2012, 7, e33223. [Google Scholar] [CrossRef]
- McDevitt, J.L.; Mouli, S.K.; Nemcek, A.A.; Lewandowski, R.J.; Salem, R.; Sato, K.T. Percutaneous Cryoablation for the Treatment of Primary and Metastatic Lung Tumors: Identification of Risk Factors for Recurrence and Major Complications. J. Vasc. Int. Radiol. 2016, 27, 1371–1379. [Google Scholar] [CrossRef]
- Hinshaw, J.L.; Lee, F.T., Jr.; Laeseke, P.F.; Sampson, L.A.; Brace, C. Temperature isotherms during pulmonary cryoablation and their correlation with the zone of ablation. J. Vasc. Interv. Radiol. 2010, 21, 1424–1428. [Google Scholar] [CrossRef] [PubMed]
- Farzanegan, Z.; Tahmasbi, M. Evaluating the applications and effectiveness of magnetic nanoparticle-based hyperthermia for cancer treatment: A systematic review. Appl. Radiat. Isot. 2023, 198, 110873. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Gong, F.; Cheng, L.; Lei, H.; Li, W.; Sun, Z.; Ni, C.; Wang, Z.; Liu, Z. Biodegradable magnesium alloy with eddy thermal effect for effective and accurate magnetic hyperthermia ablation of tumors. Natl. Sci. Rev. 2020, 8, nwaa122. [Google Scholar] [CrossRef] [PubMed]
- Sadhukha, T.; Wiedmann, T.S.; Panyam, J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 2013, 34, 5163–5171. [Google Scholar] [CrossRef]
- Qiao, X.; Tullgren, O.; Lax, I.; Sirzén, F.; Lewensohn, R. The role of radiotherapy in the treatment of stage I non-small cell lung cancer. Lung Cancer 2003, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dilling, T.J.; Hoffe, S.E. Stereotactic body radiation therapy: Transcending the conventional to improve outcomes. Cancer Control. 2008, 15, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Sutera, P.; Clump, D.A.; Kalash, R.; D’Ambrosio, D.; Mihai, A.; Wang, H.; Petro, D.P.; Burton, S.A.; Heron, D.E. Initial Results of a Multicenter Phase 2 Trial of Stereotactic Ablative Radiation Therapy for Oligometastatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 116–122. [Google Scholar] [CrossRef]
- Ball, D.; May, G.D.; Vinol, S.; Babington, S.; Ruben, J.; Kron, T. Stereotactic ablative radiotherapy versus standard radiotherapy in stage I non small cell lung cancer (TROG 09.02 CHISEL): A phase 3, open label, randomized controlled trial. Lancet Oncol. 2019, 20, 494–503. [Google Scholar] [CrossRef]
- Timmerman, R.; Paplez, L.; McGarry, R.; Likes, L.; DesRosiers, C.; Frost, S.; Williams, M. Extracranial stereotactic radioablation: Result of a phase I study in. medically inoperable stage I non-small cell lung cancer. Chest 2003, 124, 1946–1955. [Google Scholar] [CrossRef]
- Fakiris, A.J.; McGarry, R.C.; Yiannoutsos, C.T.; Papiez, L.; Williams, M.; Henderson, M.A.; Timmerman, R. Stereotactic body radiation therapy for early-stage non small-cell lung carcinoma: Four-year results of A prospective phase II study. Int. J. Rad. Oncol. Biol. Phys. 2009, 75, 677–682. [Google Scholar] [CrossRef]
- Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; et al. Sterotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010, 303, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Lagerwaard, F.J.; Haasbeek, C.J.; Smit, E.F.; Slotman, B.J.; Senan, S. Outcomes of risk adapted fractionated stereotactic radiotherapy for stage I non-small cell lung cancer. Int. J. Radiat. Biol. Phys. 2008, 70, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Grasso, R.F.; Andresciani, F.; Altomare, C.; Pacella, G.; Castiello, G.; Carassiti, M.; Quattrocchi, C.C.; Faiella, E.; Beomonte Zobel, B. Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: Results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer 2015, 121, 3491–3498. [Google Scholar]
- Palussière, J.; Chomy, F.; Savina, M.; Deschamps, F.; Gaubert, J.Y.; Renault, A.; Bonnefoy, O.; Laurent, F.; Meunier, C.; Bellera, C.; et al. Radiofrequency ablation of stage IA non–small cell lung cancer in patients ineligible for surgery: Results of a prospective multicenter phase II trial. J. Cardiothorac. Surg. 2018, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lanuti, M.; Sharma, A.; Willers, H.; Digumarthy, S.R.; Mathisen, D.J.; Shepard, J.-A.O. Radiofrequency Ablation for Stage I Non-Small Cell Lung Cancer: Management of Locoregional Recurrence. Ann. Thorac. Surg. 2012, 93, 921–988. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, T.; Gobara, H.; Mimura, H.; Matsui, Y.; Toyooka, S.; Kanazawa, S. Percutaneous radiofrequency ablation of clinical stage I non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2011, 142, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.-Y.; Li, X.-M.; Song, X.-Y.; Zhou, J.-J.; Shao, Z.; Yu, Z.-Q.; Lin, Y.; Guo, X.-Y.; Liu, D.-J.; Li, L. Long-term results of CT-guided percutaneous radiofrequency ablation of inoperable patients with stage Ia non-small cell lung cancer: A retrospective cohort study. Int. J. Surg. 2018, 53, 143–150. [Google Scholar] [CrossRef]
- Lanuti, M.; Sharma, A.; Digumarthy, S.R.; Wright, C.D.; Donahue, D.M.; Wain, J.C.; Mathisen, D.J.; Shepard, J.-A.O. Radiofrequency ablation for treatment of medically inoperable stage I non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2009, 137, 160–166. [Google Scholar] [CrossRef]
- Schoellnast, H.; Deodhar, A.; Hsu, M.; Moskowitz, C.; Nehmeh, A.S.; Thornton, R.H.; Sofocleous, C.T.; Alago, W.; Downey, R.J.; Azzoli, C.G.; et al. Recurrent non-small cell lung cancer: Evaluation of CT-guided radiofrequency ablation as salvage therapy. Acta Radiol. 2012, 53, 893–899. [Google Scholar] [CrossRef]
- Singh, M. Modified Pennes bioheat equation with heterogeneous blood perfusion: A newer perspective. Int. J. Heat Mass Transf. 2024, 218, 124698. [Google Scholar] [CrossRef]
Author | Study Design | No of Patients | Sex | Median Age | Stage | Treat. | RT | LTA | Time Start II Treatment | Size | Dose RT | Median Follow-Up | PFS | IR | LP | LC Rate | OS | TOX |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Steber [15] | PII | 12 | 8 M/ 4 W | 71 (60–93) | IA (11) IB (1) | LAT + RT | EBRT | RFA 12 | 36 days (27–60) | ≤35 mm | HFRT (10 pts) 70.2 Gy-fSBRT (3 pts) 54 Gy | 51.7 (12.3–130.9) | 37.8 months | PET CT | 3 (25)% at 6.8, 49.7 and 135.4 m CILP at 5 year 16.7% | 75% | 53.6 months (median) | G3 skin (1 pts 8%—full thickness thermal burn) G1 hemorrhage (3 pta 25%) G2 hemorrhage (1 pts 8%) G1 Pnx (4 pts 33%) G2 pneumothorax (4 pts 33%) G1 pneumonitis (10 pts 83%) G2 gastrointestinal (1 pts 8%) |
Grieco [16] | R | 41 | 24 M/17 W | 76 (55–81) | IA (21) IB (17) II B (3) | LAT + RT (27 PTS) LAT + BT (14 pts) | EBRT (27) | RFA ablation: 37 MWA ablation: 4 | EBRT 24 days (5–53) after LTA | ≤30 mm (17 pts) ≥30 mm (24 pts) | CFRT 66 Gy (26 pts)—CFRT 50 Gy 1 pts IRT-BT: 13 pts HDR 192Ir/1 pts LDR 125I | 19.5 (1.0–73) | NA | PET CT 41/41 | 10/41 (24.4%) 2/17 < 30 mm 8/24 > 30 mm; average local recurrence: (11.8%) 45.6 ± 4.1 m. <30 mm vs. (33%) 34 ± 7.8 > 30 mm | 75.6% | Average OS 34.7 ± 5.4 m for LTA + BT (14 pts) vs. 42 ± 6 m for LTA + RT (27 pts) | Pneumothorax 15 pts (G2 9/15 22%—chest tube placement)—Acute respiratory distress 2 pts/41 (4.9%) (admission to respiratory intensive care unit) |
IRT-BT (14) | IRT-BT 1–2 h after RFA | CSS rates 97.6% at 6 m, 86.8% at 12 m and 57.1% at 36 m—average survival time 44.4 ± 5.3 months < 30 mm vs 34.6 ± 7 > 30 mm | ||||||||||||||||
Dupuy [17] | R | 24 | 10 M/14 W | 76 (58–85) | IA (11) IB (10) NA (3) | LAT + RT | EBRT | RFA 24 | NA | median size: 34 mm (1.5–7.5) | CFRT 66 Gy | 26.7 (6–65) | NA | PET CT (17 pts) CT (7 pts) | 2/24 pts (8.3%) | 91.7% | Mean follow-up period 26.7 CSS at 12, 24, 60 m was 83%, 50%, 39%; according to tumor stage CSS: stage IA: 12, 24, and 56 m were 92%, 62%, and 46% stage IB: 12, 24, 60 months were 73%, 42%, and 31%, respectively. | Pneumothorax 7 pts-29% (G2 3 pts—12.5%—chest tube placement), Radiation fibrosis 2 pts (8.3%) |
Cheng [20] | R | 12 pts | 8 M/F 4 | 71 ± 7 | I (5) II (6) III (1) | LTA local salvage | RT (50–63 Gy) 11 EBRT + 1 fSBRT | RFA 4/MWA 13 | NA | 34 mm ± 13 mm | RT (50–63 Gy) | 19 ± 11 months | NA | CT within 1 month and 3 months and PET TC every 6 m. | TTLP 14 median months: 6/12 pts --> 5 re-ablation → 1/5 pts III ablations (tumor size ≤ 30 mm TTLP 23 months—tumor size ≥ 30 mm TTLP 14 mm), local progression rate at 1 year was 45% | 50% | 35 (median CI 12.58) mean survival tumor < 30 mm: 38 m, tumor > 30 mm: 35 m | Pneumothorax 5 post- RFA 29% (2 chest tube placement (12%)) |
Leung [21] | R | 20 | 12 M/8 F | 70.5 | IA-IV | LTA local salvage | RT 60.4 | RFA 17/MWA 6/CA 2 | NA | 40 mm | RT 60.4 Gy (50.4–77.4) | 3.1 to 67.7 m (median, 10.4 m) | NA | CT within 1 month and 3 months and PET TC every 6 m. | 8/20 (40%) TTLP 3.3 months (1.1–12.2) 5/8 re-ablation | 60% | 13.1 ± SE1.2 m 10.4 months (3.1–67.7) CSS at 6.12 24 months was 100%, 56%, 28% | G3 pseudoaneurysm/hemoptysis 1 pts (4%) (embolization)—G2 pneumothorax 1 pts (4%) (chest tube placement)—G2 pleural effusion 1 pts (4%) (chest tube placement—G2 empyema 1 pts [4%] |
Brooks [22] | R | 6 | NA | NA | NA | LTA local salvage | SABR | NA | 14.9 (1.5–91.9) | NA | NA | 38.5 (19.9–69.3) | NA | NA | 0/6 | 100% | 51.6 m | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonome, P.; Pezzulla, D.; Lancellotta, V.; Scrofani, A.R.; Macchia, G.; Rodolfino, E.; Tagliaferri, L.; Kovács, G.; Deodato, F.; Iezzi, R. Combination of Local Ablative Techniques with Radiotherapy for Primary and Recurrent Lung Cancer: A Systematic Review. Cancers 2023, 15, 5869. https://doi.org/10.3390/cancers15245869
Bonome P, Pezzulla D, Lancellotta V, Scrofani AR, Macchia G, Rodolfino E, Tagliaferri L, Kovács G, Deodato F, Iezzi R. Combination of Local Ablative Techniques with Radiotherapy for Primary and Recurrent Lung Cancer: A Systematic Review. Cancers. 2023; 15(24):5869. https://doi.org/10.3390/cancers15245869
Chicago/Turabian StyleBonome, Paolo, Donato Pezzulla, Valentina Lancellotta, Anna Rita Scrofani, Gabriella Macchia, Elena Rodolfino, Luca Tagliaferri, György Kovács, Francesco Deodato, and Roberto Iezzi. 2023. "Combination of Local Ablative Techniques with Radiotherapy for Primary and Recurrent Lung Cancer: A Systematic Review" Cancers 15, no. 24: 5869. https://doi.org/10.3390/cancers15245869
APA StyleBonome, P., Pezzulla, D., Lancellotta, V., Scrofani, A. R., Macchia, G., Rodolfino, E., Tagliaferri, L., Kovács, G., Deodato, F., & Iezzi, R. (2023). Combination of Local Ablative Techniques with Radiotherapy for Primary and Recurrent Lung Cancer: A Systematic Review. Cancers, 15(24), 5869. https://doi.org/10.3390/cancers15245869