Controlled Plasma Membrane Delivery of FGFR1 and Modulation of Signaling by a Novel Regulated Anterograde RTK Transport Pathway
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Transfection
2.3. ES Cell Culture and Differentiation
2.4. Subcellular Fractionation
2.5. Microscopy
2.6. Total Internal Reflection Fluorescence Microscopy (TIRFM)
2.7. Quantification of Microscopic Images
2.8. Western Blotting and Immunofluorescence
2.9. Plasmids and Recombinant DNA Constructs
2.10. mEB Immunofluorescence
2.11. Migration Assays
2.12. Statistical Analysis
3. Results
3.1. Characterization of Intracellular FGFR1
3.2. Identification of R1 Vesicles as a Novel Compartment
3.3. Intracellular FGFR1 Vesicles Are Stably Maintained
3.4. PM Delivery of FGFR1 Is Induced by Starvation and Hypoxia
3.5. The Sequestered FGFR1 Pool Is Functional in PM Translocation
3.6. PM Translocation Requires FGFR1 C-Terminus and Does Not Involve Full Vesicle Fusion
3.7. FGFR1 on the PM Is Functional and Influences Cell Behavior
3.8. FDPS Binds FGFR1 C-Terminus and Is Involved in the PM Translocation Mechanism
3.9. RART Pathway Components Function as Molecular Switches
3.10. The RART Pathway’s Role in mEB Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALK | Anaplastic lymphoma kinase |
ATCC | American Type Culture Collection |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
AQP-2 | Aquaporin-2 |
BMPR-II | Bone morphogenic protein type-II receptor |
CLASP | Cytoplasmic linker-associated protein |
CHX | Cycloheximide |
DHSB | Developmental studies hybridoma bank |
EGFP | Enhanced green fluorescence protein |
ENACs | Epithelial sodium channels |
EMT | Epithelial to mesenchymal transition |
Erk1/2 | Extracellular signal-regulated kinase 1/2 |
FDPS/FPPS | Farnesyl diphosphate synthase |
FGFR1 | Fibroblast growth factor receptor-1 |
FGFs | Fibroblast growth factors |
GPCRs | G-protein coupled receptors |
GLUT4 | Glucose transporter 4 |
hVHL | Human von-Hippel Lindau |
Hx | Hypoxia |
IGF1R | Insulin-like growth factor 1 receptor |
MC1R | Melanocortin 1 receptor |
MICAL3 | Microtubule-associated monooxygenase, calponin and LIM Domain Containing 3 |
mEBs | Mouse embryoid bodies |
Nx | Normoxia |
PM | Plasma membrane |
PGVs | Post-Golgi vesicles |
ELKS | Protein that is rich in amino acids E, L, K and S |
RTK | Receptor tyrosine kinase |
RART | Regulated anterograde RTK transport |
siRNA | Small interfering RNA |
SS | Serum starvation |
SSEA-1 | Stage specific embryonic antigen-1 |
TIRFM | Total internal reflection fluorescence microscopy |
TGF-α | Transforming growth factor-alpha |
VEGFR2 | Vascular endothelial growth factor receptor-2 |
References
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef]
- Mosesson, Y.; Shtiegman, K.; Katz, M.; Zwang, Y.; Vereb, G.; Szollosi, J.; Yarden, Y. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J. Biol. Chem. 2003, 278, 21323–21326. [Google Scholar] [CrossRef]
- Sorkin, A.; Von Zastrow, M. Signal transduction and endocytosis: Close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 2002, 3, 600–614. [Google Scholar] [CrossRef]
- Bryant, D.M.; Mostov, K.E. From cells to organs: Building polarized tissue. Nat. Rev. Mol. Cell Biol. 2008, 9, 887–901. [Google Scholar] [CrossRef]
- Mellman, I.; Nelson, W.J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Bennett, V.; Healy, J. Organizing the fluid membrane bilayer: Diseases linked to spectrin and ankyrin. Trends Mol. Med. 2008, 14, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Mostov, K.; Su, T.; ter Beest, M. Polarized epithelial membrane traffic: Conservation and plasticity. Nat. Cell Biol. 2003, 5, 287–293. [Google Scholar] [CrossRef]
- Nelson, W.J.; Rodriguez-Boulan, E. Unravelling protein sorting. Nat. Cell Biol. 2004, 6, 282–284. [Google Scholar] [CrossRef]
- Polishchuk, R.; Di Pentima, A.; Lippincott-Schwartz, J. Delivery of raft-associated, gpi-anchored proteins to the apical surface of polarized mdck cells by a transcytotic pathway. Nat. Cell Biol. 2004, 6, 297–307. [Google Scholar] [CrossRef]
- Folsch, H.; Mattila, P.E.; Weisz, O.A. Taking the scenic route: Biosynthetic traffic to the plasma membrane in polarized epithelial cells. Traffic 2009, 10, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Weisz, O.A.; Rodriguez-Boulan, E. Apical trafficking in epithelial cells: Signals, clusters and motors. J. Cell Sci. 2009, 122, 4253–4266. [Google Scholar] [CrossRef]
- Horvat, R.D.; Nelson, S.; Clay, C.M.; Barisas, B.G.; Roess, D.A. Intrinsically fluorescent luteinizing hormone receptor demonstrates hormone-driven aggregation. Biochem. Biophys. Res. Commun. 1999, 255, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.; Horvat, R.D.; Malvey, J.; Roess, D.A.; Barisas, B.G.; Clay, C.M. Characterization of an intrinsically fluorescent gonadotropin-releasing hormone receptor and effects of ligand binding on receptor lateral diffusion. Endocrinology 1999, 140, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.; Adereth, Y.; Kose, N.; Dammai, V. Endocytic function of von hippel-lindau tumor suppressor protein regulates surface localization of fibroblast growth factor receptor 1 and cell motility. J. Biol. Chem. 2006, 281, 12069–12080. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.R.; Tischer, C.; Verveer, P.J.; Rocks, O.; Bastiaens, P.I. Egfr activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol. 2003, 5, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Ornitz, D.M.; Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Molyneaux, K.; Runyan, C.; Schaible, K.; Wylie, C. The roles of fgf signaling in germ cell migration in the mouse. Development 2005, 132, 5399–5409. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Weinstein, M.; Li, C.; Deng, C. Fibroblast growth factor receptors (fgfrs) and their roles in limb development. Cell Tissue Res. 1999, 296, 33–43. [Google Scholar] [CrossRef]
- Deng, C.X.; Wynshaw-Boris, A.; Shen, M.M.; Daugherty, C.; Ornitz, D.M.; Leder, P. Murine fgfr-1 is required for early postimplantation growth and axial organization. Genes Dev. 1994, 8, 3045–3057. [Google Scholar] [CrossRef]
- Yamaguchi, T.P.; Harpal, K.; Henkemeyer, M.; Rossant, J. Fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 1994, 8, 3032–3044. [Google Scholar] [CrossRef]
- Soundararajan, P.; Fawcett, J.P.; Rafuse, V.F. Guidance of postural motoneurons requires mapk/erk signaling downstream of fibroblast growth factor receptor 1. J. Neurosci. 2010, 30, 6595–6606. [Google Scholar] [CrossRef] [PubMed]
- Ronca, R.; Gualandi, L.; Crescini, E.; Calza, S.; Presta, M.; Dell’Era, P. Fibroblast growth factor receptor-1 phosphorylation requirement for cardiomyocyte differentiation in murine embryonic stem cells. J. Cell. Mol. Med. 2009, 13, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Dammai, V.; Adryan, B.; Lavenburg, K.R.; Hsu, T. Drosophila awd, the homolog of human nm23, regulates fgf receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes Dev. 2003, 17, 2812–2824. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Hacohen, N.; Krasnow, M.; Montell, D.J. Regulated breathless receptor tyrosine kinase activity required to pattern cell migration and branching in the drosophila tracheal system. Genes Dev. 1996, 10, 2912–2921. [Google Scholar] [CrossRef] [PubMed]
- Klambt, C.; Glazer, L.; Shilo, B.Z. Breathless, a drosophila fgf receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 1992, 6, 1668–1678. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.R.; Mazot, P.; Soriano, P. Genetic insights into the mechanisms of fgf signaling. Genes Dev. 2016, 30, 751–771. [Google Scholar] [CrossRef] [PubMed]
- Zinkle, A.; Mohammadi, M. A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination. F1000Res 2018, 7. [Google Scholar] [CrossRef]
- Sarabipour, S.; Hristova, K. Mechanism of fgf receptor dimerization and activation. Nat. Commun. 2016, 7, 10262. [Google Scholar] [CrossRef]
- Centrone, M.; Ranieri, M.; Di Mise, A.; D’Agostino, M.; Venneri, M.; Ferrulli, A.; Valenti, G.; Tamma, G. Aqp2 trafficking in health and diseases: An updated overview. Int. J. Biochem. Cell Biol. 2022, 149, 106261. [Google Scholar] [CrossRef]
- Gould, G.W.; Brodsky, F.M.; Bryant, N.J. Building glut4 vesicles: Chc22 clathrin’s human touch. Trends Cell Biol. 2020, 30, 705–719. [Google Scholar] [CrossRef]
- Klemens, C.A.; Edinger, R.S.; Kightlinger, L.; Liu, X.; Butterworth, M.B. Ankyrin G expression regulates apical delivery of the epithelial sodium channel (ENaC). J. Biol. Chem. 2017, 292, 375–385. [Google Scholar] [CrossRef]
- Pick, J.E.; Ziff, E.B. Regulation of ampa receptor trafficking and exit from the endoplasmic reticulum. Mol. Cell. Neurosci. 2018, 91, 3–9. [Google Scholar] [CrossRef]
- Chieregatti, E.; Meldolesi, J. Regulated exocytosis: New organelles for non-secretory purposes. Nat. Rev. Mol. Cell Biol. 2005, 6, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M.; Nishida-Fukuda, H.; Li, Y.; McDonald, W.H.; Gradinaru, C.C.; Macara, I.G. Exocyst dynamics during vesicle tethering and fusion. Nat. Commun. 2018, 9, 5140. [Google Scholar] [CrossRef] [PubMed]
- Partanen, J.; Schwartz, L.; Rossant, J. Opposite phenotypes of hypomorphic and y766 phosphorylation site mutations reveal a function for fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev. 1998, 12, 2332–2344. [Google Scholar] [CrossRef] [PubMed]
- Shirakihara, T.; Horiguchi, K.; Miyazawa, K.; Ehata, S.; Shibata, T.; Morita, I.; Miyazono, K.; Saitoh, M. Tgf-beta regulates isoform switching of fgf receptors and epithelial-mesenchymal transition. EMBO J. 2011, 30, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Tian, X.; Liu, Z.; Zhou, S.; Schmidt, B.; Henne-Bruns, D.; Bachem, M.; Kornmann, M. Inhibition of endogenous sparc enhances pancreatic cancer cell growth: Modulation by fgfr1-iii isoform expression. Br. J. Cancer. 2010, 102, 188–195. [Google Scholar] [CrossRef]
- Wan, X.; Corn, P.G.; Yang, J.; Palanisamy, N.; Starbuck, M.W.; Efstathiou, E.; Li Ning Tapia, E.M.; Zurita, A.J.; Aparicio, A.; Ravoori, M.K.; et al. Prostate cancer cell-stromal cell crosstalk via fgfr1 mediates antitumor activity of dovitinib in bone metastases. Sci. Transl. Med. 2014, 6, 252ra122. [Google Scholar] [CrossRef]
- Hopkins, A.; Coatham, M.L.; Berry, F.B. Foxc1 regulates fgfr1 isoform switching to promote invasion following tgfbeta-induced emt. Mol. Cancer Res. 2017, 15, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Osada, A.H.; Endo, K.; Kimura, Y.; Sakamoto, K.; Nakamura, R.; Sakamoto, K.; Ueki, K.; Yoshizawa, K.; Miyazawa, K.; Saitoh, M. Addiction of mesenchymal phenotypes on the fgf/fgfr axis in oral squamous cell carcinoma cells. PLoS ONE 2019, 14, e0217451. [Google Scholar] [CrossRef]
- Jackson, M.; Taylor, A.H.; Jones, E.A.; Forrester, L.M. The culture of mouse embryonic stem cells and formation of embryoid bodies. Methods Mol. Biol. 2010, 633, 1–18. [Google Scholar] [PubMed]
- Ben-Zvi, T.; Yayon, A.; Gertler, A.; Monsonego-Ornan, E. Suppressors of cytokine signaling (socs) 1 and socs3 interact with and modulate fibroblast growth factor receptor signaling. J. Cell Sci. 2006, 119, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Holman, G.D.; Cushman, S.W. Subcellular localization and trafficking of the glut4 glucose transporter isoform in insulin-responsive cells. Bioessays 1994, 16, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Li, H.; Xi, Y.; Hu, Q.; Liu, H.; Fan, J.; Xiang, Y.; Zhang, X.; Shui, W.; Lai, Y. Vesicle trafficking and vesicle fusion: Mechanisms, biological functions, and their implications for potential disease therapy. Mol. Biomed. 2022, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Wickner, W. Membrane fusion: Five lipids, four snares, three chaperones, two nucleotides, and a rab, all dancing in a ring on yeast vacuoles. Annu. Rev. Cell Dev. Biol. 2010, 26, 115–136. [Google Scholar] [CrossRef] [PubMed]
- Itzen, A.; Goody, R.S. Gtpases involved in vesicular trafficking: Structures and mechanisms. Semin. Cell Dev. Biol. 2011, 22, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Tecleab, A.; Zhang, X.; Sebti, S.M. Ral gtpase down-regulation stabilizes and reactivates p53 to inhibit malignant transformation. J. Biol. Chem. 2014, 289, 31296–31309. [Google Scholar] [CrossRef]
- Jeon, H.; Zheng, L.T.; Lee, S.; Lee, W.H.; Park, N.; Park, J.Y.; Heo, W.D.; Lee, M.S.; Suk, K. Comparative analysis of the role of small g proteins in cell migration and cell death: Cytoprotective and promigratory effects of rala. Exp. Cell Res. 2011, 317, 2007–2018. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, X.; Chen, L.; Liu, Y.Y.; Venkatarangan, V.; Reist, L.; Hanson, P.; Xu, H.; Wang, Y.; Li, M. A conserved ubiquitin- and escrt-dependent pathway internalizes human lysosomal membrane proteins for degradation. PLoS Biol. 2021, 19, e3001361. [Google Scholar] [CrossRef]
- Sato, T.; Mushiake, S.; Kato, Y.; Sato, K.; Sato, M.; Takeda, N.; Ozono, K.; Miki, K.; Kubo, Y.; Tsuji, A.; et al. The rab8 gtpase regulates apical protein localization in intestinal cells. Nature 2007, 448, 366–369. [Google Scholar] [CrossRef]
- Ghabrial, A.; Luschnig, S.; Metzstein, M.M.; Krasnow, M.A. Branching morphogenesis of the drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 2003, 19, 623–647. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Chapuli, R. Evolution of angiogenesis. Int. J. Dev. Biol. 2011, 55, 345–351. [Google Scholar] [CrossRef] [PubMed]
- An, S.J.; Rivera-Molina, F.; Anneken, A.; Xi, Z.; McNellis, B.; Polejaev, V.I.; Toomre, D. An active tethering mechanism controls the fate of vesicles. Nat. Commun. 2021, 12, 5434. [Google Scholar] [CrossRef] [PubMed]
- Solinger, J.A.; Rashid, H.O.; Spang, A. Ferari and cargo adaptors coordinate cargo flow through sorting endosomes. Nat. Commun. 2022, 13, 4620. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.F.; Martinez, S.D.; Mickey, G.; Maher, P.A. A novel role for farnesyl pyrophosphate synthase in fibroblast growth factor-mediated signal transduction. Biochem. J. 2002, 366, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, I.; Yu, K.L.; Martinez-Sanchez, E.; Serra-Marques, A.; Smal, I.; Meijering, E.; Demmers, J.; Peranen, J.; Pasterkamp, R.J.; van der Sluijs, P.; et al. Rab6, rab8, and mical3 cooperate in controlling docking and fusion of exocytotic carriers. Curr. Biol. 2011, 21, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Lavine, K.J.; White, A.C.; Park, C.; Smith, C.S.; Choi, K.; Long, F.; Hui, C.C.; Ornitz, D.M. Fibroblast growth factor signals regulate a wave of hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006, 20, 1651–1666. [Google Scholar] [CrossRef]
- Park, E.J.; Watanabe, Y.; Smyth, G.; Miyagawa-Tomita, S.; Meyers, E.; Klingensmith, J.; Camenisch, T.; Buckingham, M.; Moon, A.M. An fgf autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 2008, 135, 3599–3610. [Google Scholar] [CrossRef]
- Robbins, J.; Gulick, J.; Sanchez, A.; Howles, P.; Doetschman, T. Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 1990, 265, 11905–11909. [Google Scholar] [CrossRef]
- Dell’Era, P.; Ronca, R.; Coco, L.; Nicoli, S.; Metra, M.; Presta, M. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ. Res. 2003, 93, 414–420. [Google Scholar] [CrossRef]
- Belouzard, S.; Delcroix, D.; Rouille, Y. Low levels of expression of leptin receptor at the cell surface result from constitutive endocytosis and intracellular retention in the biosynthetic pathway. J. Biol. Chem. 2004, 279, 28499–28508. [Google Scholar] [CrossRef] [PubMed]
- Manickam, V.; Tiwari, A.; Jung, J.J.; Bhattacharya, R.; Goel, A.; Mukhopadhyay, D.; Choudhury, A. Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by golgi localized t-snare syntaxin 6. Blood 2011, 117, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudlou, A.; Meyer, R.D.; Rezazadeh, K.; Arafa, E.; Pudney, J.; Hartsough, E.; Rahimi, N. Rnf121 inhibits angiogenic growth factor signaling by restricting cell surface expression of vegfr-2. Traffic 2016, 17, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Mazot, P.; Cazes, A.; Boutterin, M.C.; Figueiredo, A.; Raynal, V.; Combaret, V.; Hallberg, B.; Palmer, R.H.; Delattre, O.; Janoueix-Lerosey, I.; et al. The constitutive activity of the alk mutated at positions f1174 or r1275 impairs receptor trafficking. Oncogene 2011, 30, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Wallborn, T.; Wuller, S.; Klammt, J.; Kruis, T.; Kratzsch, J.; Schmidt, G.; Schlicke, M.; Muller, E.; van de Leur, H.S.; Kiess, W.; et al. A heterozygous mutation of the insulin-like growth factor-i receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation. J. Clin. Endocrinol. Metab. 2010, 95, 2316–2324. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Laorden, B.L.; Herraiz, C.; Valencia, J.C.; Hearing, V.J.; Jimenez-Cervantes, C.; Garcia-Borron, J.C. Aberrant trafficking of human melanocortin 1 receptor variants associated with red hair and skin cancer: Steady-state retention of mutant forms in the proximal golgi. J. Cell. Physiol. 2009, 220, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, A.; Rudarakanchana, N.; Upton, P.D.; Yang, J.; Crilley, T.K.; Trembath, R.C.; Morrell, N.W. Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: Potential for rescue. Hum. Mol. Genet. 2008, 17, 3180–3190. [Google Scholar] [CrossRef]
- Ma, D.; Taneja, T.K.; Hagen, B.M.; Kim, B.Y.; Ortega, B.; Lederer, W.J.; Welling, P.A. Golgi export of the kir2.1 channel is driven by a trafficking signal located within its tertiary structure. Cell 2011, 145, 1102–1115. [Google Scholar] [CrossRef]
- Wheldon, L.M.; Haines, B.P.; Rajappa, R.; Mason, I.; Rigby, P.W.; Heath, J.K. Critical role of flrt1 phosphorylation in the interdependent regulation of flrt1 function and fgf receptor signalling. PLoS ONE 2010, 5, e10264. [Google Scholar] [CrossRef]
- Li, C.; Hao, M.; Cao, Z.; Ding, W.; Graves-Deal, R.; Hu, J.; Piston, D.W.; Coffey, R.J. Naked2 acts as a cargo recognition and targeting protein to ensure proper delivery and fusion of tgf-alpha containing exocytic vesicles at the lower lateral membrane of polarized mdck cells. Mol. Biol. Cell 2007, 18, 3081–3093. [Google Scholar] [CrossRef]
- Santos, A.C.; Lehmann, R. Isoprenoids control germ cell migration downstream of hmgcoa reductase. Dev. Cell 2004, 6, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, J.T.; Fuller, M.T.; Zallen, J.A. The drosophila homolog of the exo84 exocyst subunit promotes apical epithelial identity. J. Cell Sci. 2007, 120, 3099–3110. [Google Scholar] [CrossRef] [PubMed]
- Mazelova, J.; Ransom, N.; Astuto-Gribble, L.; Wilson, M.C.; Deretic, D. Syntaxin 3 and snap-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments. J. Cell Sci. 2009, 122, 2003–2013. [Google Scholar] [CrossRef]
- Yeaman, C.; Grindstaff, K.K.; Nelson, W.J. Mechanism of recruiting sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 2004, 117, 559–570. [Google Scholar] [CrossRef]
- Apken, L.H.; Oeckinghaus, A. The ral signaling network: Cancer and beyond. Int. Rev. Cell Mol. Biol. 2021, 361, 21–105. [Google Scholar]
- Lee, Y.M.; Jeong, C.H.; Koo, S.Y.; Son, M.J.; Song, H.S.; Bae, S.K.; Raleigh, J.A.; Chung, H.Y.; Yoo, M.A.; Kim, K.W. Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: A possible signal for vessel development. Dev. Dyn. 2001, 220, 175–186. [Google Scholar] [CrossRef]
- Gebb, S.A.; Jones, P.L. Hypoxia and lung branching morphogenesis. Adv. Exp. Med. Biol. 2003, 543, 117–125. [Google Scholar] [PubMed]
- Chen, E.Y.; Fujinaga, M.; Giaccia, A.J. Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology 1999, 60, 215–225. [Google Scholar] [CrossRef]
- Giaccia, A.J.; Simon, M.C.; Johnson, R. The biology of hypoxia: The role of oxygen sensing in development, normal function, and disease. Genes Dev. 2004, 18, 2183–2194. [Google Scholar] [CrossRef]
- Simon, M.C.; Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 2008, 9, 285–296. [Google Scholar] [CrossRef]
- Casaletto, J.B.; McClatchey, A.I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer 2012, 12, 387–400. [Google Scholar] [CrossRef]
- Cecchini, A.; Cornelison, D.D.W. Eph/ephrin-based protein complexes: The importance of cis interactions in guiding cellular processes. Front. Mol. Biosci. 2021, 8, 809364. [Google Scholar] [CrossRef]
- Huebner, R.J.; Neumann, N.M.; Ewald, A.J. Mammary epithelial tubes elongate through mapk-dependent coordination of cell migration. Development 2016, 143, 983–993. [Google Scholar]
- SenGupta, S.; Parent, C.A.; Bear, J.E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 2021, 22, 529–547. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Gao, X.; Ma, Q.; Yu, Z.; Huang, S. Rab8a promotes breast cancer progression by increasing surface expression of tropomyosin-related kinase b. Cancer Lett. 2022, 535, 215629. [Google Scholar] [CrossRef] [PubMed]
- Huber, L.A.; Dupree, P.; Dotti, C.G. A deficiency of the small gtpase rab8 inhibits membrane traffic in developing neurons. Mol. Cell. Biol. 1995, 15, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, E.E.; Hummel, J.J.A.; Han, Y.; Bar, C.; Stucchi, R.; Altelaar, M.; Hoogenraad, C.C. Combined kinesin-1 and kinesin-3 activity drives axonal trafficking of trkb receptors in rab6 carriers. Dev. Cell. 2021, 56, 1552–1554. [Google Scholar] [CrossRef]
- Arimura, N.; Kimura, T.; Nakamuta, S.; Taya, S.; Funahashi, Y.; Hattori, A.; Shimada, A.; Menager, C.; Kawabata, S.; Fujii, K.; et al. Anterograde transport of trkb in axons is mediated by direct interaction with slp1 and rab27. Dev. Cell 2009, 16, 675–686. [Google Scholar] [CrossRef]
- Connor, B.; Moya-Alvarado, G.; Yamashita, N.; Kuruvilla, R. Transcytosis-mediated anterograde transport of trka receptors is necessary for sympathetic neuron development and function. Proc. Natl. Acad. Sci. USA 2023, 120, e2205426120. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinsch, C.L.; Venkata, J.K.; Hsu, T.; Dammai, V. Controlled Plasma Membrane Delivery of FGFR1 and Modulation of Signaling by a Novel Regulated Anterograde RTK Transport Pathway. Cancers 2023, 15, 5837. https://doi.org/10.3390/cancers15245837
Hinsch CL, Venkata JK, Hsu T, Dammai V. Controlled Plasma Membrane Delivery of FGFR1 and Modulation of Signaling by a Novel Regulated Anterograde RTK Transport Pathway. Cancers. 2023; 15(24):5837. https://doi.org/10.3390/cancers15245837
Chicago/Turabian StyleHinsch, Claire Leist, Jagadish Kummetha Venkata, Tien Hsu, and Vincent Dammai. 2023. "Controlled Plasma Membrane Delivery of FGFR1 and Modulation of Signaling by a Novel Regulated Anterograde RTK Transport Pathway" Cancers 15, no. 24: 5837. https://doi.org/10.3390/cancers15245837
APA StyleHinsch, C. L., Venkata, J. K., Hsu, T., & Dammai, V. (2023). Controlled Plasma Membrane Delivery of FGFR1 and Modulation of Signaling by a Novel Regulated Anterograde RTK Transport Pathway. Cancers, 15(24), 5837. https://doi.org/10.3390/cancers15245837