Adverse Effect of the Duration of Antibiotic Use Prior to Immune Checkpoint Inhibitors on the Overall Survival of Patients with Recurrent Gynecologic Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Collection
2.3. Assessment of PD-L1 Expression and MMR/MSI Status
2.4. Assessment of ICI Response
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.T.; Berman, D.M.; Wolchok, J.D. Pooled Analysis of Long-Term Survival Data from Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef]
- McDermott, D.; Lebbe, C.; Hodi, F.S.; Maio, M.; Weber, J.S.; Wolchok, J.D.; Thompson, J.A.; Balch, C.M. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat. Rev. 2014, 40, 1056–1064. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, J.Y.; Lee, Y.Y.; Shim, S.H.; Suh, D.H.; Kim, J.W. Major clinical research advances in gynecologic cancer in 2021. J. Gynecol. Oncol. 2022, 33, e43. [Google Scholar] [CrossRef]
- Chung, H.C.; Ros, W.; Delord, J.P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef]
- Nishio, S.; Matsumoto, K.; Takehara, K.; Kawamura, N.; Hasegawa, K.; Takeshima, N.; Aoki, D.; Kamiura, S.; Arakawa, A.; Kondo, E.; et al. Pembrolizumab monotherapy in Japanese patients with advanced ovarian cancer: Subgroup analysis from the KEYNOTE-100. Cancer Sci. 2020, 111, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; De Jesus Acosta, A.; Miller, W.H., Jr.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients with Microsatellite Instability-High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O., 3rd; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.P. Biomarkers for immune checkpoint inhibitors: The importance of tumor topography and the challenges to cytopathology. Cancer Cytopathol. 2018, 126, 11–19. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Choi, M.C.; Park, J.Y.; Suh, D.H.; Kim, J.W. Major clinical research advances in gynecologic cancer in 2020. J. Gynecol. Oncol. 2021, 32, e53. [Google Scholar] [CrossRef]
- Chambers, L.M.; Michener, C.M.; Rose, P.G.; Reizes, O.; Yao, M.; Vargas, R. Impact of antibiotic treatment on immunotherapy response in women with recurrent gynecologic cancer. Gynecol. Oncol. 2021, 161, 211–220. [Google Scholar] [CrossRef]
- Pinato, D.J.; Howlett, S.; Ottaviani, D.; Urus, H.; Patel, A.; Mineo, T.; Brock, C.; Power, D.; Hatcher, O.; Falconer, A.; et al. Association of Prior Antibiotic Treatment With Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients With Cancer. JAMA Oncol. 2019, 5, 1774–1778. [Google Scholar] [CrossRef]
- Yoon, M.Y.; Yoon, S.S. Disruption of the Gut Ecosystem by Antibiotics. Yonsei Med. J. 2018, 59, 4–12. [Google Scholar] [CrossRef]
- Manichanh, C.; Reeder, J.; Gibert, P.; Varela, E.; Llopis, M.; Antolin, M.; Guigo, R.; Knight, R.; Guarner, F. Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res. 2010, 20, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litiere, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef]
- Noh, J.J.; Kim, M.K.; Choi, M.C.; Lee, J.W.; Park, H.; Jung, S.G.; Joo, W.D.; Song, S.H.; Lee, C. Frequency of Mismatch Repair Deficiency/High Microsatellite Instability and Its Role as a Predictive Biomarker of Response to Immune Checkpoint Inhibitors in Gynecologic Cancers. Cancer Res. Treat. 2022, 54, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Huang, B. Some statistical considerations in the clinical development of cancer immunotherapies. Pharm. Stat. 2018, 17, 49–60. [Google Scholar] [CrossRef]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillere, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Spakowicz, D.; Hoyd, R.; Muniak, M.; Husain, M.; Bassett, J.S.; Wang, L.; Tinoco, G.; Patel, S.H.; Burkart, J.; Miah, A.; et al. Inferring the role of the microbiome on survival in patients treated with immune checkpoint inhibitors: Causal modeling, timing, and classes of concomitant medications. BMC Cancer 2020, 20, 383. [Google Scholar] [CrossRef]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef]
- Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.; Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021, 371, 595–602. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, H.; Xia, C.; Dong, Q.; Chen, E.; Qiu, Y.; Su, Y.; Xie, H.; Zeng, L.; Kuang, J.; et al. A randomized, double-blind, placebo-controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma. Cancer 2019, 125, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Konishi, H.; Fujiya, M.; Tanaka, H.; Ueno, N.; Moriichi, K.; Sasajima, J.; Ikuta, K.; Akutsu, H.; Tanabe, H.; Kohgo, Y. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat. Commun. 2016, 7, 12365. [Google Scholar] [CrossRef] [PubMed]
- Lederer, A.K.; Pisarski, P.; Kousoulas, L.; Fichtner-Feigl, S.; Hess, C.; Huber, R. Postoperative changes of the microbiome: Are surgical complications related to the gut flora? A systematic review. BMC Surg. 2017, 17, 125. [Google Scholar] [CrossRef] [PubMed]
- Strus, M.; Helwich, E.; Lauterbach, R.; Rzepecka-Weglarz, B.; Nowicka, K.; Wilinska, M.; Szczapa, J.; Rudnicka, M.; Slawska, H.; Szczepanski, M.; et al. Effects of oral probiotic supplementation on gut Lactobacillus and Bifidobacterium populations and the clinical status of low-birth-weight preterm neonates: A multicenter randomized, double-blind, placebo-controlled trial. Infect. Drug Resist. 2018, 11, 1557–1571. [Google Scholar] [CrossRef]
- Umenai, T.; Shime, N.; Asahara, T.; Nomoto, K.; Itoi, T. A pilot study of Bifidobacterium breve in neonates undergoing surgery for congenital heart disease. J. Intensive Care 2014, 2, 36. [Google Scholar] [CrossRef]
- Wada, M.; Nagata, S.; Saito, M.; Shimizu, T.; Yamashiro, Y.; Matsuki, T.; Asahara, T.; Nomoto, K. Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Support. Care Cancer 2010, 18, 751–759. [Google Scholar] [CrossRef]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014, 7, 17–44. [Google Scholar] [CrossRef]
All Patients | No Antibiotics | Prior Antibiotics | p | |
---|---|---|---|---|
n = 215 | n = 168 | n = 47 | ||
Age, years | 55 (28–86) | 56 (28–86) | 53 (30–79) | 0.115 |
BMI, kg/m2 | 22.2 ± 3.9 | 22.4 ± 3.7 | 21.3 ± 4.5 | 0.084 |
ECOG | 0.116 | |||
0 or 1 | 73 (34.0%) | 62 (36.9%) | 11 (23.4%) | |
2 or 3 | 142 (66.0%) | 106 (63.1%) | 36 (76.6%) | |
PDL1 expression | 0.103 | |||
Positive | 102 (47.4%) | 75 (44.6%) | 27 (57.4%) | |
Negative | 52 (24.2%) | 46 (27.4%) | 6 (12.8%) | |
Unknown | 61 (28.4%) | 47 (28.0%) | 14 (29.8%) | |
dMMR/MSI-H | 0.273 | |||
Positive | 54 (25.1%) | 46 (27.4%) | 8 (17.1%) | |
Negative | 44 (20.5%) | 35 (20.8%) | 9 (19.1%) | |
Unknown | 117 (54.4%) | 87 (51.8%) | 30 (63.8%) | |
Tumor sites * | 0.082 | |||
Ovary | 112 (52.1%) | 90 (53.6%) | 22 (46.8%) | |
Cervix | 53 (24.7%) | 37 (22.0%) | 16 (34.0%) | |
Endometrium | 36 (16.7%) | 32 (19.0%) | 4 (8.6%) | |
Others | 14 (6.5%) | 9 (5.4%) | 5 (10.6%) | |
Prior lines of chemotherapy | 3 (1–11) | 3 (1–11) | 2 (1–8) | 0.310 |
Chemotherapy-free interval, m | 2 (0–54) | 2 (0–54) | 2 (0–41) | 0.966 |
Prior radiotherapy | 110 (51.2%) | 83 (49.4%) | 27 (57.4%) | 0.330 |
Type of ICI | 0.998 | |||
Pembrolizumab | 183 (85.1%) | 143 (85.1%) | 40 (85.1%) | |
Nivolumab | 32 (14.9%) | 25 (14.9%) | 7 (14.9%) |
BMI | <18.5 kg/m2 | ≥18.5 kg/m2 and ≤24.9 kg/m2 | >24.9 kg/m2 | p |
---|---|---|---|---|
% (n) | 17.2% (37) | 58.1% (125) | 24.7% (53) | 0.065 |
DCR at 10 weeks | 21.6% (8) | 28.8% (36) | 43.4% (23) | |
Complete response | 0 | 0.8% (1) | 1.9% (1) | |
Partial response | 0 | 5.6% (7) | 7.5% (4) | |
Stable disease | 21.6% (8) | 22.4% (28) | 34.0% (18) | |
Progressive disease | 78.4% (29) | 71.2% (89) | 56.6% (30) |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Prior antibiotics in 60 days | ||||||
No | 1 | 1 | ||||
<14 days | 1.803 | 1.021–3.182 | 0.042 | 1.516 | 0.848–2.708 | 0.160 |
≥14 days | 2.817 | 1.543–5.141 | 0.001 | 2.286 | 1.210–4.318 | 0.011 |
BMI, kg/m2 | ||||||
>24.9 | 1 | |||||
≥18.5 and ≤24.9 | 1.165 | 0.686–1.979 | 0.573 | 0.990 | 0.576–1.702 | 0.972 |
<18.5 | 2.381 | 1.265–4.481 | 0.007 | 1.573 | 0.808–3.065 | 0.183 |
Age | ||||||
<65 years | 1 | 1 | ||||
≥65 years | 0.738 | 0.409–1.330 | 0.312 | 0.874 | 0.469–1.629 | 0.673 |
MMR/MSI-H status | ||||||
Unknown | 1 | 1 | ||||
pMMR/MSS | 0.648 | 0.362–1.160 | 0.144 | 0.716 | 0.376–1.360 | 0.307 |
dMMR/MSI-H | 0.429 | 0.239–0.768 | 0.004 | 0.632 | 0.331–1.206 | 0.164 |
Tumor sites | ||||||
Endometrium | 1 | 1 | ||||
Non-endometrium | 2.500 | 1.208–5.176 | 0.014 | 1.216 | 0.513–2.884 | 0.656 |
Chemotherapy-free interval | ||||||
≥6 months | 1 | 1 | ||||
<6 months | 2.282 | 1.240–4.202 | 0.008 | 2.007 | 1.055–3.819 | 0.034 |
ECOG | ||||||
1 | 1 | 1 | ||||
2 or 3 | 5.284 | 2.857–9.776 | <0.001 | 4.677 | 2.497–8.762 | <0.001 |
Reason for Antibiotic Use | Event | Types of Antibiotics | Duration of Use, Days (Median, Range) |
---|---|---|---|
UTI | 12 | Ciprofloxacin, Ceftriaxone, Tazoferan, Tigecycline, Fosfomycin, Cefditoren, Cefepime, Azithromycin, Sultamicillin | 7 (2–60) |
Postprocedure | 8 | Cefditoren, Tazoferan, Cefazolin, Ceftriaxone, Metronidazole, Tazoferan, Cefepime, Vancomycin, Cefotetan, Tazoferan | 18 (8–68) |
Peritonitis | 7 | Ceftriaxone, Metronidazole, Cefotaxime, Tazoferan, Prepenem, Cefotetan, Ertapenem, Vancomycin, Tigecycline, Levofloxacin | 7 (3–61) |
Septic shock | 4 | Ceftriaxone, Metronidazole, Meropenem, Vancomycin, Tazoferan, Cefotaxime, Ampicillin/sulbactam, Cefditoren | 23 (13–48) |
Colitis | 4 | Ceftriaxone, Cefuroxime, Ciprofloxacin, Moxifloxacin | 10.5 (4–12) |
Neutropenic fever | 3 | Cefepime, Tazoferan | 11 (4–26) |
Pneumonia | 3 | Tazoferan, Levofloxacin | 6 (2–7) |
Cellulitis | 2 | Amoxicillin, Ceftriaxone, Tazoferan, Meropenem, Levofloxacin, Vancomycin | 26 (25–27) |
Cholangitis | 2 | Cefotetan, Metronidazole, Moxifloxacin | 17 (7–27) |
Cholecystitis | 1 | Ciprofloxacin, Metronidazole | 47 |
Complicated lymphocele | 1 | Tazoferna, Cefotetan | 7 |
Unknown fever | 1 | Ciprofloxacin, Amoxicillin | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.-J.; Park, J.-H.; Oh, J.; Lee, S.-M.; Jang, I.-Y.; Hong, J.-Y.; Lee, Y.-Y.; Choi, H.J. Adverse Effect of the Duration of Antibiotic Use Prior to Immune Checkpoint Inhibitors on the Overall Survival of Patients with Recurrent Gynecologic Malignancies. Cancers 2023, 15, 5745. https://doi.org/10.3390/cancers15245745
Jung H-J, Park J-H, Oh J, Lee S-M, Jang I-Y, Hong J-Y, Lee Y-Y, Choi HJ. Adverse Effect of the Duration of Antibiotic Use Prior to Immune Checkpoint Inhibitors on the Overall Survival of Patients with Recurrent Gynecologic Malignancies. Cancers. 2023; 15(24):5745. https://doi.org/10.3390/cancers15245745
Chicago/Turabian StyleJung, Hye-Ji, Jong-Ho Park, Jina Oh, Sae-Mi Lee, Il-Yeo Jang, Jung-Yong Hong, Yoo-Young Lee, and Hyun Jin Choi. 2023. "Adverse Effect of the Duration of Antibiotic Use Prior to Immune Checkpoint Inhibitors on the Overall Survival of Patients with Recurrent Gynecologic Malignancies" Cancers 15, no. 24: 5745. https://doi.org/10.3390/cancers15245745
APA StyleJung, H. -J., Park, J. -H., Oh, J., Lee, S. -M., Jang, I. -Y., Hong, J. -Y., Lee, Y. -Y., & Choi, H. J. (2023). Adverse Effect of the Duration of Antibiotic Use Prior to Immune Checkpoint Inhibitors on the Overall Survival of Patients with Recurrent Gynecologic Malignancies. Cancers, 15(24), 5745. https://doi.org/10.3390/cancers15245745